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Abstract

BACKGROUND—Habitual alcohol use can be an indicator of alcohol dependence, associated 

with a wide range of serious health problems.

METHODS—We completed a genomewide association study in 126,936 European-American 

(EUR) and 17,029 African-American (AFR) subjects in the Veterans Affairs Million Veteran 

Program (MVP) for a quantitative phenotype based on maximum habitual alcohol consumption 

(“MaxAlc”).

RESULTS—ADH1B, on chromosome 4, was the lead locus for both populations: for EUR, 

rs1229984 (p=4.9 × 10−47); for AFR, rs2066702 (p=2.3 × 10−12). In the EUR, we identified three 

additional genomewide-significant (GWS) MaxAlc loci: on chromosome 17, rs77804065 (p=1.5 × 

10−12), at CRHR1 (corticotropin-releasing hormone receptor 1); the protein product of this gene is 

involved in stress and immune responses; and on chromosomes 8 and 10. EUR and AFR samples 

were then meta-analyzed; the associated region at CRHR1 increased in significance to 1.02 × 

10−13, and we identified two additional genomewide-significant loci, FGF14 (p= 9.86 × 10−9) 

(chromosome 13), and a locus on chromosome 11. Besides ADH1B, none of the five loci have 

prior GWS support. Post-GWAS analysis identified genetic correlation to other alcohol-related 

traits, smoking-related traits, and many others. Replications were observed in UKBiobank data. 

Genetic correlation between MaxAlc and alcohol dependence was 0.87 (p=4.78 × 10−9). 

Enrichment for cell types included dopaminergic and GABAergic neurons in midbrain, and 

pancreatic delta cells.

CONCLUSIONS—The present study supports five novel alcohol use risk loci, with particularly 

strong statistical support for CRHR1. Additionally, we provide novel insight regarding the biology 

of harmful alcohol use.
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Introduction

The Million Veteran Program (MVP) is a US Department of Veterans Affairs (VA) initiative 

with a goal of recruiting at least one million VA healthcare beneficiaries, creating a database 

of genomic and phenotypic information useful for increasing understanding of health and 

disease (1). The sample is linked both to the VA’s extensive electronic health record (EHR) 

and to self-report survey information specific to the MVP study. The MVP is particularly 

valuable for elucidating health problems that are highly prevalent in military veterans, 

including alcohol use disorder (AUD) and harmful alcohol use.

DSM-IV alcohol dependence (AD), which in DSM-5 is the more severe type of AUD, is 

moderately heritable; genomewide association studies (GWAS) of AD and habitual alcohol 

use have been conducted in European (2–8), African (2, 5, 6), and East Asian (6, 9–13) 

ancestry populations. Most studies of AD diagnosis have been in small samples, but one 

reported on ~16,000 subjects (2), and the Psychiatric Genomics Consortium has completed a 

mega-analysis for AD (14). This AD mega-analysis included 14,904 AD cases and 37,944 

controls from 28 case-control and family-based studies. Although this study consistently 

detected AD polygenic architecture, ADH1B risk alleles were the only loci identified, 

perhaps due to the heterogeneity across the cohorts included (14). Alcohol consumption is 

the major risk factor for AD and has medical importance per se. For example, alcohol 

consumption, even in the normal range (“social” drinking) bears a direct relationship to 

decline in several cognitive measures (15). Studies of large database samples, including the 

UK Biobank (4), have focused on alcohol consumption and their findings have implications 

for AD risk. Associations with variants mapped to genes that encode alcohol metabolizing 

enzymes – generally ADH1B variants in European- and African-ancestry (EUR and AFR) 

subjects (16, 17) as well as ALDH2*rs671 (18) in Asians – have been observed consistently. 

Some studies have reported associations at other loci with various alcohol-related traits (2, 4, 

8); these reports are comparatively few. One meta-analysis of alcohol drinking (>105,000 

EUR individuals) identified associations of daily alcohol intake with KLB, GCKR, and 
CDH13 (8). The GWAS of alcohol consumption in the UK Biobank sample (4) of >112,000 

is the largest to date; this study considered only EUR subjects, and the phenotype was based 

on average weekly alcohol consumption. Genome-wide significant (GWS) associations were 

identified at several alcohol dehydrogenase (ADH) loci, in addition to other loci including 

GCKR, CADM2, and FAM69C.

In the present investigation, we studied the genetic architecture of an alcohol consumption 

phenotype – maximum habitual (“in a typical month…”) alcohol use, or MaxAlc -- in the 

MVP sample (19). We used two strategies to increase power for risk variant identification: a 

large sample size and substantial informativity of the phenotype. We included 143,965 MVP 

participants, and we used MaxAlc defined as a quantitative phenotype. A different 

phenotype, “maximum number of drinks consumed in any 24-hour lifetime period” often 

called MAXDRINKS, has previously been studied (5, 20). The trait definitions differ in that 

MaxAlc reflects typical habitual (daily) maximum usage, as opposed to the maximum use 

ever, which might be on a single occasion. Heaviness of habitual alcohol use may be more 

correlated with risk of AD than MAXDRINKS (21). Accordingly, we expected that our 
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analysis would be informative regarding the mental and physical consequences of excessive 

alcohol consumption and alcohol dependence.

Methods and Materials

Subject recruitment

Participants were enrollees in the MVP (1) (Table 1). Users of the VHA healthcare system 

received invitational mailings, encounters with MVP staff while receiving clinical care, or 

both. Inclusion criteria were ability and willingness to provide informed consent. Research 

involving MVP in general is approved by the VA Central IRB; the current project was 

approved by local IRBs in Boston, San Diego, and West Haven.

Two optional surveys were designed to augment data contained in the electronic health 

record. The MVP Baseline Survey elicits information regarding demographic factors, family 

pedigree, health status, lifestyle habits, military experience, medical history, family history 

of specific illnesses, and physical features. The MVP Lifestyle Survey contains questions 

from validated instruments, in domains selected to provide information on environmental 

exposures, dietary and other habits, sleep and exercise habits, and sense of well-being. This 

latter instrument includes the following item: “In a typical month, what is/was the largest 

number of drinks of alcohol (beer, wine, and/or liquor) you may have had in one day?” The 

response to this item was used to define the phenotype in the present study, referred to here 

as MaxAlc. All EUR and AFR subjects who responded to the questionnaire were included. 

Differences between respondents and non-respondents among MVP participants are shown 

in Supplementary Table 1.

Phenotype distribution is shown in Supplementary Figure 1.

Genotyping and Microarray

Genotyping was accomplished via a 723,305-SNP Affymetrix Axiom biobank array, 

customized for the MVP (1, 22). Additional information is provided in Supplementary 

Methods.

GWAS Analyses—We performed single variant tests using RVTEST(23) software, 

including the first 10 principal components, age, and sex as covariates in the linear 

regression association analyses, separately for EUR and AFR. The significance threshold 

was p=5×10−8.

Post-GWAS analyses

To investigate shared genetic and molecular mechanisms, we tested genetic overlap (i.e., 

shared risk alleles) of MaxAlc with a wide range of phenotypes. Genetic correlations were 

calculated using the LD score regression method (https://github.com/bulik/ldsc) (24). LDSC 

results regarding 232 traits were extracted from the data available at LD Hub v1.4.0 (http://

ldsc.broadinstitute.org/ldhub/)(25). Genetic correlations for an additional 1,547 traits were 

calculated using the GWAS summary association results available at https://
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sites.google.com/broadinstitute.org/ukbbgwasresults; these GWAS used data from ~337,000 

unrelated British individuals from the UK Biobank (26).

To explore further the functional role of the GWS variants identified, we conducted an 

expression quantitative trait locus (eQTL) analysis using GTEx V7 data (30). FDR 

correction, MAGMA (28), FUMA (31), and eQTL analyses are described further in 

Supplementary Methods.

Results

We identified an unusual instance of Hardy-Weinberg disequilibrium (HWD). ADH1B 
rs1229984, the most consistently associated alcohol risk variant in European populations 

(16), was initially excluded from analysis because it deviated from Hardy-Weinberg 

equilibrium expectations (HWEE) (p=1.46e-43). This variant is functional (32), presents 

very strong allele frequency differences among human populations (33), and has undergone 

selection in Asian and European populations (17, 34), although there is an open debate about 

the presence of convergent evolution in Europeans (35). Since ADH1B rs1229984 is the 

most relevant locus associated with alcohol drinking behaviors that has a very well 

established causative mechanism (17), we investigated the cause for HWD further to avoid 

unnecessary exclusion of this variant, which would have highlighted the association of other 

variants in the same region due to the LD without reflecting the real causal mechanism. This 

is described in Supplementary Results.

Primary GWAS Analysis

We observed 7.8% SNP-based heritability (p = 1.01×10−40) calculated on the basis of the 

summary association data in “G1” EUR via LD score regression (LDSC). As with other 

large-scale GWAS(25), an inflated lambdagc value was observed in the summary association 

data (λgc=1.16; Supplementary Figure 2). The LDSC intercept was 1.011 (SE = 0.0091), 

however, demonstrating that this inflation was due to polygenicity and not to population 

stratification, phenotype distribution, or other confounders. (25). In the smaller AFR sample 

(n=17,029), no effect of polygenicity was observed in the summary association data 

(λgc=1.01; Supplementary Figure 3). Four independent GWS regions were identified in 

“G1” EUR (Figure 1). The lead region was on chromosome 4, lead SNP rs1229984 

(p=4.9×10−47; Figure 2a); gene ADH1B, (beta subunit, class I alcohol dehydrogenase). 

GWS SNPs mapped to numerous loci in the region, so we performed conditional analysis 

for these loci using GCTA with EUR summary statistics and 1000G data as reference LD. 

This analysis confirmed that there are only four independent signals, i.e. no associated 

region reflected more than one independent signal. The other three associated regions map to 

chromosome 17, lead SNP rs77804065 (p=1.5×10−12; Supplementary Figure 4a), at 

CRHR1, corticotropin-releasing hormone receptor 1, with the protein product of this gene 

involved in stress and immune responses (numerous additional GWS SNPs were found in 

the chromosome 17 region, including variants that map to KANSL1, KAT8 Regulatory NSL 

Complex Subunit 1); chromosome 8, lead SNP rs7821592 (p=3.6×10−08; Supplementary 

Figure 4b), closest gene XPO7, exportin 7, the protein product of which mediates nuclear 
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export of proteins; and chromosome 10, lead SNP rs1577857 (p=4.2×10−08; Supplementary 

Figure 4c), at LOC105378478, which has unknown function (closest gene, RNU6–53P).

The MVP includes mostly male subjects (93.6%). Although sex was included as a covariate, 

males and females differ in their prevalence of and genetic liability to AUDs (36, 37), so we 

evaluated whether inclusion of females affected the results substantively by repeating the 

analysis excluding females. No major differences were observed between GWAS of both-

sexes and male-only samples (Supplementary Table 2).

In the AFRs, one GWS region was identified, lead SNP ADH1B*rs2066702 (2.29×10−12; 

Figure 2b). Conditional analysis, with AFR LD reference, confirmed that this reflects a 

single peak.

When EUR and AFR results were meta-analyzed (n=143,965 subjects total), we identified 

two additional GWS loci, uncharacterized LOC105376602 (p= 4.63×10−08) on chromosome 

11, and FGF14 (p= 9.86×10−09) on chromosome 13 (Supplementary Figure 5b and 5e). In 

addition, the associated region at CRHR1 increased in statistical significance to 

p=1.02×10−13. Comparing EUR results (Supplementary Figure 4a) with EUR-AFR meta-

analysis (Figure 2c), we observed different lead variants on chromosome 17, but they both 

indicated CRHR1 as a credible gene responsible for the association observed. Results are 

summarized in Table 2 and more extensively in Supplementary Table 3.

To verify our results in an independent sample, we used summary association data from the 

AD GWAS conducted by the Psychiatric Genomics Consortium (PGC) (38). Although to 

date this is the largest AD GWAS, its effective sample size (39) is much smaller than the one 

used in our analysis (PGC = 31,819; MVP = 143,965) so there is low statistical power to 

replicate our findings. Nevertheless, considering our six GWS results in trans-ancestry meta-

analysis, we observed genome-wide significant replication of the chromosome 4 

ADH1B*rs1229984 association (p=2.18×10−11), a nominal replication of chromosome 10 

rs1577857 (p=2.44×10−3) and direction replication (i.e., the loci showed the same effect 

direction in both MaxAlc and AD) for all loci (Supplementary Table 4). We estimate that the 

probability to observe a direction replication of all six MVP-identified loci in PGC AD 

GWAS by chance is 1.7% (Supplementary Figure 6). Leveraging the polygenic architecture 

of the complex traits investigated, in the EUR sample, MaxAlc in MVP showed rg=0.87 with 

AD in the PGC cohort (p=4.78×10−9) by LDSC. For additional replication, we investigated 

UK Biobank data regarding nine traits related to alcohol use (Supplementary Table 5). To 

identify the phenotypes most closely related to MaxAlc, we performed a genetic-correlation 

analysis and observed the strongest correlation with “Amount of alcohol drunk on a typical 

drinking day” (rg=0.81, p=5.83×10−40). Significant correlations were also observed with the 

other traits, including “Frequency of consuming six or more units of alcohol” (rg=0.70, 

p=2.72×10−30), “Ever been injured or injured someone else through drinking alcohol” 

(rg=0.84, p=8.56×10−5), and “Ever had known person concerned about, or recommend 

reduction of, alcohol consumption” (rg=0.64, p=3.79×10−14). Considering the most strongly 

genetically correlated alcohol-use trait (i.e., “Amount of alcohol drunk on a typical drinking 

day”), we observed replications (Supplementary Table 4) for chromosome 4 rs1229984 
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(p=3.77×10−32), chromosome 10 rs1577857 (p=0.027), and chromosome 17 rs77804065 

(p=2.67×10−6) and rs61667602 (p=1.25×0−6).

We evaluated possible association of genes identified as associated in previous investigations 

of alcohol consumption phenotypes: GCKR, CADM2, FAM69C, KLB, and CDH13. No 

GWS results were observed, but suggestive results were observed in EUR at two of these 

loci, GCKR (min p=5.78×10−6) and KLB (min p=5.54×10−6), and nominally significant 

signals were observed in the remaining genomic regions (Regional Manhattan Plots for all 

five of these are in Supplementary Figure 7). This could be attributable to the polygenic 

architecture of complex traits, where loci have very small effect sizes, and a much larger 

sample size will be needed to replicate these loci at a genome-wide significance level; or to 

the difference between MaxAlc and AD, which has a high correlation with PGC AD (see 

above) and the consumption phenotypes wherein these other markers were identified.

Phenome-wide Genetic Correlations—LDSC revealed significant genetic correlations 

(FDR q<0.05) with 238 of nearly 1800 traits (Figure 3; Supplementary Table 6). The most 

significant observed correlations (Supplementary Table 3 shows all results at FDR q <0.05) 

were with respect to smoking and alcohol-drinking traits, where the top correlations were 

with current smoking status (positive correlation, rg= 0.55, p=1.30×10−39), the degree of past 

smoking (past tobacco smoking; negative correlation, rg= −.46, p=5.49×10−36) and 

“healthy” alcohol-drinking behaviors (e.g., alcohol usually taken with meals; negative 

correlation, rg= −.50, p= 5.44×10−34). Among the other highly significant correlations, 

several were related to level of education (e.g. years of schooling, rg= −.37 p=1.53×10−25) 

and socio-economic status (Townsend deprivation index, rg= 0.53, p=3.69×10−27). 

Numerous correlations were also found with measures of physical activity (e.g., no physical 

activity in the last four weeks, rg=0.41, p=3.06×10−17). Other noteworthy correlations 

included mood swings (rg=0.20, p=1.05×10−5) and risk taking (rg=.20, p=2.74×10−5). 

Considering psychiatric traits, we observed significant genetic correlations with depressive 

symptoms (rg = 0.22, p=4×10−4), schizophrenia (rg = 0.13, p=0×10−4), and attention deficit 

hyperactivity disorder (rg = 0.32, p = 0.023).

Gene-based association and Tissue and Cell-type Enrichment analysis—Gene-

based association analysis and tissue and cell type enrichment results are shown in Figures 1 

and 5 and described in Supplementary Methods.

eQTL analysis—After applying a FDR 5% correction for the variants, genes, and tissues 

tested, we observed 212 significant eQTLs out of 2,855 tests conducted with respect to the 

GWS loci observed in the trans-ancestry meta-analysis. Considering the top CNS tissue for 

each eQTL surviving multiple testing correction (Table 3), we observed 37 significant 

results. Thirty-four relate to rs61667602 (chromosome 17), associated with the expression of 

multiple genes, where the strongest significance was mostly observed in the cerebellum 

transcriptomic profile (22/34). Additionally, we identified significant eQTLs with respect to 

rs1360983 on chromosome 13 (FGF14-AS2, top CNS tissue: spinal cord) and rs2291317 on 

chromosome 8 (BIN3, top CNS tissue: nucleus accumbens; FAM160B2, top CNS tissue: 

substantia nigra). Consistent with the strong linkage disequilibrium with the loci identified 
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in the trans-ancestry analysis, similar eQTL results were observed with respect to the 

variants identified in the EUR analysis.

Discussion

We report here findings from a GWAS of maximum habitual alcohol use from the US MVP 

sample, in EUR and AFR. In EUR, we observed 7.8% SNP-based heritability that is 

consistent with other large-GWAS of alcohol-related traits which also range from 5% to 

10% (14). These SNP-based heritability estimates account for about 15–25% of the 

heritability reported by twin studies (40). The phenotype tested (i.e., “In a typical month, 

what is/was the largest number of drinks of alcohol (beer, wine, and/or liquor) you may have 

had in one day?”) has genetic overlap with both alcohol consumption (UK Biobank: 

“Amount of alcohol drunk on a typical drinking day” and “Frequency of consuming six or 

more units of alcohol”) and with alcohol misuse (PGC: DSM-IV Alcohol Dependence; UK 

Biobank: “Ever been injured or injured someone else through drinking alcohol” and “Ever 

had known person concerned about, or recommend reduction of, alcohol consumption”).

Our findings provide strong support for association in the chromosome 4 ADH region, for 

ADH1B*rs1229984, as has been reported multiple times previously (here with 

p=4.9×10−47), spanning a lengthy chromosomal region (Figure 2a). A different signal at the 

same locus, rs2066702 (2.29×10−12; Figure 2b), was the only GWS result in AFR. We also 

report three additional regions in EUR, with prior varying, but never GWS, support: a region 

on chromosome 17 including CRHR1*rs77804065 (p=1.5×10−12; Figure 2c); chromosome 

8, lead SNP rs7821592 (3.6×10−8), closest to XPO7; and at chromosome 10, lead SNP 

rs1577857 (4.2×10−08), LOC105378478, which has unknown function. The trans-population 

meta-analysis added two additional novel GWS regions, FGF14 (p=9.86×10−09) and 

LOC105376602 (p=4.63×10−08)(19).

Lead SNP ADH1B*rs1229984 is a long-established risk locus from the pre-GWAS era that 

has been strongly confirmed by GWAS (2, 6). To identify rs1229984 as the lead variant, we 

needed to address a data-cleaning dilemma, as this variant was initially excluded from 

analysis on HWE criteria. Knowing the importance of the variant, we investigated the 

situation further, and discovered two subpopulations within the EUR, one with higher 

rs1229984 MAF (that clusters with Ashkenazi Jews(41)), and another much larger 

subpopulation with lower MAF. HWE criteria for this key variant were met within both of 

these individual subpopulations. In the initial quality control investigation, the violation of 

HWE expectations was, we conclude, attributable to this demonstrable violation of the 

random mating assumption (and not to a problem with data quality). We recommend that 

studies that may have excluded ADH1B*rs1229984 on HWE grounds examine this same 

issue.

This variant has many orders of magnitude greater support for association than the next-best-

supported independent region on chromosome 17, lead SNP rs77804065, which maps to 

CRHR1, observed p=1.5×10−12 in EUR. CHRH1 variants were previously implicated in 

candidate gene studies of alcohol use phenotypes(42, 43) and in an animal study regarding 

sensitivity to relapse into alcohol seeking induced by environmental stress (44). This GWS 
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association signal maps to a well-known 900 kb inversion region (45) containing numerous 

other genes, some of which could also be considered MaxAlc candidate loci. The inversion 

is much less common in Africans (45, 46) consistent with the complex evolutionary history 

at this locus (47), so meta-analysis between EUR and AFR could potentially narrow the 

associated region greatly, if there is association information in that population as well, even 

if non-significant taken only in AFR. Indeed, the transpopulation meta-analysis showed that 

statistical significance increased by over an order of magnitude (to 1.02×10−13) with 

improved evidence for localization of the lead SNP at CHRH1 (Figure 2c). A similar 

phenomenon has been observed in narrowing associated regions for schizophrenia when 

meta-analyzing EUR and Asian GWAS results (48). Gene-based analyses and the replication 

in the UK Biobank provided additional evidence supporting CRHR1 as a risk locus.

On chromosome 8, rs7821592, the implicated locus is XPO7. Although this locus was 

identified as being of interest in a prior sparse “pooled GWAS” study of AD (49), and was 

identified in a study of AD comorbid with bipolar disorder (50), it has never previously been 

identified for these traits at anything approaching GWS. Finally, in EUR, rs1577857 

(LOC105378478) on chromosome 10 has apparently not been reported previously. Although 

this variant is located in a non-coding RNA gene not previously associated with any human 

phenotype, the association in the MVP cohort was also replicated in PGC and UK Biobank 

cohorts. Additionally, the regulatory functional significance of this locus is supported by the 

fact that the variant is in a DNase I hypersensitivity site detected in twelve different cell 

types(51).

In AFR, we identified a single region led by ADH1B rs2066702 which, like rs1229984 in 

EUR, is well replicated (2).

The trans-population meta-analysis added two novel GWS loci, i.e., six in the meta-analysis, 

vs. only four in the European-only analysis (and one, overlapping with an EUR-associated 

region, GWS in AFR taken individually, albeit with a different SNP). These were FGF14 - 

Fibroblast Growth Factor 14 – at p=9.86×10−09: a gene implicated in inherited cerebellar 

ataxias (52), among other traits, which regulates KCNQ2/3 potassium channels (53); and an 

uncharacterized RNA gene locus, LOC105376602 (at p=4.63×10−08). FGF14 is particularly 

relevant because KLB, a locus previously identified as associated to alcohol consumption (4, 

6, 8, 54) and replicated in MVP (min p=5.54×10−6), is a receptor that acts as a targeting 

signal for several FGF genes (55), suggesting the strong possibility of wider involvement of 

the FGF family in predisposition to alcohol consumption.

Thus, although our AFR sample was too small for novel locus identification when taken 

individually, trans-population meta-analysis was very valuable because of the differences in 

local LD (allowing improved CRHR1 region mapping) and additional association 

information for risk regions apparently in common between these populations.

The phenome-wide genetic-correlation analyses identified correlations with numerous traits 

including tobacco smoking behaviors, socioeconomic status, physical activity, reproductive 

behaviors, fat mass, personality traits, and, to a lesser extent, certain psychiatric disorders. 

Similar findings have been reported previously, even with small numbers of markers or with 
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ADH1B*rs1229984 taken individually (56). These genetic relationships of MaxAlc are 

consistent with the pervasive role of alcohol use and abuse on human morbidity and 

mortality (57). Gene-based analysis, besides supporting CRHR1 as noted above, supported 

other genes associated in SNP-based analysis such as XPO7 and FGF14, as well as, for 

example, KANSL1, which maps to the same inversion region as CRHR1, and PDE4B 
(Phosphodiesterase 4B), previously implicated in other neuropsychiatric disorders. Tissue 

and human cell-type expression enrichments were noted for cerebellar hemisphere and 

cerebellum; dopaminergic and GABAergic neurons in human midbrain; and delta cells in 

pancreas. The cerebellar enrichment is particularly relevant with respect to the known effects 

of alcohol on this brain region: ethanol is the most common injurious agent to Purkinje cells 

(58, 59). In this context, inter-individual variability in the genetic regulation of cerebellum 

may be linked to the ability to drink large amounts of alcohol. Additionally, alcohol affects 

the type-A γ-aminobutyric acid (GABAA) receptor, which mediates autocrine signaling 

mechanisms in pancreatic cells (60). Individuals with high resistance to the effects of 

ethanol on this system may be able to drink larger amounts of alcohol; subjects at risk for 

alcohol dependence tend to have lower levels of response to measures including body sway 

(61) which is presumably at least in part cerebellar in origin. In a mouse model, it was 

demonstrated that genetically-influenced differences in cerebellar alcohol response affect 

alcohol consumption (62). eQTL analysis provide further evidence for functional effects of 

risk loci, particularly those mapped to chromosome 17, in central nervous system, 

particularly cerebellum.

In summary, we mapped a) four risk loci for MaxAlc in EUR, of which only one (ADH1B) 

was previously known; b) one in AFR, which was previously known (a different marker in 

ADH1B than in EUR); and c) an additional two loci, both novel, in the transpopulation 

meta-analysis. MaxAlc is a clinically meaningful trait that differs from, but is genetically 

correlated with, DSM diagnosis of AUD. It is unclear to what extent the novel findings are 

due to the phenotype definition, or to the size and other characteristics of the clinical sample. 

MaxAlc, relating not merely to habitual alcohol use but to maximal habitual use, is more 

strongly related to the pathological range of alcohol use than some other measures such as 

the Alcohol Use Disorders Identification Test - Consumption (AUDIT-C) or MAXDRINKS 

(63). The negative correlation with “healthy” alcohol use behaviors, such as “alcohol usually 

taken with meals,” supports this interpretation.

Although our study is based on a large sample, we are still underpowered to conduct 

additional analyses to dissect the differences in the polygenic architecture of excessive 

drinking behaviors between sexes and age classes. MaxAlc, although a valid and useful 

phenotype, has previously been used only rarely. The high correlation with AUD per se may 

encourage more use in future studies, in the context of the results we report here. 

Additionally, the MVP uses an array that, while adequate for studies of EUR, is sparse for 

AFR and accordingly leaves much of the genome unstudied (64). This is the case because 

AFR are a genetically older population than EUR and have lower linkage disequilibrium 

genomewide; hence each SNP tends to query a shorter genomic region. For studies including 

large AFR populations, a more informative array would, ideally, be employed.

Gelernter et al. Page 10

Biol Psychiatry. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, this study demonstrates the tremendous utility of the MVP sample for locus 

discovery. The large sample and informative set of surveys (combined with electronic health 

record data, which were not used here) will permit powerful and virtually unprecedented 

association studies of a vast array of traits and diseases. Furthermore, the inclusion of a 

sizeable sample of individuals of African descent contributes to additional locus 

identification opportunities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot
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Figure 2. Regional Manhattan Plots:
A. Regional Manhattan plot, chromosome 4 ADH genes, EUR

B. Regional Manhattan plot, chromosome 4 ADH genes, AFR

C. Regional Manhattan plot, meta-analysis of EUR and AFR, chromosome 17 (CRHR1) 

region
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Figure 3. 
Phenome-wide genetic-correlation analysis. Blue shades corresponds to significance 

strength, from white, non-significant (p > 0.05), to very light blue (p < 0.05), light blue 

(FDR q < 0.05), to blue (Bonferroni correction p < 2.81 × 10−40), and dark blue (top-20 

results). Phenotype labels are included for the top 20 results.
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Figure 4. 
Manhattan plot, gene-based association results
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Figure 5. 
A. Statistical significance of the enrichments for tissue-specific gene expression. Detailed 

results are reported in Supplementary Table 4.

B. Statistical significances for cell types in human cortex from adult samples. “Hybrid” 

refers to a mixture of oligodendrocyte progenitor cells (OPC), oligodendrocytes, and 

neurons. Detailed results are reported in Supplementary Table 5.

C. Statistical significances for cell types in human midbrain. Detailed results and acronym 

legends are reported in Supplementary Table 6.
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D. Statistical significances for cell types in human pancreas. Detailed results are reported in 

Supplementary Table 7.

E. Statistical significances for cell types in conventional dendritic cells (cDC). Detailed 

results are reported in Supplementary Table 8.
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Table 1.

Demographic characteristics of Million Veteran Program (MVP) European American (EUR) (N=126,936) and 

African American (AFR) (N=17,029) enrollees with completed Baseline and Lifestyle surveys

Age (years): EA (N=126,936) AA (N=17,029)

18–29 937 (0.7) 97 (0.6)

30 – 39 2,667 (2.1) 524 (3.1)

40 – 49 6,250 (4.9) 1,702 (10.0)

50 – 59 16,407 (12.9) 5,207 (30.6)

60 – 69 56,805 (44.8) 6,708 (39.4)

70 – 79 28,237 (22.2) 2,139 (12.6)

80+ 15,519 (12.2) 646 (3.8)

missing 114 (0.1) 6 (0.0)

mean (SD) 66.2 (11.4) 60.3 (10.6)

median 66 61

Sex:

male 118,752 (93.6) 14,981 (88.0)

female 8,070 (6.4) 2,041 (12.0)

missing 114 (0.1) 7 (0.0)

Ethnicity (self-identified):

Hispanic 1,325 (1.0) 204 (1.2)

non-Hispanic 124,603 (98.2) 16,603 (97.5)

unknown 894 (0.7) 216 (1.3)

missing 114 (0.1) 6 (0.0)

Marital status:

Married 72873 (57.4) 6278 (36.9)

Divorced 21294 (16.8) 3603 (21.2)

Civil commitment 521 (0.4) 79 (0.5)

Never married 7814 (6.2) 1812 (10.6)

Widowed 8269 (6.5) 848 (5.0)

Separated 1713 (1.3) 941 (5.5)

Cohabitating 3006 (2.4) 257 (1.5)

missing 11446 (9.0) 3211 (18.9)
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Table 3.

Significant eQTLs observed with respect to the GWS variants identified in trans-ancestry meta-analysis 

considering 13 CNS tissues. TSS: transcription start site.

rsID Gene TSS distance slope se P value FDR Q Top CNS Tissue

rs1360983 FGF14-AS2 −178872 −0.361 0.078 2.00E-05 1.72E-04 Spinal cord (cervical c-1)

rs61667602

LRRC37A2 −803528 1.169 0.063 2.29E-36 4.69E-34 Cerebellum

LRRC37A4P 157648 −1.096 0.061 4.20E-34 7.89E-32 Nucleus accumbens (basal ganglia)

AC005829.1 −559054 1.132 0.068 1.67E-32 2.18E-30 Cerebellum

KANSL1-AS1 −485593 1.202 0.072 3.39E-32 4.05E-30 Cortex

AC005829.2 −552623 1.219 0.076 2.65E-31 2.45E-29 Cerebellum

PLEKHM1 217234 −0.951 0.062 7.95E-30 5.43E-28 Cerebellum

ARL17A −871739 1.130 0.076 5.96E-29 3.80E-27 Cerebellum

MAPK8IP1P2 105643 1.093 0.083 5.77E-25 2.30E-23 Cerebellum

MAPK8IP1P1 −535623 1.157 0.085 1.25E-24 4.78E-23 Cerebellar Hemisphere

DND1P1 122112 1.166 0.096 3.14E-22 9.89E-21 Cortex

LINC02210 87655 0.690 0.059 3.02E-21 8.66E-20 Cortex

SPPL2C −136907 0.734 0.067 8.67E-20 2.18E-18 Cerebellum

LRRC37A −584750 1.004 0.093 3.42E-19 7.91E-18 Cerebellum

AC091132.1 204723 −0.922 0.098 4.67E-16 7.83E-15 Cerebellum

FAM215B −854812 0.844 0.090 6.89E-16 1.14E-14 Cerebellum

FMNL1 485759 −0.672 0.074 2.54E-15 3.87E-14 Cerebellum

AC091132.3 176406 0.757 0.120 6.44E-09 6.76E-08 Cerebellar Hemisphere

ARHGAP27 273562 0.459 0.078 4.94E-08 4.93E-07 Nucleus accumbens (basal ganglia)

AC091132.2 255139 −0.573 0.101 1.03E-07 1.00E-06 Cerebellum

AC008105.3 486194 −0.469 0.086 3.15E-07 2.99E-06 Cerebellum

MAPT-AS1 −187617 0.508 0.096 6.23E-07 5.72E-06 Cerebellum

MAPT −186399 −0.316 0.065 3.62E-06 3.22E-05 Cerebellum

CRHR1 86082 −0.399 0.098 1.01E-04 8.31E-04 Putamen (basal ganglia)

RPS26P8 99440 0.698 0.169 1.11E-04 9.12E-04 Spinal cord (cervical c-1)

KANSL1 −517384 0.355 0.090 1.42E-04 0.001 Cerebellum

NMT1 656319 −0.211 0.057 3.44E-04 0.003 Cerebellum

NSF −882686 −0.158 0.043 3.93E-04 0.003 Cerebellum

AC008105.1 466248 −0.247 0.072 7.87E-04 0.006 Cerebellum

AC091132.4 162179 −0.387 0.118 0.001 0.010 Cerebellum

AC015936.1 760069 0.575 0.173 0.002 0.011 Spinal cord (cervical c-1)

CR936218.1 −327330 −0.393 0.122 0.002 0.013 Putamen (basal ganglia)

ACBD4 575382 −0.175 0.057 0.003 0.020 Cerebellum

PLCD3 574628 0.189 0.067 0.006 0.041 Hypothalamus

ARL17B −653781 0.351 0.127 0.007 0.043 Cerebellum

rs2291317 BIN3 −699499 0.212 0.074 0.005 0.034 Nucleus accumbens (basal ganglia)
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rsID Gene TSS distance slope se P value FDR Q Top CNS Tissue

FAM160B2 −119533 0.251 0.089 0.007 0.043 Substantia nigra
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