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Abstract

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our 

cognitive abilities and susceptibility to disease. Here we applied single nucleus RNA-sequencing 

to perform a comprehensive analysis of cell types in the middle temporal gyrus of human cortex. 

We identified a highly diverse set of excitatory and inhibitory neuronal types that are mostly 

sparse, with excitatory types being less layer-restricted than expected. Comparison to similar 

mouse cortex single cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular 

architecture that enables matching of homologous types and predictions of human cell type 

properties. Despite this general conservation, we also find extensive differences between 

homologous human and mouse cell types, including dramatic alterations in proportions, laminar 

distributions, gene expression, and morphology. These species-specific features emphasize the 

importance of directly studying human brain.

The cerebral cortex is responsible for many of our higher cognitive abilities and is the most 

complex structure known to biology: it is comprised of 16 billion neurons and 61 billion 

non-neuronal cells organized into more than 100 distinct anatomical or functional regions 
1,2. Human cortex is expanded relative to mouse, the dominant model organism in research, 

with a >1000-fold increase in area and number of neurons 3. While the general principles of 

cortical development and basic architecture of cortex appear conserved across mammals 4 

prior studies suggest differences in the cellular makeup of human cortex 5,6,7,8,9,10,11. For 
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example, superficial cortical layers are expanded in mammalian evolution 12 and some cell 

types, such as interlaminar astrocytes 13 and rosehip neurons 14, have specialized features in 

human compared to mouse. Likewise, transcriptional regulation varies between mouse, non-

human primate, and human, including genes associated with neuronal structure and function 
15,16,17.

Single cell transcriptomics enables molecular classification of cell types, provides a metric 

for comparative analyses, and is fueling efforts to understand the complete cellular makeup 

of the mouse brain 18 and even the entire human body 19. Single cell RNA-sequencing 

(scRNA-seq) of mouse cortex demonstrated robust transcriptional signatures of cell types 
20,21,22, and suggested ~100 types per cortical area. Dissociating live cells from human brain 

is difficult making scRNA-seq challenging to apply to this type of tissue, whereas single 

nucleus RNA-seq (snRNA-seq) enables transcriptional profiling of nuclei from frozen 

human brain specimens 23,24. Importantly, nuclei contain sufficient gene expression 

information to distinguish closely related cell types at similar resolution to scRNA-seq 25,26, 

but early applications of snRNA-seq to human cortex did not have sufficient depth of 

coverage to achieve similar resolution to mouse studies 27,28. Here, we established robust 

methods for cell type classification in human brain using snRNA-seq and compared cortical 

cell types to illuminate conserved and divergent features of human and mouse cerebral 

cortex.

Results

Transcriptomic taxonomy of cell types

To transcriptomically define cell types in human cortex we used snRNA-seq and focused on 

middle temporal gyrus (MTG) largely from postmortem brain. MTG is often available 

through epilepsy resections, permitting comparison of postmortem versus acute 

neurosurgical tissues, and enabling future correlation with in vitro slice physiology. Tissues 

were processed as described 14 (Fig. 1a, Extended Data Fig. 1a). Nuclei were collected from 

8 donor brains (Extended Data Table 1), with most from postmortem donors (n=15,206) and 

a minority (n=722) from layer (L)5 of MTG removed during neurosurgeries (Extended Data 

Fig. 2).

In total, 15,928 nuclei passed quality control, including 10,708 excitatory neurons, 4,297 

inhibitory neurons, and 923 non-neuronal cells. Nuclei from each broad class were 

iteratively clustered as described 26 (Methods). Clusters were generally robust to different 

iterative clustering methods and were distinguished from nearest neighbors by ≥30 

differentially expressed genes and at least 1, but often more binary markers. Requiring more 

binary markers led to merging of some clusters (Extended Data Fig. 3). Marker genes for 

stringent clusters defined by 4 binary markers are provided in Supplementary Table 2. On 

average, neuronal nuclei were larger than non-neuronal nuclei, and median gene detection 

was higher for neurons (9,046 genes) than for non-neuronal cells (6,432 genes), as reported 

for mouse 21,22 (Extended Data Fig. 1). Transcriptomic cell types were largely conserved 

across individuals and tissue types since all curated clusters contained nuclei from multiple 

donors, and nuclei from postmortem and neurosurgical tissues clustered together and had 

highly correlated expression within cell classes (Fig. 1b). Postmortem nuclei had slightly 
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lower median gene detection than neurosurgical nuclei, and there was a small, consistent 

expression signature of tissue type. For example, neurosurgical nuclei had higher expression 

of some activity regulated genes (e.g. FOS), whereas postmortem nuclei had higher 

expression of ribosomal genes that correlate with postmortem interval 29 (Extended Data 

Fig. 2, Supplementary Table 1).

We defined 75 transcriptomically distinct cell types, including 45 inhibitory neuron types 

that express the GABAergic interneuron marker GAD1, 24 excitatory neuron types that 

express the vesicular glutamate transporter SLC17A7, and 6 non-neuronal types that express 

the glutamate transporter SLC1A3. As expected 22, hierarchical relationships among types 

roughly mirror their developmental origins. We refer to clusters as cell types, intermediate 

order nodes as subclasses, higher order nodes (e.g. interneurons from caudal ganglionic 

eminence [CGE]) as classes, and broad divisions (e.g. excitatory neurons) as major classes. 

Neurons split into two major classes: cortical plate-derived excitatory neurons and 

ganglionic eminence (GE)-derived inhibitory neurons. Non-neuronal types formed a 

separate branch based on differential expression of many genes (Fig. 1c). We developed a 

nomenclature for clusters based on: 1) major cell class, 2) layer enrichment, 3) subclass 

marker gene, and 4) cluster-specific marker gene (Figure. 1c, Extended Data Fig. 4, 

Supplementary Table 2). We generated a searchable semantic representation of these clusters 

to link them to existing ontologies 30 (MTG Ontology, Supplementary Table 3). We find 

broad correspondence to earlier human cortex snRNA-seq studies 24,27,28, but identify many 

additional neuron types (Extended Data Fig. 5). Most cell types were rare (<0.7% of MTG 

neurons), including almost all interneuron types and deep layer excitatory neuron types. 

However, upper layer excitatory neurons were dominated by a small number of abundant 

types (>3.5% of MTG neurons). Excitatory types and many interneuron types were spatially 

restricted, whereas non-neuronal nuclei were distributed across all layers, with the notable 

exception of one astrocyte type (Fig. 1c).

Excitatory types often span layers

Excitatory neuron types broadly segregated by layer, expressed known laminar markers, and 

were generally most similar to types in the same or adjacent layers (Fig. 2, Extended Data 

Fig. 6), perhaps reflecting a developmental imprint of the inside-out generation of cortical 

layers 16. Similarity by laminar proximity was also apparent in the hierarchical dendrogram 

structure except for Exc L5-6 THEMIS C1QL3, which was transcriptionally similar to 

several L2-3 and L5-6 types. Exc L4-5 FEZF2 SCN4B and Exc L4-6 FEZF2 IL26 were so 

distinct that they occupied separate branches on the dendrogram (Fig. 2a). Complex 

relationships between clusters are represented as constellation diagrams that capture both 

continuous and discrete gene expression variation among types, as described 22 (Extended 

Data Fig. 6a).

Each excitatory type selectively expressed marker genes (Fig. 2b), although a combinatorial 

profile was often necessary to distinguish each type from all other types (Extended Data Fig. 

7). Many markers are novel and important for cell function, such as BHLH transcription 

factors (TWIST2), collagens (COL22A1), and semaphorins (SEMA3E). Surprisingly, 16 out 

of the 37 most specific marker genes were unannotated or non-coding (nc) RNAs. Cell type 
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specific expression of ncRNAs is consistent with previous studies 31,32,33, could be validated 

in tissue sections, and may have been detected here due to preferential nuclear localization 
32 or physical linkage of ncRNAs to chromatin 31 (Fig. 2b; Extended Data Figs. 6, 8).

Unexpectedly, most excitatory types were not restricted to dissections from single layers. 

Three types were enriched in L2-L3, 10 RORB-expressing types were enriched in L3-6, and 

4 THEMIS-expressing and 7 FEZF2−expressing types in L5-L6 (Fig. 2a, Extended Data 

Fig. 6a). Distribution across layers was not due to dissection error: gene expression was 

consistent within each cluster across nuclei dissected from different layers (Extended Data 

Fig. 6b-e) and in situ distributions largely matched multi-layer snRNA-seq predictions (Fig. 

2a, c, Extended Data Fig. 7). Three types were localized to L3c and upper L4 (Fig. 2c). One 

(Exc L3-4 RORB CARM1P1) had large nuclei (Extended Data Figs. 1b, 7) consistent with 

the giant pyramidal L3c neurons in MTG 34. Two types were mostly in L4, but 5 others 

spanned multiple layers (Fig. 2c, Extended Data Fig. 7c). This heterogeneity implies that 

anatomical laminar location alone is insufficient to predict neuron type, although it remains 

to be seen if this is a feature of MTG or human cortex generally.

Although upper layers are greatly expanded in human cortex relative to mouse, we still only 

find three L2-L3 excitatory types just as in mouse cortex 22. However, examination of Exc 

L2-3 LINC00507 FREM3 (n=2,284 nuclei) revealed continuous gene expression variation 

within this type (Fig. 2d, Supplementary Video 1), consistent with demonstrated diverse 

cellular properties in human L2-3 excitatory neurons 34,35. Fluorescence in situ 

hybridization (FISH) confirmed enrichment of LAMP5 and COL5A2 in L2 and L3 neurons, 

respectively and Exc L2-3 LINC00507 FREM3 split into multiple subtypes with varying 

clustering parameters (Fig. 2e, Extended Data Figs. 3, 9). Thus, there is transcriptomic 

diversity within as well as between subtypes of L2-3 excitatory neurons that likely 

corresponds to the anatomical and functional heterogeneity of these cells.

Inhibitory neuron diversity

Inhibitory neurons formed two major branches, distinguished by expression of ADARB2 
and LHX6, like mouse cortex where these branches correlate with developmental origins in 

CGE and medial ganglionic eminence (MGE), respectively 22. The LHX6 branch 36,37 

included PVALB and SST subclasses and the ADARB2 branch had LAMP5/PAX6 and VIP 
subclasses. Consistent with mouse, the ADARB2 branch showed more diversity in L1-3 

versus L4-6, and the opposite was true for the LHX6 branch (Fig. 3, Extended Data Fig. 10). 

As with excitatory neurons, many interneuron markers were ncRNAs (Fig. 3, Extended Data 

Fig. 4a). Surprisingly, the mouse CGE interneuron marker HTR3A 38 was not expressed in 

human CGE types (Fig. 3c).

The LAMP5/PAX6 subclass had 6 types mostly enriched in L1-2 (Fig. 3a). Inh L1-4 

LAMP5 LCP2 matched rosehip cells (Extended Data Fig. 5d), discovered in L1 14 but 

present in all cortical layers. Among LAMP5/PAX6 types, only Inh L2-6 LAMP5 CA1 
expressed LHX6, suggesting possible origins in MGE like Lamp5 Lhx6 cells described in 

mouse 22. VIP was the most diverse subclass (21 types), with many types enriched in upper 

layers (Fig. 3a). Several VIP types were closely related to the LAMP5/PAX6 type L1 
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LAMP5 NMBR and localized to L1-L2. Some CGE-derived cell types in L1 expressed SST 
(Fig. 3a, c), as described in human 14 but not in mouse L1 interneurons 22.

The SST subclass had 11 types that were spatially restricted, including the distinctive types 

Inh L5-6 SST TH and Inh L3-6 SST NPY in L5-6 (Fig. 3b, d, Extended Data Fig. 10c). ISH 

showed sparse TH expression in L5-6 of human MTG and the mouse homologous region 

(TEa), suggesting that this gene marks similar cell types in both species, whereas NPY was 

more sparsely expressed in human, indicating differential expression of this closely-studied 

marker between species 39,40. The PVALB subclass had 7 clusters; several SST and PVALB 
types were very similar (Fig. 3d, Extended Data Fig. 10b), pointing to close links between 

these subclasses. Inh L2-5 PVALB SCUBE3 is a distinctive type that expresses chandelier 

cell marker UNC5B 41 and likely corresponds to these specialized cells. Novel marker genes 

of this cluster label cells enriched in L2-4 in situ (Fig. 3, Extended Data Fig. 10d).

Human MTG had similar proportions of MGE (44% LHX6+ nuclei) and CGE (50% 

ADARB2+ nuclei) interneurons based on snRNA-seq data. In contrast, prior studies report 

~70% MGE versus ~30% CGE interneurons in mouse cortex 38,42. To further examine these 

differences, we quantified proportions of ADARB2+ and LHX6+ interneurons in human 

MTG and mouse TEa (Fig. 3e, Extended Data Fig. 10e, f). Interneurons co-expressing 

ADARB2 and LHX6 (Figs. 1, 3) were considered separately. Again, we found similar 

proportions of MGE (50.2 ± 2.3%) and CGE (44.2 ± 2.4%) interneurons in human, and >2 

times as many MGE (67.8 ± 0.9%) than CGE (30.8 ± 1.2%) interneurons in mouse. The 

increased proportion of CGE interneurons in human was greatest in L4 and the decreased 

proportion of MGE interneurons in human was greatest in L4-6 (Fig. 3e). snRNA-seq (6.1% 

of GAD1+ cells) and cell counts (5.6 ± 0.3% of GAD1+ cells) confirmed an increase in the 

proportion of ADARB2 and LHX6 co-expressing interneurons in human versus mouse (1.4 

± 0.2% of GAD1+ cells), particularly in L6 (Fig. 3e).

Diverse morphology of astrocyte types

We identified major subclasses of non-neuronal cells, including 2 astrocyte types (Fig. 4). 

Astrocytes in human cortex are functionally 43 and morphologically 13 specialized in 

comparison to rodent (Fig. 4c). Primate-specific interlaminar astrocytes reside in L1 and 

extend long processes, whereas protoplasmic astrocytes are found in L2-6 13. We also find 

two astrocyte types with different laminar distributions: Astro L1-2 FGFR3 GFAP in L1-2 

and Astro L1-6 FGFR3 SLC14A1 in all layers (Fig. 4a). SnRNA-seq showed that Astro 

L1-2 FGFR3 GFAP expressed ID3 and had higher GFAP and AQP4 expression than Astro 

L1-6 FGFR3 SLC14A1 (Fig. 4b, d). Multiplex (m)FISH for GFAP and AQP4 showed cells 

with high expression of these genes in L1, and combined mFISH and GFAP 

immunohistochemistry showed cells in L1 that coexpressed AQP4 and ID3 and had long 

GFAP+ processes, consistent with interlaminar astrocytes. GFAP+ cells with protoplasmic 

astrocyte morphology lacked ID3 expression, consistent with Astro L1-6 FGFR3 SLC14A1 
(Fig. 4e). While most nuclei in Astro L1-2 FGFR3 GFAP came from L1-2, 7 were from 

layer 5-6 dissections and expressed ID3 and distinct markers, and mFISH showed that 

astrocytes coexpressing ID3 and AQP4 at the L6-white matter (WM) border had fibrous 
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astrocyte morphology 13 (Fig. 4c-e). Therefore, we predict that sampling more non-neuronal 

nuclei will identify additional astrocyte diversity.

Human and mouse cell type homology

To examine conservation of cellular architecture, we aligned transcriptomic cell types in 

human MTG to two distinct mouse cortical areas: primary visual cortex (V1) and a premotor 

area (ALM) 22. Matching cell types requires shared expression patterns between species, and 

we find that gene families (mean = 21 genes/set) that best discriminate mouse interneurons 
41 also discriminate human interneurons (Fig. 5a). Similar genes also discriminated human 

and mouse excitatory types, but less so non-neuronal types (Extended Data Fig. 11a).

Applying principal components analysis (PCA) to combined expression data from inhibitory 

neurons from human MTG and mouse V1 separated samples first by species and then by cell 

type (Extended Data Fig. 11b). Applying canonical correlation analysis (CCA) based on 

shared co-expression patterns 44 and a neural network-based alignment algorithm (scAlign 
45) aligned human and mouse cortical samples that were then clustered. Homologous types 

were identified based on shared cluster membership (Fig. 5b-e, Extended Data Fig. 11d-f). 

Consistent cell type homologies were obtained using a second alignment method based on 

dynamic time warping (Seurat) (Extended Data Fig. 11g, h) and by aligning human MTG to 

mouse V1 and ALM (Extended Data Fig. 12). These homologies were supported by shared 

marker genes between species (Extended Data Fig. 13, Supplementary Table 4). Clusters 

were combined into a hierarchical taxonomy of 32 neuronal and 5 non-neuronal cell types 

and subclasses (Fig. 5f). All major classes and subclasses were aligned and 7 types were 

matched 1-to-1 between species.

Alignment of homologous types allows prediction of cellular properties in human. For 

example, Inh L2-5 PVALB SCUBE3 matches mouse chandelier cells (Pvalb Vipr2) and is 

predicted to selectively innervate axon initial segments (Fig. 5d). Likewise, Inh L3-6 SST 
NPY matches mouse Sst Chodl and is predicted to have long-range projections and 

contribute to sleep regulation 46. Many other anatomically-defined interneuron types can be 

inferred (Fig. 5d), although future experiments are needed to test these predictions. Long-

range projection targets of human excitatory neurons can also be predicted. For example, 

Exc L4-5 FEZF2 SCN4B cells match mouse extratelencephalic-projecting (ET) L5 

excitatory neurons (Fig. 5e) and are predicted to project sub-cortically. Intriguingly, ET 

neurons are much less abundant in human than in mouse (1% vs. 20% of L5 excitatory 

neurons) 22 (Extended Data Fig. 12e-f). Some homologous types shift layers between 

species, such as Exc L3-4 RORB CARM1P1 in L3 of human MTG that matches L5-

enriched types in mouse (Extended Data Fig. 12g).

Human non-neuronal cells matched a subset of mouse types (Extended Data Fig. 12c). 

Human oligodendrocytes matched two mouse mature oligodendrocyte types, while human 

oligodendrocyte precursors (OPCs) matched mouse 1-to-1. Only 9 endothelial cells were 

sampled in human and mapped to two endothelial subtypes in mouse. Both human astrocyte 

clusters mapped to one astrocyte cluster in mouse. Finally, human microglia clustered with 

mouse microglia and perivascular macrophages (Extended Data Fig. 11f).
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Three rare mouse neuronal types lacked homologous human types. The mouse Meis2 
inhibitory type primarily found in white matter 22, may have been missed due to limited 

sampling of layer 6b-WM in human. Cajal-Retzius cells are very rare in adult human cortex 

(<0.1% of L1 neurons) 47 and therefore unlikely to be sampled. Finally, mouse L5 PT VISp 

Chrna6, an ET type that projects to superior colliculus 48, aligns with only 2 human nuclei 

(Extended Data Fig. 11e), suggesting a matching type may be found with deeper sampling in 

human.

While many homologous subclasses had comparable diversity between species, some had 

expanded diversity in human and some in mouse. For example, there is an apparent increase 

in the diversity of L4 excitatory neurons in human MTG versus mouse V1. Mouse ET types 

are much more diverse than putative ET types in human, which may reflect either a species 

difference or likely undersampling, as they make up < 1% of L5 excitatory neurons in MTG. 

L6 CT types are also more diverse in mouse V1 than human MTG. However, there are only 

2 L6 CT types in mouse ALM, so this may reflect differences between primary sensory and 

association areas (Fig. 5e-f).

Divergent expression between types

Identification of homologous types or classes allows analysis of conservation and divergence 

of gene expression patterns across types. For each pair of homologous types, we compared 

expression of 14,553 orthologous genes between human and mouse (Fig. 6). Nuclear 

expression levels were estimated from intronic reads to better compare human snRNA-seq 

and mouse scRNA-seq data, as we previously found few differences in intronic expression 

between matched sets of mouse nuclei and whole cells 26 (Extended Data Fig. 11c). 

Comparison of homologous types showed a mix of conserved and divergent expression. The 

Sst Chodl type (Inh L3-6 SST NPY in human) had conserved expression overall but 18% of 

genes had highly divergent expression (>10-fold difference), including many marker genes. 

OPCs also had conserved expression and 14% highly divergent genes. Two thirds of all 

genes analyzed (9,748) had divergent expression in at least 1 of 37 homologous types, and 

many had expression changes restricted to one type or class. Non-neuronal types had the 

most divergent expression (3,643 genes with >10-fold difference) supporting increased 

evolutionary divergence of non-neuronal expression patterns between human and mouse 17 

(Fig. 6a, b).

Most genes had divergent expression only in a subset of types, resulting in a shift in the cell 

type specificity of genes (quantified as the beta score, Methods, Supplementary Table 5). 

Genes with higher scores had high expression in ≥1 cell type and low expression in the 

remaining types, and were expressed in different subsets of types between species. 23% of 

genes (3,382) were more highly divergent than 95% of 252 housekeeping genes (Fig. 6c) 

recently shown to be stably expressed in multiple cell types in mouse and human 49. Cell 

type markers were less conserved than commonly expressed genes, and many markers were 

not shared between human and mouse. For example, chandelier cells express Vipr2 in mouse 

but COL15A1 and NOG in human (Extended Data Fig. 10d.). Interestingly, the same gene 

families that show cell type specificity in both species have changed patterning across cell 

types (Figs. 5a, 6d, Supplementary Table 6).
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Serotonin receptors have highly divergent expression between species: 4 of 7 GPCRs and 

both ionotropic receptor subunits (HTR3A, HTR3B) were in the top 10% most divergent 

genes (Fig. 6e). The most divergent gene families include neurotransmitter receptors, ion 

channels, extracellular matrix elements, and cell adhesion molecules. Among the top 3% 

most divergent genes (Supplementary Table 5), the collagens COL24A1 and COL12A1 and 

glutamate receptor subunits GRIK1 and GRIN3A were expressed in different cell types 

between species and were validated to have different laminar distributions in human and 

mouse (Fig. 6f, g). The cumulative effect of so many differences in the cellular patterning of 

genes with well characterized roles in neuronal signaling and connectivity is certain to cause 

many differences in human cortical circuit function.

Discussion

Single cell transcriptomics enables systematic characterization of cellular diversity in the 

brain, allowing a paradigm shift in neuroscience from historical emphasis on cellular 

anatomy to molecular classification of cell types. Echoing early anatomical studies 11, dense 

sampling of mouse cortex using scRNA-seq demonstrated great cellular diversity 21,22. Here, 

similar sampling defines 75 cell types representing non-neuronal (6), excitatory (24) and 

inhibitory (45) cells in human MTG. Notably, robust cell typing was achieved despite 

increased biological and technical variability between individual human brains. Importantly, 

using these methods to study the cellular architecture of the human brain and identify 

homologous cell types enables predictions about properties not possible to directly measure 

in human and generates hypotheses about conserved and divergent cell features.

Despite differences across data sets, alignment based on expression co-variation reveals a 

cellular architecture largely conserved between cortical areas and species, as anatomical 

studies have shown for the last century. Here, mouse scRNA-seq was compared to human 

snRNA-seq, but to mitigate this, expression levels were estimated using nuclear intronic 

sequence 26. Additionally, young adult transgenic mice were compared to genetically diverse 

older humans, but prior studies show stable gene expression in adulthood 50. Finally, human 

MTG was compared to non-homologous mouse cortical areas. Although a matched analysis 

is preferable, primary visual cortex is specialized in human and likely highly divergent from 

mouse. Matching the human MTG taxonomy to mouse V1 and ALM taxonomies may seem 

at odds with the finding that excitatory neurons in mouse V1 and ALM cluster separately 22, 

but the magnitude of differential gene expression between cortical areas in mouse is small 

compared to that between species. Beyond similarities in overall diversity and hierarchical 

organization, most cell types mapped at the subclass level, 7 cell types mapped 1-to-1, and 

no major classes had missing homologous types despite the last common ancestor between 

humans and mice living at least 65 million years ago 51 and despite the thousand-fold 

difference in brain size and number of cells. Therefore, the transcriptomic organization of 

cell classes and subclasses appears conserved, with species and regional variation found at 

the finest level of cell type distinction.

Our results demonstrate species divergence of gene expression between homologous cell 

types, as shown at the single gene 15 and gross structural level 16. These differences are 

likely functionally relevant, as divergent genes are associated with connectivity and 
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signaling, and many cell type markers have divergent expression. Notably, serotonin 

receptors are the second most divergent gene family, challenging the use of mouse models 

for many neuropsychiatric disorders involving serotonin signaling 52. Homologous cell types 

can have highly divergent features in concert with divergent gene expression. For example, 

interlaminar astrocytes correspond to 1 of 2 human transcriptomic astrocyte types. Similarly, 

2 astrocyte types were described in mouse cortex 21, including a L1 type that lacks the long 

processes of interlaminar astrocytes. Thus, a 10-fold size increase and formation of long 

processes 13 are evolutionary variations on a conserved cell type. We observed several other 

evolutionary changes including differences in proportions of inhibitory neuron classes 

consistent with increased CGE generation of interneurons in human 36. Additionally, 

putative human L5 ET neurons are reduced in frequency (<1% in human versus ~20% in 

mouse), likely reflecting the 1200-fold expansion of human cortex relative to mouse 

compared to only 60-fold expansion of sub-cortical regions that these neurons target 2,3.

These observations quantitatively frame the debate of whether human cortex is different 

from other mammals 10,11, revealing basic transcriptomic similarity of cell types punctuated 

by differences in proportions and gene expression between species that likely influence 

microcircuit function. Furthermore, these results help resolve the paradox of conserved 

structure across mammals but failures in use of mouse for pre-clinical studies 52,53, and 

highlight the need to analyze human brain in addition to model organisms. The magnitude of 

differences between human and mouse suggests similar profiling of closely related non-

human primates is necessary to study many aspects of human brain structure and function. 

The enhanced resolution afforded by these molecular technologies also has great promise for 

accelerating mechanistic understanding of brain evolution and disease.

Methods

Ethical compliance

De-identified postmortem human brain tissue was collected after obtaining permission from 

decedent next-of-kin. The Western Institutional Review Board (WIRB) reviewed the use of 

de-identified postmortem brain tissue for research purposes and determined that, in 

accordance with federal regulation 45 CFR 46 and associated guidance, the use of and 

generation of data from de-identified specimens from deceased individuals did not constitute 

human subjects research requiring insititutional review board (IRB) review. Postmortem 

tissue collection was performed in accordance with the provisions of the Uniform 

Anatomical Gift Act described in Health and Safety Code §§ 7150, et seq., and other 

applicable state and federal laws and regulations.

Tissue procurement from neurosurgical donors was performed outside of the supervision of 

the Allen Institute at local hospitals, and tissue was provided to the Allen Institute under the 

authority of the IRB of each participating hospital. A hospital-appointed case coordinator 

obtained informed consent from donors prior to surgery. Tissue specimens were de-

identified prior to receipt by Allen Institute personnel. The specimens collected for this 

study were apparently non-pathological tissues removed during the normal course of surgery 

to access underlying pathological tissues. Tissue specimens collected were determined to be 
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non-essential for diagnostic purposes by medical staff and would have otherwise been 

discarded.

All animal procedures were approved by the Institutional Animal Care and Use Committee 

at the Allen Institute for Brain Science (Protocol No. 1511). Mice were provided food and 

water ad libitum, maintained on a regular 12-h day/night cycle, and housed in cages with 

various enrichment materials added, including nesting materials, gnawing materials, and 

plastic shelters.

Post-mortem tissue donors

Males and females 18 – 68 years of age with no known history of neuropsychiatric or 

neurological conditions (‘control’ cases) were considered for inclusion in this study 

(Extended Data Table 1). Routine serological screening for infectious disease (HIV, 

Hepatitis B, and Hepatitis C) was conducted using donor blood samples and only donors 

negative for all three tests were considered for inclusion in the study. Tissue RNA quality 

was assessed using an Agilent Bioanalyzer-generated RNA Integrity Number (RIN) and 

Agilent Bioanalyzer electropherograms for 18S/28S ratios. Specimens with RIN values ≥7.0 

were considered for inclusion in the study (Extended Data Table 1).

Processing of whole brain postmortem specimens

Whole postmortem brain specimens were transported to the Allen Institute on ice. Standard 

processing of whole brain specimens involved bisecting the brain through the midline and 

embedding of individual hemispheres in Cavex Impressional Alginate for slabbing. Coronal 

brain slabs were cut at 1cm intervals through each hemisphere and individual slabs were 

frozen in a slurry of dry ice and isopentane. Slabs were then vacuum sealed and stored at 

−80°C until the time of further use.

Middle temporal gyrus (MTG) was identified on and removed from frozen slabs of interest, 

and subdivided into smaller blocks for further sectioning. Individual tissue blocks were 

processed by thawing in PBS supplemented with 10mM DL-Dithiothreitol (DTT, Sigma 

Aldrich), mounting on a vibratome (Leica), and sectioning at 500μm in the coronal plane. 

Sections were placed in fluorescent Nissl staining solution (Neurotrace 500/525, 

ThermoFisher Scientific) prepared in PBS with 10mM DTT and 0.5% RNasin Plus RNase 

inhibitor (Promega) and stained for 5 min on ice. After staining, sections were visualized on 

a fluorescence dissecting microscope (Leica) and cortical layers were individually 

microdissected using a needle blade micro-knife (Fine Science Tools).

Processing of neurosurgical tissue samples

Neurosurgical tissue was transported to the Allen Institute in chilled, oxygenated artificial 

cerebrospinal fluid (ACSF) consisting of the following: 0.5 mM calcium chloride 

(dehydrate), 25 mM D-glucose, 20 mM HEPES, 10 mM magnesium sulfate, 1.2 mM sodium 

phosphate monobasic monohydrate, 92 mM N-methyl-d-glucamine chloride (NMDG-Cl), 

2.5 mM potassium chloride, 30 mM sodium bicarbonate, 5 mM sodium L-ascorbate, 3 mM 

sodium pyruvate, and 2 mM thiourea. The osmolality of the solution was 295-305 mOsm/kg 

and the pH was 7.3. Slices were prepared using a Compresstome VF-200 or VF-300 
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vibratome (Precisionary Instruments). After sectioning, slices were recovered in ACSF 

containing 2 mM calcium chloride (dehydrate), 25 mM D-glucose, 20 mM HEPES, 2 mM 

magnesium sulfate, 1.2 mM sodium phosphate monobasic monohydrate, 2.5 mM potassium 

chloride, 30 mM sodium bicarbonate, 92 mM sodium chloride, 5 mM sodium L-ascorbate, 3 

mM sodium pyruvate, and 2 mM thiourea at room temperature for at least 1 hour. After the 

recovery period, slices were transferred to RNase-free microcentrifuge tubes, snap frozen, 

and stored at −80°C until the time of use. Microdissection of cortical layers was carried out 

on tissue slices that were thawed and stained as described above for postmortem tissue.

Nucleus sampling plan

Nuclei were sampled from 8 total human donors (4 male, 4 female; 4 postmortem, 4 

neurosurgical; 24-66 years of age). To evenly survey cell type diversity across cortical 

layers, nuclei were sampled based on relative proportions of neurons in each cortical layer 
54. We estimated that 16 cells were required to reliably discriminate two closely related Sst+ 

interneuron types reported by Tasic et al. 20. Monte Carlo simulations were used to estimate 

the sampling depth N needed to be 95% confident that at least 16 nuclei of frequency f have 

been selected from the population. Calculating N for a range of f revealed a simple linear 

approximation: N = 28 / f. Subtypes of mouse cortical layer 5 projection neurons can be 

rarer than 1% of the population 48, so we targeted neuron types as rare as 0.2% of all cortical 

neurons. Based on Monte Carlo simulations, we estimated that 14,000 neuronal nuclei were 

needed to target types as rare as 0.2% of the total neuron population. Using an initial subset 

of RNA-seq data, we observed more transcriptomic diversity in layers 1, 5, and 6 than in 

other layers so additional neuronal nuclei (~1000) were sampled from those layers. We also 

targeted 1500 (10%) non-neuronal (NeuN-) nuclei and obtained approximately 1000 nuclei 

that passed quality control (QC, see below), and we expected to capture types as rare as 3% 

of the non-neuronal population. Therefore, the final dataset contained <10% non-neuronal 

nuclei because nearly 50% of NeuN-negative nuclei failed QC, potentially due to the lower 

RNA content of glia compared to neurons 22.

Nucleus isolation and sorting

Microdissected tissue pieces were placed in into nuclei isolation medium containing 10mM 

Tris pH 8.0 (Ambion), 250mM sucrose, 25mM KCl (Ambion), 5mM MgCl2 (Ambion) 

0.1% Triton-X 100 (Sigma Aldrich), 1% RNasin Plus, 1X protease inhibitor (Promega), and 

0.1mM DTT in 1ml Dounce homogenizer (Wheaton). Tissue was homogenized using 10 

strokes of the loose Dounce pestle followed by 10 strokes of the tight pestle and the resulting 

homogenate was passed through 30μm cell strainer (Miltenyi Biotech) and centrifuged at 

900xg for 10 min to pellet nuclei. Nuclei were resuspended in buffer containing 1X PBS 

(Ambion), 0.8% nuclease-free BSA (Omni-Pur, EMD Millipore), and 0.5% RNasin Plus. 

Mouse anti-NeuN conjugated to PE (EMD Millipore) was added to preparations at a dilution 

of 1:500 and samples were incubated for 30 min at 4°C. Control samples were incubated 

with mouse IgG1k-PE Isotype control (BD Pharmingen). Samples were then centrifuged for 

5 min at 400xg to pellet nuclei and pellets were resuspended in 1X PBS, 0.8% BSA, and 

0.5% RNasin Plus. DAPI (4′, 6-diamidino-2-phenylindole, ThermoFisher Scientific) was 

applied to nuclei samples at a concentration of 0.1μg/ml.
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Single nucleus sorting was carried out on either a BD FACSAria II SORP or BD FACSAria 

Fusion instrument (BD Biosciences) using a 130μm nozzle. A standard gating strategy was 

applied to all samples. First, nuclei were gated on their size and scatter properties and then 

on DAPI signal. Doublet discrimination gates were used to exclude nuclei aggregates. 

Lastly, nuclei were gated on NeuN signal (PE). Ten percent of nuclei were intentionally 

sorted as NeuN-negative and the remaining 90% of nuclei were NeuN-positive. Single nuclei 

were sorted into 8-well strip tubes containing 11.5μl of SMART-seq v4 collection buffer 

(Takara) supplemented with ERCC MIX1 spike-in synthetic RNAs at a final dilution of 

1×10-8 (Ambion). Strip tubes containing sorted nuclei were briefly centrifuged and stored at 

−80°C until the time of further processing. Index sorting was carried out for most samples to 

allow properties of nuclei detected during sorting to be connected with the cell type identity 

revealed by subsequent snRNA-seq.

RNA-sequencing

We used the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara #634894) 

per the manufacturer’s instructions for reverse transcription of RNA and subsequent cDNA 

amplification. Standard controls were processed alongside each batch of experimental 

samples. Control strips included: 2 wells without cells, 2 wells without cells or ERCCs (i.e. 

no template controls), and either 4 wells of 10 pg of Human Universal Reference Total RNA 

(Takara 636538) or 2 wells of 10 pg of Human Universal Reference and 2 wells of 10 pg 

Control RNA provided in the Clontech kit. cDNA was amplified with 21 PCR cycles after 

the reverse transcription step. AMPure XP Bead (Beckman Coulter A63881) purification 

was done using an Agilent Bravo NGS Option A instrument with a bead ratio of 1x, and 

purified cDNA was eluted in 17 μl elution buffer provided by Takara. All samples were 

quantitated using PicoGreen® (ThermoFisher Scientific) on a Molecular Dynamics M2 

SpectraMax instrument. cDNA libraries were examined on either an Agilent Bioanalyzer 

2100 using High Sensitivity DNA chips or an Advanced Analytics Fragment Analyzer (96) 

using the High Sensitivity NGS Fragment Analysis Kit (1bp-6000bp). Purified cDNA was 

stored in 96-well plates at −20°C until library preparation.

The NexteraXT DNA Library Preparation (Illumina FC-131-1096) kit with NexteraXT 

Index Kit V2 Sets A-D (FC-131-2001, 2002, 2003, or 2004) was used for sequencing library 

preparation. NexteraXT DNA Library prep was done at either 0.5x volume manually or 0.4x 

volume on the Mantis instrument (Formulatrix). Three different cDNA input amounts were 

used in generating the libraries: 75pg, 100pg, and 125pg. AMPure XP bead purification was 

done using the Agilent Bravo NGS Option A instrument with a bead ratio of 0.9x and all 

samples were eluted in 22 μl of Resuspension Buffer (Illumina). Samples were quantitated 

using PicoGreen on a Molecular Bynamics M2 SpectraMax instrument. Sequencing libraries 

were assessed using either an Agilent Bioanalyzer 2100 with High Sensitivity DNA chips or 

an Advanced Analytics Fragment Analyzer with the High Sensitivity NGS Fragment 

Analysis Kit for sizing. Molarity was calculated for each sample using average size as 

reported by Bioanalyzer or Fragment Analyzer and pg/μl concentration as determined by 

PicoGreen. Samples were normalized to 2-10 nM with Nuclease-free Water (Ambion). 

Libraries were multiplexed at 96 samples per lane and sequenced on an Illumina HiSeq 2500 
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instrument using Illumina High Output V4 chemistry. Libraries were sequenced at a median 

depth of 2.6 ± 0.5M reads/nucleus.

RNA-seq gene expression quantification

Raw read (fastq) files were aligned to the GRCh38 human genome sequence (Genome 

Reference Consortium, 2011) with the RefSeq transcriptome version GRCh38.p2 (current as 

of 4/13/2015) and updated by removing duplicate Entrez gene entries from the gtf reference 

file for STAR processing. For alignment, Illumina sequencing adapters were clipped from 

the reads using the fastqMCF program 55. After clipping, the paired-end reads were mapped 

using Spliced Transcripts Alignment to a Reference (STAR) 56 using default settings. STAR 

uses and builds it own suffix array index which considerably accelerates the alignment step 

while improving on sensitivity and specificity, due to its identification of alternative splice 

junctions. Reads that did not map to the genome were then aligned to synthetic constructs 

(i.e. ERCC) sequences and the E.coli genome (version ASM584v2). The final results files 

included quantification of the mapped reads (raw exon and intron counts for the 

transcriptome-mapped reads). This quantification only includes uniquely mappable 

sequences, which makes up the vast majority of reads. A median of 88.4% of reads are 

uniquely mappable (range: 45.4-93.7%) compared with only 3.2% that are multi-mapping 

(range 1.6-10.1%), suggesting that any bias related to exclusion of multi-mappers would be 

relative minor. Also, part of the final results files are the percentages of reads mapped to the 

RefSeq transcriptome, to ERCC spike-in controls, and to E. coli, and summaries of these 

percentages are saved for quality control assessments. Quantification was performed using 

summerizeOverlaps from the R package GenomicAlignments 57. Read alignments to the 

genome (exonic, intronic, and intergenic counts) were visualized as beeswarm plots using 

the R package beeswarm.

Expression levels were calculated as counts per million (CPM) of exonic plus intronic reads, 

and log2(CPM + 1) transformed values were used for a subset of analyses as described 

below. Gene detection was calculated as the number of genes expressed in each sample with 

CPM > 0. CPM values reflected absolute transcript number and gene length, i.e. short and 

abundant transcripts may have the same apparent expression level as long but rarer 

transcripts. Intron retention varied across genes so no reliable estimates of effective gene 

lengths were available for expression normalization. Instead, absolute expression levels were 

estimated as fragments per kilobase per million (FPKM) using only exonic reads so that 

annotated transcript lengths could be used.

Quality control of RNA-seq data

Nuclei were included for clustering analysis if they passed all of the following QC 

thresholds:

>30% cDNA longer than 400 base pairs

>500,000 reads aligned to exonic or intronic sequence

>40% of total reads aligned
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>50% unique reads

TA nucleotide ratio > 0.7

After clustering (see below), clusters were identified as outliers if more than half of nuclei 

co-expressed markers of inhibitory (GAD1, GAD2) and excitatory (SLC17A7) neurons or 

were NeuN+ but did not express the pan-neuronal marker SNAP25. Median values of QC 

metrics listed above were calculated for each cluster and used to compute the median and 

inter-quartile range (IQR) of all cluster medians. Clusters were also identified as outliers if 

the cluster median QC metrics deviated by more than three times the IQRs from the median 

of all clusters. In total, 15,928 nuclei passed QC criteria and were split into three broad 

classes of cells (10,708 excitatory neurons, 4,297 inhibitory neurons, and 923 non-neuronal 

cells) based on NeuN staining and cell class marker gene expression

Clusters were identified as donor-specific if they included fewer nuclei sampled from donors 

than expected by chance. For each cluster, the expected proportion of nuclei from each 

donor was calculated based on the laminar composition of the cluster and laminar sampling 

of the donor. For example, if 30% of layer 3 nuclei were sampled from a donor, then a layer 

3-enriched cluster should contain approximately 30% of nuclei from this donor. In contrast, 

if only layer 5 were sampled from a donor, then the expected sampling from this donor for a 

layer 1-enriched cluster was zero. If the difference between the observed and expected 

sampling was greater than 50% of the number of nuclei in the cluster, then the cluster was 

flagged as donor-specific and excluded. In total, 325 nuclei were assigned to donor-specific 

or outlier clusters that contained marginal quality nuclei and were excluded from further 

analysis. Three donor-specific clusters came from neurosurgical donors (n=95 nuclei) and 

were similar to other layer 5 types reported in our analysis, but had higher expression of 

activity-dependent genes.

To confirm exclusion, clusters automatically flagged as outliers or donor-specific were 

manually inspected for expression of broad cell class marker genes, mitochondrial genes 

related to quality, and known activity-dependent genes.

Clustering RNA-seq data

Nuclei and cells were grouped into transcriptomic cell types using an iterative clustering 

procedure based on community detection in a nearest neighbor graph as described in Bakken 

et al. 26. Briefly, intronic and exonic read counts were summed, and log2-transformed 

expression (CPM + 1) was centered and scaled across nuclei. X- and Y-chromosome were 

excluded to avoid nuclei clustering based on sex. Many mitochondrial genes had expression 

that was correlated with RNA-seq data quality, so nuclear and mitochondrial genes 

downloaded from Human MitoCarta2.0 58 were excluded. Differentially expressed genes 

were selected while accounting for gene dropouts, and principal components analysis (PCA) 

was used to reduce dimensionality. Nearest-neighbor distances between nuclei were 

calculated using up to 20 principal components, Jaccard similarity coefficients were 

computed, and Louvain community detection was used to cluster this graph with 15 nearest 

neighbors. Marker genes were defined for all cluster pairs using two criteria: 1) significant 

differential expression (>2-fold; Benjamini-Hochberg false discovery rate < 0.01) using the 
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R package limma and 2) binary expression (CPM > 1 in more the half of nuclei in one 

cluster and <30% of this proportion in the second cluster). Pairs of clusters were merged if 

either cluster lacked at least one marker gene. Clustering was then applied iteratively to each 

sub-cluster until the occurrence of one of four stop criteria: 1) fewer than six nuclei (due to a 

minimum cluster size of three), 2) no significantly variable genes, 3) no significantly 

variable PCs, 4) no significant clusters.

To assess the robustness of clusters, the iterative clustering procedure described above was 

repeated 100 times for random subsets of 80% of nuclei. A co-clustering matrix was 

generated that represented the proportion of clustering iterations that each pair of nuclei 

were assigned to the same cluster. We defined consensus clusters by iteratively splitting the 

co-clustering matrix as described in Tasic et al. 2018 22. We used the co-clustering matrix as 

the similarity matrix and clustered using either Louvain (>= 4000 nuclei) or Ward’s 

algorithm (< 4000 nuclei). We defined Nk,l as the average probabilities of nuclei within 

cluster k to co-cluster with nuclei within cluster l. We merged clusters k and l if Nk,l > 

max(Nk,k, Nl,l) - 0.25 or if the sum of −log10(adjusted P-value) of differentially expressed 

genes between clusters k and l was less than 150. Finally, we refined cluster membership by 

reassigning each nucleus to the cluster to which it had maximal average co-clustering. We 

repeated this process until cluster membership converged.

Next, we assessed the robustness of clusters using a similar clustering pipeline that was 

recently used to identify cortical cell types in mouse V1 and ALM 22. This pipeline closely 

resembled the analysis described above except for three differences. First, this pipeline 

required that differentially expressed genes between all cluster pairs had more highly 

significant p-values, and this penalized small clusters from splitting into sub-clusters. 

Second, the pipeline used Ward’s agglomerative hierarchical clustering instead of Louvain 

community detection for iterations with fewer than 3000 nuclei. Ward’s method was 

computationally less efficient but improved detection of cluster heterogeneity when large 

and small clusters were present due to the well-known resolution of community detection 

algorithms that optimize global modularity 59. Third, dimensionality reduction could be 

performed using WGCNA 60 rather than PCA, and this method was empirically more 

sensitive to subtle expression variation but also technical noise. This pipeline was run with 

four parameter settings, and the clustering results were compared to the reference clusters 

defined by the initial clustering pipeline. Confusion matrices were computed for each 

comparison and the Jaccard index was computed for all cluster pairs, and these results were 

summarized using boxplots (Extended Data Fig. 3e).

The final set of clusters were compared to nearest neighboring clusters and the number of 

differentially expressed genes (>2-fold change, Benjamini-Hochberg false discovery rate < 

0.01) and binary marker genes (CPM > 1 in more the half of nuclei in one cluster and <30% 

of this proportion in the second cluster) were quantified and compared (Extended Data Fig. 

3b) to the proportion of binary markers that were unannotated (i.e. “LOC” genes). If more 

markers were required to separate each cluster from its nearest neighbor, then clusters were 

merged and visualized as a river plot (Extended Data Fig. 3c). Clusters recently defined in 

mouse V1 and ALM required at least 4 binary markers (8 total markers with higher or lower 

expression than the nearest neighboring cluster) 22. 63 clusters in human MTG have at least 
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4 markers and are reported in Supplementary Table 2 along with markers selected as 

described below.

Cluster names were defined using an automated strategy which combined molecular 

information (marker genes) and anatomical information (layer of dissection). Clusters were 

assigned a broad class of interneuron, excitatory neuron, microglia, astrocyte, 

oligodendrocyte precursor, oligodendrocyte, or endothelial cell based on maximal median 

cluster CPM of GAD1, SLC17A7, TYROBP, AQP4, PDGFRA, OPALIN, or NOSTRIN, 
respectively. Enriched layers were defined as the range of layers which contained at least 

10% of the total cells from that cluster. Clusters were then assigned a broad marker, defined 

by maximal median CPM of PAX6, LAMP5, VIP, SST, PVALB, LINC00507, RORB, 
THEMIS, FEZF2, TYROBP, FGFR3, PDGFRA, OPALIN, or NOSTRIN. Finally, clusters in 

all broad classes with more than one cluster (e.g., interneuron, excitatory neuron, and 

astrocyte) were assigned a gene showing the most specific expression in that cluster (see 

details below). We developed a principled nomenclature for clusters based on: 1) major cell 

class, 2) layer enrichment (including layers containing at least 10% of nuclei in that cluster), 

3) a subclass marker gene (maximal expression of 14 manually-curated genes), and 4) a 

cluster-specific marker gene (maximal detection difference compared to all other clusters). 

For example, the left-most inhibitory neuron type in Figure 1c, found in samples dissected 

from layers 1 and 2, and expressing the subclass marker PAX6 and the specific marker 

CDH12, is named Inh L1-2 PAX CDH12. A few cluster names were manually adjusted for 

clarity.

Marker gene selection

Scoring cluster marker genes—Many genes were expressed in the majority of nuclei 

in a subset of clusters. A marker score (beta) was defined for all genes to measure how 

binary expression was among clusters, independent of the number of clusters labeled 

(Supplementary Table 5). First, the proportion (xi) of nuclei in each cluster that expressed a 

gene above background level (CPM > 1) was calculated. Then, scores were defined as the 

squared differences in proportions normalized by the sum of absolute differences plus a 

small constant (ε) to avoid division by zero. Scores ranged from 0 to 1, and a perfectly 

binary marker had a score equal to 1.

β =
∑i = 1

n ∑ j = 1
n (xi − x j)

2

∑i = 1
n ∑ j = 1

n ∣ xi − x j ∣ + ϵ
.

Specific cell type marker genes—Specific marker genes were selected for cell type 

naming and generation of violin plots and heat maps, and are included as part of 

Supplementary Table 2. For each cell type, the top marker genes were selected by filtering 

and sorting: first, only genes with highest proportion (CPM>1) in the target cluster 

compared with every other cluster and with median expression at least two-fold higher than 

in every other cluster were considered; and second, genes were filtered based on the 

difference in median expression in the top cluster compared with cluster with the next-
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highest median expression. The highest-ranked annotated gene (e.g., not a “LOC” or related 

gene) was selected as the specific gene to include in each cluster name. In clusters with no 

specific markers fold-change requirement was relaxed, and if still no marker was found then 

the most specific gene compared with similar cell types (category level 3) was used (see 

Supplementary Table 2).

Combinatorial cell type marker genes—Combinatorial marker genes were identified 

using NS-Forest v261 (https://github.com/JCVenterInstitute/NSForest), an algorithm 

designed to select the minimum number of genes whose combined expression pattern is 

sufficient to uniquely classify cells of a particular type based on gene expression clustering 

results. Briefly, for each gene expression cluster, NS-Forest produces a Random Forest (RF) 

model for a target cluster vs all other clusters binary classification. The top ranking genes 

(features) from each RF are then filtered by expression level (positive intermediate-high 

expression) and reranked by Binary Score. The Binary Score is calculated by first finding 

median cluster expression values for a given gene in each cluster. These values are then 

scaled by dividing by the median expression value in the target cluster. Next, we take one 

minus this scaled value such that the value will be 0 for the target cluster and 1 for clusters 

that have no expression (negative scaled values are set to 0). These values are then summed 

and normalized by dividing by the total number of clusters. In the ideal case, where all off-

target clusters have no expression, the resulting Binary Score is 1. Finally, for the top 6 

genes ranked by this Binary Score, optimal expression level cutoffs are determined using 

single decision trees, and all permutations of these genes are evaluated for classification 

accuracy using the f-beta score, where the beta is weighted to favor precision. This f-score 

indicates the power of discrimination for a cluster and a given set of genes. Top 

combinatorial markers are included as part of Supplementary Table 2.

Donor tissue-specific marker genes—Gene expression was compared between nuclei 

isolated from four neurosurgical and four post-mortem donors. Differential expression 

analysis was performed with the limma R package using all NeuN+-positive nuclei isolated 

from layer 5 of MTG. Donor sex and MTG cluster were included as covariates in a linear 

model, and all genes with at least a 2-fold difference in expression and Benjamini–Hochberg 

adjusted p-value < 0.05 are reported in Supplementary Table 1.

Cross-species marker genes—For each homologous cell type, cross-species markers 

were defined as having cluster-enriched expression (expressed in >50% of cells or nuclei in 

the cluster of interest and five or fewer additional clusters) in both species. Marker genes 

were rank ordered based on their cell type-specificity in human and mouse using a tau score 

defined in Yanai et al. 62. Up to 10 markers were plotted in Extended Data Figure 11 and 

listed in Supplementary Table 4.

Assigning core and intermediate nuclei

We defined core and intermediate nuclei as described in 22. Specifically, we used a nearest-

centroid classifier, which assigns a nucleus to the cluster whose centroid has the highest 

Pearson’s correlation with the nucleus. Here, the cluster centroid is defined as the median 

expression of the 1200 marker genes with the highest beta score. To define core vs. 
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intermediate nuclei, we performed 5-fold cross-validation 100 times. In each round, the 

nuclei were randomly partitioned into 5 groups, and nuclei in each group of 20% of the 

nuclei were classified by a nearest centroid classifier trained using the other 80% of the 

nuclei. A nucleus classified to the same cluster as its original cluster assignment more than 

90 times was defined as a core nucleus, the others were designated intermediate nuclei. We 

define 14,204 core nuclei and 1,399 intermediate nuclei, which in most cases classify to only 

2 clusters (1,345 out of 1,399, 96.1%). Most nuclei are defined as intermediate because they 

are confidently assigned to a different cluster from the one originally assigned (1,220 out of 

1,399, 87.2%) rather than because they are not confidently assigned to any cluster.

Cluster dendrograms

Clusters were arranged by transcriptomic similarity based on hierarchical clustering. First, 

the average expression level of the top 1200 marker genes (highest beta scores, as above) 

was calculated for each cluster. A correlation-based distance matrix (Dxy = 1−ρ(x, y)
2 ) was 

calculated, and complete-linkage hierarchical clustering was performed using the “hclust” R 

function with default parameters. The resulting dendrogram branches were reordered to 

show inhibitory clusters followed by excitatory clusters, with larger clusters first, while 

retaining the tree structure. Note that this measure of cluster similarity is complementary to 

the co-clustering separation described above. For example, two clusters with similar gene 

expression patterns but a few binary marker genes may be close on the tree but highly 

distinct based on co-clustering.

Organizing clusters into a provisional cell ontology

Annotations for gene expression cluster characteristics were used to produce a provisional 

cell ontology representation as proposed 37, accessible through the BioPortal resource 

(https://bioportal.bioontology.org/ontologies/PCL) and an RDF representation available 

through a GitHub Repo (https://github.com/mkeshk2018/Provisional_Cell_Ontology). This 

ontology is presented in table form in Supplementary Table 3, along with more details about 

the components of this ontology.

Mapping cell types to reported clusters

69 neuronal clusters in MTG were matched to 16 neuronal clusters reported by Lake et al. 24 

using nearest-centroid classifier of expression signatures. Specifically, single nucleus 

expression data was downloaded for 3,042 cells and 25,051 genes. 1,359 marker genes (beta 

score > 0.4) of MTG clusters that had a matching gene in the Lake et al. dataset were 

selected, and the median expression for these genes was calculated for all MTG clusters. 

Next, Pearson’s correlations were calculated between each nucleus in the Lake et al. dataset 

and all 69 MTG clusters based on these 1,359 genes. Nuclei were assigned to the cluster 

with the maximum correlation. A confusion matrix was generated to compare the cluster 

membership of nuclei reported by Lake et al. and assigned MTG cluster. The proportion of 

nuclei in each MTG cluster that were members of each of the 16 Lake et al. clusters were 

visualized as a dot plot with circle sizes proportional to frequency and colored by MTG 

cluster color. The same comparative approach was performed for clusters defined using 
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single nuclei isolated from prefrontal cortex, including 10,319 nuclei from Lake et al. 27 and 

5,433 nuclei from Habib et al. 28.

Colorimetric in situ hybridization

In situ hybridization (ISH) data for human and mouse cortex was from the Allen Human 

Brain Atlas and Allen Mouse Brain Atlas. All ISH data is publicly accessible at www.brain-

map.org. Data was generated using a semi-automated technology platform as described 63, 

with modifications for postmortem human tissues as previously described 15. Digoxigenin-

labeled riboprobes were generated for each human gene such that they would have >50% 

overlap with the orthologous mouse gene in the Allen Mouse Brain Atlas 63. ISH 

experiments shown in Figure 6 were repeated 4 (COL24A1), 3 (COL12A1, GRIK1), and 6 

(GRIN3A) times for human, and 2 (Col24a1, Col12a1, Grin3a) and 6 (Grik1) times for 

mouse.

GFAP immunohistochemistry

Tissue slices (350 μm) from neurosurgical specimens were fixed for 2-4 days in 4% 

paraformaldehyde in PBS at 4°C, washed in PBS, and cryoprotected in 30% sucrose. 

Cryoprotected slices were frozen and re-sectioned at 30 μm using a sliding microtome 

(Leica SM2000R). Free floating sections were mounted onto gelatin coated slides and dried 

overnight at 37 °C. Slides were washed in 1X tris buffered saline (TBS), followed by 

incubation in 3% hydrogen peroxide in 1X TBS. Slides were then heated in sodium citrate 

(pH 6.0) for 20 minutes at 98 °C. After cooling, slides were rinsed in MilliQ water followed 

by 1X TBS. Primary antibody (mouse anti-GFAP, EMD Millipore, #MAB360, clone GA5, 

1:1500) was diluted in Renaissance Background Reducing Diluent (Biocare #PD905L). 

Slides were processed using a Biocare intelliPATH FLX Automated Slide Stainer. After 

primary antibody incubation, slides were incubated in Mouse Secondary Reagent (Biocare 

#IPSC5001G20), rinsed with 1X TBS, incubated in Universal HRP Tertiary Reagent 

(Biocare #IPT5002G20), rinsed in 1X TBS, and incubated in IP FLXDAB (Biocare Buffer 

#IPBF5009G20), and DAB chromogen (Biocare Chromogen #IPC5008G3). Slides were 

then rinsed in 1X TBS, incubated in DAB sparkle (Biocare #DSB830M), washed in MilliQ 

water, dehydrated through a series of graded alcohols, cleared with Formula 83, and 

coverslipped with DPX. Slides were imaged using an Aperio ScanScope XT slide scanner 

(Leica).

Multiplex fluorescence in situ hybridization (mFISH)

Genes were selected for mFISH experiments that discriminated cell types and broader 

classes by visual inspection of differentially expressed genes that had relatively binary 

expression in the targeted types.

Single molecule FISH (smFISH)—Fresh-frozen human brain tissue from the MTG was 

sectioned at 10um onto Poly-L-lysine coated coverslips as described previously 64, let dry 

for 10 min at room temperature, then fixed for 15 min at 4 C in 4% PFA. Sections were 

washed 3 × 10 min in PBS, then permeabilized and dehydrated with 100% isopropanol at 

room temperature for 3 min and allowed to dry. Sections were stored at −80 C until use. 

Frozen sections were rehydrated in 2XSSC (Sigma Aldrich 20XSSC, 15557036) for 5 min, 
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then treated 2 X 5 min with 4%SDS (Sigma Aldrich, 724255) and 200mM boric acid (Sigma 

Aldrich, cat# B6768) pH 8.5 at room temperature. Sections were washed 3 times in 2X SSC, 

then once in TE pH 8 (Sigma Aldrich, 93283). Sections were heatshocked at 70 C for 10 

min in TE pH 8, followed by 2XSSC wash at room temperature. Sections were then 

incubated in hybridization buffer (10% Formamide (v/v, Sigma Aldrich 4650), 10% Dextran 

Sulfate (w/v, Sigma Aldrich D8906), 200μg/mL BSA (Ambion AM2616), 2 mM 

Ribonucleoside vanadyl complex (New England Biolabs, S1402S), 1mg/ml tRNA (Sigma 

10109541001) in 2XSSC) for 5 min at 38.5 C. Probes were diluted in hybridization buffer at 

a concentration of 250 nM and hybridized at 38.5 C for 2 h. Following hybridization, 

sections were washed 2 X 15 min at 38.5 C in wash buffer (2XSSC, 20% Formamide), and 1 

X 15 min in wash buffer with 5 μg/ml DAPI (Sigma Aldrich, 32670). Sections are then 

imaged in Imaging buffer (20 mM Tris-HCl pH 8, 50 mM NaCl, 0.8% Glucose (Sigma 

Aldrich, G8270), 3 U/ml Glucose Oxidase (Sigma Aldrich, G2133), 90 U/ml Catalase 

(Sigma Aldrich, C3515). Following imaging, sections were incubated 3 X 10 min in 

stripping buffer (65% Formamide, 2X SSC) at 30 C to remove hybridization probes from the 

first round. Sections were then washed in 2X SSC for 3 X 5 min at room temperature prior 

to repeating the hybridization procedure.

RNAscope mFISH—Human tissue specimens used for RNAscope mFISH came from a 

cohort of both neurosurgical or postmortem tissue donors that were independent from the 

donors used for snRNA-seq. Mouse tissue for RNAscope experiments was from adult (P56 

+/− 3 days) wildtype C57Bl/6J mice. Mice were anesthetized with 5% isoflurane and 

intracardially perfused with either 25 or 50 ml of ice cold, oxygenated artificial cerebral 

spinal fluid (0.5mM CaCl2, 25mM D-Glucose, 98mM HCl, 20mM HEPES, 10mM MgSO4, 

1.25mM NaH2PO4, 3mM Myo-inositol, 12mM N-acetylcysteine, 96mM N-methyl-D-

glucamine, 2.5mM KCl, 25mM NaHCO3, 5mM sodium L-Ascorbate, 3mM sodium 

pyruvate, 0.01mM Taurine, and 2mM Thiourea). The brain was then rapidly dissected, 

embedded in optimal cutting temperature (O.C.T.) medium, and frozen in a slurry of dry ice 

and ethanol. Tissues were stored at −80C until for later cryosectioning.

Fresh-frozen mouse or human tissues were sectioned at 14-16 μm onto Superfrost Plus glass 

slides (Fisher Scientific). Sections were dried for 20 minutes at −20C and then vacuum 

sealed and stored at −80C until use. The RNAscope multiplex fluorescent v1 kit was used 

per the manufacturer’s instructions for fresh-frozen tissue sections (ACD Bio), with the 

following minor modifications: (1) fixation was performed for 60 minutes in 4% 

paraformaldehyde in 1X PBS at 4°C, and (2) the protease treatment step was shortened to 10 

minutes. Positive controls used to assess RNA quality in tissue sections were either from a 

set from ACD Bio (POLR2A, PPIB, UBC, #320861) or a brain-specific probe combination 

(SLC17A7, VIP, GFAP). Sections were imaged using either a 40X or 60X oil immersion 

lens on a Nikon TiE fluorescent microscope equipped with NIS-Elements Advanced 

Research imaging software (version 4.20). For all RNAscope mFISH experiments, positive 

cells were called by manually counting RNA spots for each gene. Cells were called as 

positive for a gene if they contained ≥ 5 RNA spots for that gene. Lipofuscin 

autofluorescence was distinguished from RNA spot signal based on the larger size of 

lipofuscin granules and the broad fluorescence spectrum of lipofuscin.
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RNAscope mFISH with GFAP immunohistochemistry—Tissue sections were 

processed for RNAscope mFISH detection of ID3 (ACD Bio, #492181-C3, NM_002167.4) 

and AQP4 (ACD Bio, #482441, NM_001650.5 ) exactly as described above. At the end of 

the RNAscope protocol, sections were fixed in 4% paraformaldehyde for 15 minutes at room 

temperature and then washed twice in 1X PBS for 5 minutes. Sections were incubated in 

blocking solution (10% normal donkey serum, 0.1% triton-x 100 in 1X PBS) for 30 minutes 

at room temperature and then incubated in primary antibody diluted 1:100 in blocking 

solution (mouse anti-GFAP, Sigma-Aldrich, #G3893, clone G-A-5) for 18 hours at 4C. 

Sections were then washed 3 times for 5 minutes each in 1X PBS, incubated with secondary 

antibody (goat anti-mouse IgG(H+L) Alexa Fluor 568 conjugate, ThermoFisher Scientific, 

#A-11004) for 30 minutes at room temperature, rinsed in 1X PBS 3 times for 5 minutes 

each, counterstained with DAPI (1 μg/ml), and mounted with ProLong Gold mounting 

medium (ThermoFisher Scientific). Sections were imaged using either a 40X or 60X oil 

immersion lens on a Nikon TiE fluorescent microscope equipped with NIS-Elements 

Advanced Research imaging software (version 4.20).

In situ validation of excitatory cell types and non-coding transcripts

To validate excitatory neuron types, clusters were labeled with cell type specific 

combinatorial gene panels using RNAscope mFISH. For each gene panel, positive cells were 

manually called by visual assessment of RNA spots for each gene, as described above. The 

total number of positive cells was quantified for each section. Positive cells were counted on 

at least three sections derived from at least two donors for each probe combination. DAPI 

staining was used to determine the boundaries of cortical layers within each tissue section 

and the laminar position of each positive cell was recorded. The percentage of labeled cells 

per layer, expressed as a fraction of the total number of labeled cells summed across all 

layers, was calculated for each type. Probes used were as follows (all from ACD Bio): 

SLC17A7 (#415611, NM_020309.3 ), RORB (#446061, #446061-C2, NM_006914.3), 

CNR1 (#591521-C2, NM_001160226.1), PRSS12 (#493931-C3, NM_003619.3 ), ALCAM 
(#415731-C2, NM_001243283.1), MET (#431021, NM_001127500.1), MME (#410891-C2, 

NM_007289.2 ), NTNG1 (#446101-C3, NM_001113226.1), HS3ST4 (#506181, 

NM_006040.2), CUX2 (#425581-C3, NM_015267.3), PCP4 (#446111, NM_006198.2), 

GRIN3A (#534841-C3, NM_133445.2), GRIK3 (#493981, NM_000831.3), CRHR2 
(#469621, NM_001883.4), TPBG (#405481, NM_006670.4), POSTN (#409181-C3, 

NM_006475.2), SMYD1 (#493951-C2, NM_001330364.1). Probes for non-coding 

transcripts were as follows (all from ACD Bio): LINC01164 (# 559051-C3, NR_038365.1), 

LOC102723415 (#559031, XR_001741660.1), LOC401134 (LINC02232, #559061-C3, 

NR_033976.1), LOC105369818 (#508351-C3, XR_945055.2), IFNG-AS1 (#508348-C2, 

NR_104124.1). LOC105376081 (XR_929926.1) was assayed using colorimetric ISH as 

described above.

Imaging and quantification of smFISH expression

smFISH images were collected using an inverted microscope in an epifluorescence 

configuration (Zeiss Axio Observer.Z1) with a 63x oil immersion objective with numerical 

aperture 1.4. The sample was positioned in x, y and z with a motorized x, y stage with linear 

encoders and z piezo top-plate (Applied Scientific Instruments MS 2000-500) and z stacks 
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with 300 nm plane spacing were collected in each color at each stage position through the 

entire z depth of the sample. Fluorescence emission was filtered using a high-speed 

filterwheel (Zeiss) directly below the dichroic turret and imaged onto a sCMOS camera 

(Hamamatsu ORCA Flash4.0) with a final pixel size of 100 nm. Images were collected after 

each round of hybridization using the same configuration of x,y tile locations, aligned 

manually before each acquisition based on DAPI fluorescence. smFISH signal was observed 

as diffraction-limited spots which were localized in 3D image stacks by finding local 

maxima after spatial bandpass filtering. These maxima were filtered for total intensity and 

radius to eliminate dim background and large, bright lipofuscin granules. Outlines of cells 

and cortical layers were manually annotated on images of GAD, SLC17A7 and DAPI as 2D 

polygons using FIJI. The number of mRNA molecules in each cell for each gene was then 

calculated and converted to densities (spots per 100 μm2).

Background expression of the excitatory neuron marker SLC17A7 was defined as the 95th 

quantile of SLC17A7 spot density among cells in cortical layer 1, since no excitatory cells 

should be present in layer 1. Excitatory neurons were defined as any cell with SLC17A7 
spot density greater than this threshold. To map excitatory cells to MTG reference clusters, 

spot counts were log-transformed and scaled so that the 90th quantile of expression for each 

gene in smFISH matched the maximum median cluster expression of that gene among the 

reference clusters. Reference clusters that could not be discriminated based on the smFISH 

panel of nine genes were merged and all comparisons between smFISH and RNA-seq cluster 

classes were performed using these cluster groups. Scaled spot densities for each cell were 

then compared to median expression levels of each reference cluster using Pearson 

correlation, and each cell was assigned to the cluster with the highest correlation. For cells 

that mapped to the Exc L2-3 LINC00507 FREM3 cluster, LAMP5 and COL5A2 expression 

was plotted as a dot plot where the size and color of dots corresponded to probe spot density 

and the location corresponded to the in situ location.

In situ validation of putative chandelier cells

Tissue sections were labeled with the gene panel GAD1, PVALB, and NOG, or COL15A1, 

specific markers of the Inh L2-5 PVALB SCUBE3 putative chandelier cell cluster. Probes 

were as follows (all from ACD Bio): GAD1 (#404031-C3, NM_000817.2), PVALB 
(#422181-C2, NM_002854.2), NOG (#416521, NM_005450.4), COL15A1 (#484001, 

NM_001855.4). Counts were conducted on sections from 3 human tissue donors. For each 

donor, the total number of GAD1+, PVALB+ and NOG+ cells was summed across multiple 

sections. The laminar position of each cell, based on boundaries defined by assessing DAPI 

staining patterns in each tissue section, was recorded. The proportion of chandelier cells in 

each layer was calculated as a fraction of the total number of GAD1+/PVALB+/NOG+ cells 

summed across all layers for each specimen.

Cell counts of broad interneuron classes

Tissue sections were labeled with the RNAscope Multiplex Fluorescent kit (ACD Bio) as 

described above. For human tissue sections, the following probes (all from ACD Bio) were 

used: GAD1 (#404031, NM_000817.2); ADARB2 (#511651-C3, NM_018702.3); LHX6 
(#460051-C2, NM_014368.4). For mouse tissue sections, the following probes were used: 
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Gad1 (#400951, NM_008077.4); Adarb2 (#519971-C3, NM_052977.5); Lhx6 (#422791-

C2, NM_001083127.1). The expression of each gene was assessed by manual examination 

of corresponding RNA spots. Cell counts were conducted on sections from 3 human tissue 

donors: 2 neurosurgical and 1 postmortem. For mouse, 3 independent specimens were used. 

For both human and mouse, >500 total GAD1+ cells per specimen were counted (Human, 

n=2,706, 1,553, and 3,476 GAD1+ cells per donor, respectively; Mouse, n=1,897, 2,587, and 

708 GAD1+ cells per specimen, resepectively). Expression of ADARB2/Adarb2 and LHX6/
Lhx6 was manually assessed in each GAD1+ cell and cells were scored as being positive (≥ 

5 RNA spots/gene) or negative for each gene, as described above. At the same time, the 

laminar position of each GAD1+ cell was recorded. Cell density, highlighted by DAPI 

staining, was used to determine laminar boundaries. The percentage of each cell class 

expressed as a fraction of total GAD1+ cells and the percentage of each cell class per layer, 

expressed as a fraction of the total number of GAD1+ cells per layer, were calculated for 

each specimen. Statistical comparisons between human and mouse were done using 

unpaired two-tailed t-tests with Holm-Sidak correction for multiple comparisons.

MetaNeighbor analysis

To compare the ability of different gene families to distinguish cell types in mouse versus 

human cortex, we performed a modified supervised MetaNeighbor analysis 65 independently 

for both species. First, we divided our data sets into two artificial experiments, selecting 

random groups of equal size up to a maximum of 10 cells per cluster for each experiment. 

We next ran MetaNeighbor separately for clusters from each broad class (GABAergic, 

glutamatergic, and non-neuronal) using the R function “run_MetaNeighbor” where 

“experiment_labels” are 1 or 2 corresponding to the two artificial experiments, 

“celltype_labels” are 2 for cells in the targeted cluster and 1 for cells in all other clusters of 

the same broad class, and “genesets” were all of the HGNC gene sets included in Table S3 

of 41. Mean AUROC scores for each gene set were then calculated by averaging the reported 

AUROC scores for a gene set across all clusters within a given broad class. This processes 

was repeated for 10 divisions of the human and mouse data into random experimental 

groups. Means and standard deviations of these mean AUROC scores for human and mouse 

GABAergic cell types are compared in Fig 5.

Estimation of cell type homology

We aligned single nucleus and single cell RNA-seq data from human MTG and either mouse 

primary visual cortex (V1) or anterior lateral motor (ALM) cortex by applying two data 

integration methods, Seurat 44 and scAlign 45, to remove species-specific differences. As a 

secondary analysis, we aligned mouse V1 to mouse ALM excitatory neurons using the same 

analysis pipeline.

First, we quantified expression levels as log2-transformed CPM of intronic plus exonic 

reads. Including exonic reads increased experimental differences due to measuring whole 

cell (mouse) versus nuclear (human) transcripts, but this was out-weighed by improved gene 

detection. We separated each dataset into three broad cell classes: GABAergic, 

glutamatergic, and non-neuronal, based on their assigned clusters, and selected up to 200 

cells from each cluster. For excitatory neurons from ALM, we selected up to 50 cells from 
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each cluster to improve the alignment of rare types. For each species comparison, we 

selected the union of the top 2,000 genes with the highest dispersion for human and mouse 

and calculated up to 40 canonical correlates with diagonal CCA. We used these canonical 

correlates as input to scAlign’s encoder neural network or Seurat’s dynamic time warping 

algorithm 44.

Briefly, scAlign is a neural network that learns a mapping from the canonical correlation 

space of data from each species into a common cell state space in which functionally similar 

cells occupy the same region of the cell state space. The neural network optimizes a loss 

function which encourages overlap of similar cells across species while preserving cell-cell 

similarity within each species to minimize the species-specific distortion in the learned cell 

state space. The default network architecture for scAlign is defined by: Input (CCA) → 
FC(512) → FC(256) → FC(128) → FC(32). The input nodes consist of the single cell 

transcriptome profiles that have been preprocessed via canonical correlation analysis. Here, 

FC(n) defines a fully connected layer with n hidden units and a ReLU activation function. 

The final FC(n) layer outputs the cell embeddings. Following each FC(n) layer, we used 

batch normalization and dropout at a rate of 30%. Key hyperparameters for scAlign were set 

as follows. (1) Mini-batch size ranged between 100 and 1000 cells to ensure sufficient 

representation of each cell type to avoid bias. (2) Perplexity values of 5, 10, and 30 defined 

the number of neighbors for each cell. (3) Weight of L2 regularization in the loss function 

was set to 0.0001. (4) Learning rate was initialized at 0.0001 and followed a linear decay 

pattern during training. (5) The number of FC(n) layers varied from 2 to 4 as larger FC(n) 

layers were consecutively removed. All training converged in less than 15,000 iterations.

To identify the optimal model architecture(s) for each experiment, we measured two quality 

metrics defined on scAlign’s cell embeddings: (1) accuracy of a 5-nearest neighbors 

classifier for labeling human and mouse cells and (2) alignment score 44 measuring the 

degree of mixing between human and mouse cells. These scores were averaged across three 

random weight initializations to validate that the model produced robust alignments. We also 

tested the robustness of the alignment to different methods by using non-linear warping 

implemented in the Seurat R package for alignment.

We defined homologous cell types by clustering the aligned embedding output from scAlign 

or Seurat and identifying human and mouse samples that co-clustered. First, a weighted 

graph was constructed based on the Jaccard similarity of the nearest neighbors of each 

sample. Louvain community detection was run to identify clusters that optimized the global 

modularity of the partitioned graph. For each pair of human and mouse clusters, the overlap 

was defined as the sum of the minimum proportion of samples in each cluster that 

overlapped within each CCA cluster. This approach identified pairs of human and mouse 

clusters that consistently co-clustered within one or more aligned clusters. Cluster overlaps 

varied from 0 to 1 and were visualized as a heatmap with human MTG clusters in rows and 

mouse V1 or ALM clusters in columns.

Cell type homologies were identified as one-to-one, one-to-many, or many-to-many based 

on the pattern of overlap between clusters. Including more canonical correlates or fewer 

nearest neighbors increased the number of cell types that could be discriminated within each 
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species but also reduced alignment between species and resulted in more species-specific 

clusters. A grid based search was used to select the optimal number of canonical correlates 

(30, inhibitory neurons; 40, excitatory neurons; 10, non-neuronal) and nearest neighbors that 

maximized detection of homologous cell types. Most homologies were consistent between 

MTG and two mouse cortical areas (V1 and ALM) and between alignment methods, 

although scAlign gave somewhat higher resolution homologies (Extended Data Figure 9). 

Inconsistencies between cell type homologies in MTG and V1 or ALM were resolved by 

grouping clusters to identify a coarser homology. For example, all L6b clusters in human 

and mouse were assigned to a single L6b homologous type. Supplementary Table 3 lists 

homologies defined using scAlign between MTG and V1 for all clusters and between MTG 

and ALM for excitatory neuron clusters. Homologous type names were assigned based on 

the annotations of member clusters from human and mouse.

Quantification of expression divergence

For each pair of 37 homologous human and mouse cell types, the average expression of 

14,553 orthologous genes was calculated as the average counts per million of intronic reads. 

Only intronic reads were used to better compare these single nucleus (human) and single cell 

(mouse) datasets. Average expression values were log2-transformed and scatter plots and 

Pearson’s correlations were calculated to compare human and mouse. Genes were ranked 

based on their cell type-specificity in human and mouse using a tau score defined in Yanai et 

al. 62, and the union of the top 50 markers in human and mouse were highlighted in the 

scatter plots. The fold difference in expression between human and mouse was calculated for 

all genes and homologous cell types and thresholded to identify large (>10-fold), moderate 

(2- to 10-fold), and small (<2-fold) differences. A heatmap was generated showing 

expression differences across cell types, and hierarchical clustering using Ward’s method 

was applied to group genes with similar patterns of expression change. For each of 6 major 

classes of cell types (LAMP5/PAX6, VIP, SST, PVALB, excitatory, non-neuronal), the 

number of genes was quantified that had >10-fold change in at least one cell type in that 

class and <10-fold change in all cell types in the other 5 classes. The expression pattern 

change of 14,553 genes was quantified as the beta score (see marker score methods above) 

of log2-expression differences across 37 homologous cell types (Supplementary Table 2). 

Scores ranged from 0-1 and measured the magnitude of expression changes between species 

while normalizing for the number of cell types that changed expression. Genes with high 

scores have a large fold-change in expression in one or more (but not all) cell types. For each 

gene, the number of clusters with median expression (CPM) > 1 was compared to the 

median pattern change of those genes. A loess curve and standard error were fit using the R 

package ggplot. Finally, the median pattern change was calculated for functional gene 

families downloaded from the HUGO Gene Nomenclature Committee (HGNC) at https://

www.genenames.org/download/statistics-and-files/.

Data Availability

Data and code used to produce figures are available from https://github.com/AllenInstitute/

MTG_celltypes. Data can be accessed through the Allen Brain Atlas data portal at http://

portal.brain-map.org/ and RNA-seq data from this study is publicly available and can be 

downloaded at http://celltypes.brain-map.org/. Data can be visualized and analyzed using 
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two complementary viewers, the RNA-seq Data Navigator (http://celltypes.brain-map.org/

rnaseq/human) and the Cytosplore Viewer (https://viewer.cytosplore.org/), an extension of 

Cytosplore 66 that presents a hierarchy of t-SNE maps of different subsets of MTG clusters 
67. An ontology of cell types can be navigated at http://bioportal.bioontology.org/ontologies/

PCL. RNA-seq data has registered with dbGAP (accession number: phs001790) and has 

been deposited at the NeMO archive (https://nemoarchive.org/) and a link to controlled 

access raw sequencing data will be available at http://portal.brain-map.org/explore/

transcriptome and at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001790.v1.p1.

Extended Data
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Extended Data Figure 1. Nuclei metadata summarized by cluster.
a, FACS gating scheme for nuclei sorts. b, FACS metadata for index sorted single nuclei 

(n=571) shows significant variability in NeuN fluoresence intensity (NeuN-PE-A), size 

(forward-scatter area, FSC-A), and granularity (side-scatter area, SSC-A) across clusters. As 

expected, non-neuronal nuclei have almost no NeuN staining and are smaller (as inferred by 

lower FSC values). Error bars represent 95% bootstrapped confidence intervals on mean 

values (points). c-d, Scatter plots of single nuclei from all clusters (n=15,928) plus median 

and interquartile interval of three QC metrics grouped and colored by cluster. c, Median total 

reads were approximately 2.6 million for all cell types, although slightly lower for non-

neuronal nuclei. d, Median gene detection was highest among excitatory neuron types in 

layers 5 and 6 and a subset of types in layer 3, lower among inhibitory neuron types, and 

significantly lower among non-neuronal types.
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Extended Data Figure 2. Small but consistent expression signature of donor tissue source.
a, mRNA quality was only slightly higher for nuclei isolated from neurosurgical (n=722) 

versus post-mortem (n=15,206) donors (~3% more uniquely aligned reads and ~350 more 

genes detected). All nuclei were dissected from cortical layer 5 and sorted based on NeuN-

positive staining, and transcripts were sequenced to a median depth of approximately 2.5 

million reads per nucleus. Median values (red points) and interquartile interval as indicated. 

b, Dot plot showing the proportion of nuclei isolated from neurosurgical and postmortem 

donors among human MTG clusters. Note that most nuclei from neurosurgical donors were 

isolated only from layer 5 so clusters enriched in other layers, such as layer 1 interneurons, 

have low representation of these donors. c, Highly correlated (Pearson’s) expression 

between nuclei from postmortem and neurosurgical donors among two subclasses of 

excitatory neurons and one subclass of inhibitory neurons. Nuclei were pooled and 

compared within these subclasses due to the low sampling of individual clusters from 

neurosurgical donors. Average expression of n=2,180, 1,636, and 815 postmortem nuclei 
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and 127, 38, and 114 neurosurgical nuclei were included for the L5a excitatory, L4 

excitatory, and SST+ interneuron comparisons, respectively. d, Expression (log10(CPM + 1)) 

heatmaps of the top 10 up-regulated genes in nuclei from post-mortem or neurosurgical 

donors including ribosomal genes and activity-dependent genes, respectively.
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Extended Data Figure 3. Cluster robustness.
a, Cluster separability (mean co-clustering within a cluster minus the maximum co-

clustering between clusters) varied substantially among cell types (n=15,928 nuclei), with a 

subset of neuronal types and all non-neuronal types being highly discrete. b, Scatter plots 

quantifying the separation of each cluster from its nearest neighbor. Left: Cluster 

separability based on rounds of iterative clustering using all variable genes are correlated 

with the number of binary marker genes. Middle: All clusters express at least 30 genes with 

>2-fold increased expression, but only a subset are binary markers. Right: A substantial 

fraction of markers of many clusters are unannotated. c, River plots of clusters that merge 

with more binary markers required for separation. Note that clusters that appear distinct 

based on layer position (excitatory neurons in layers 2 and 3), morphology (interlaminar 

astroctyes in layer 1), or homology with mouse (SST+ interneuron subtypes) can have few 

binary markers. Marker genes for clusters defined by 4 markers (are listed in Supplementary 

Table 2. d, Confusion plots comparing cluster membership of single nuclei (n=15,928) in 

reference MTG clusters and clusters generated using a different iterative clustering pipeline. 
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Above each plot are listed the parameter settings and total number of clusters detected. Point 

size is proportional to the number of nuclei and point color corresponds to the Jaccard index 

(JI) with darker colors corresponding to a higher JI and greater consistency between 

clustering. e, Box plots summarizing consistency of cluster membership of single nuclei 

(n=15,928) across the four iterative clustering runs shown in c. Boxplots show median, 

interquartile interval, and full range of values. Top: The number of clusters that overlap each 

reference cluster. A cluster count of 1 indicates a one-to-one match, 0 indicates that a 

reference cluster was not detected and was merged with a related cluster, and >1 indicates 

that a reference cluster was split into sub-clusters. *The Exc L2−3 LINC00507 FREM3 
reference cluster was consistently divided into subclusters. Bottom: Reference clusters with 

higher JI values have more consistent membership of nuclei and therefore more distinct 

borders with related clusters. f, Violin plots of marker gene expression for FREM3 
subclusters (n=2,284 nuclei) identified in one clustering run show relatively binary 

expression. In the violin plot, rows are genes and black dots correspond to median 

expression. Expression values are on a linear scale.
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Extended Data Figure 4. Expression of cell type specific markers.
a, b, Heatmaps of the top cell type markers for (a) inhibitory neurons and (b) excitatory 

neurons and non-neuronal cell types. Markers include many non-coding and unannotated 

genes (blue symbols). Median expression values are shown on a logarithmic scale, with 

maximum expression values shown on the right side of each row. Up to 5 marker genes are 

shown for each cell type. Note that LOC genes were excluded from cluster names, and the 

best non-LOC marker genes were used instead. Dendrograms and cluster names are 

reproduced from Figure 1. Marker genes for broad classes, as defined manually and using 

NS forest, are also shown in the top rows of each heatmap.
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Extended Data Figure 5. Clusters in this study capture reported human cortical cell types and 
additional subtype diversity.
a-c, Dot plots showing the proportion of each MTG cluster that matches reported clusters 

based on a centroid expression classifier. a, 3 of 16 neuronal clusters reported by Lake et al. 
24 (n=3,042 nuclei) match human MTG clusters one-to-one, while the remaining clusters 

map to multiple MTG clusters. *Ex3 was highly enriched in visual cortex and not detected 

in temporal cortex by Lake et al. b, 4 of 18 neuronal clusters and 3 of 4 non-neuronal 

clusters reported by Lake et al. 27 (n=10,319 nuclei) match human MTG clusters one-to-one, 

including two rare, but distinct interneuron types (Inh L3-6 SST NPY and Inh L2-5 PVALB 
SCUBE3) and one rare, but distinct excitatory type (Exc L4-5 FEZF2 SCN4B). c, 4 

neuronal clusters reported by Habib et al. 28 (n=5,433 nuclei) correspond to broad classes of 

inhibitory and excitatory neurons. Seven non-neuronal clusters include two astrocyte types 

that correspond to the types reported in this study, and one additional oligodendrocyte 

subtype. d, 16 clusters detected in layer 1 of human temporal cortex 14 (n=914 nuclei) are 

captured at finer subtype resolution in this study.
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Extended Data Figure 6. Excitatory neuron types express marker genes across multiple cortical 
layers.
a, Constellation diagram showing cluster relationships, relative frequencies, and average 

layer position. b-e, Heatmaps of log-transformed expression in individual nuclei ordered by 

cluster and then layer. Clusters are grouped based on their dominant class marker gene, 

which corresponds to position in superficial (LAMP5/LINC00507, a; RORB, b) and deep 

(THEMIS, c; FEZF2, d) layers.
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Extended Data Figure 7. RNAscope mFISH validation of 10 excitatory neuron types.
a, Heatmap summarizing combinatoral 3-gene panels used for multiplex fluorescent in situ 
hybridization assays to explore the spatial distribution of 10 excitatory clusters. Gene 

combinations for each cluster are indicated by colored boxes on the heatmap. Maximum 

expression values for each gene are listed on the right of the heatmap and gene expression 

values are displayed on a log10 scale. Experiments were repeated on at least 2 donors for 

each probe combination with similar results. b, Gene combinations probed are listed above 

each image. Labeled cells are indicated by white arrows. Scale bar, 20 μm. c, Schematic 

representing the laminar distribution of clusters based on the observed positions of labeled 

cells across at least 3 at sections from at least 2 donors per cell type.

Hodge et al. Page 35

Nature. Author manuscript; available in PMC 2019 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 8. In situ validation of LOC, lncRNA, and antisense transcripts as cell 
type specific markers.
a, LINC01164 specifically labels the Exc L3-5 RORB COL22A1 cluster (n=160 nuclei). 

Left: Violin plot showing expression of genes used for cluster validation by multiplex 

fluorescent in situ hybridization (mFISH). Middle - read pile-ups for shown for LINC01164 

across all excitatory clusters (n=24), viewed in UCSC genome browser. Red box indicates 

Exc L3-5 RORB COL22A1 cluster. Right: mFISH validation of cluster specific marker 

genes. Laminar distribution of the Exc L3-5 RORB COL22A1 cluster marked by 

LINC01164 is consistent with the distribution shown using protein coding marker genes (left 

panel from Fig. 2). Scale bars 100 μm (low mag DAPI-stained columns), 5 μm (mFISH 

images). Experiments were repeated on 2 donors with similar results. b, The Exc L4-6 

FEZF2 IL26 cluster (n=344 nuclei) is specifically marked by INFG-AS1 and 

LOC105369818. Top - heatmap showing expression of these genes along with protein 

coding marker gene CARD11. Bottom - mFISH validation of cluster specific marker genes. 

Experiments were repeated on 3 donors with similar results. Scale bars, 5 μm. Right: read 

pile-ups for shown for INFG-AS1 across all excitatory clusters, viewed in UCSC genome 

browser. Red box indicates Exc L4-6 FEZF2 IL26 cluster. c, Violin plot showing expression 

of LOC105376081 in the Exc L3-5 RORB ESR1 cluster (n=1,428 nuclei). Right: in situ 
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hybridization for LOC105376081 shows expression in layer 4 (red bar), consistent with the 

anatomical location of Exc L3-5 RORB ESR1 (left panel shows laminar distribution from 

Fig. 2). Scale bars, 100 μm. d, Violin plot showing expression of LOC401134 and the 

protein coding gene CRYM in 3 L3-5 RORB-expressing clusters (n=1,674 nuclei). mFISH 

showing 3 possible combinations for the genes assayed as indicated by labeled arrows. Scale 

bars, 10 μm. Experiments were repeated on 2 donors with similar results. e, LOC102723415 
labels a subset of PVALB clusters (n=618 nuclei) as shown in the violin plot on the left and 

mFISH images on the right (clusters indicated by labeled arrows). Scale bars, 5 μm. 

Experiments were repeated on 2 donors with similar results. For all violin plots, rows are 

genes, black dots correspond to median expression, and maximum expression (CPM) is 

listed on the far right. Expression values are on a linear scale. Asterisks indicate lipofuscin 

in mFISH images.
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Extended Data Figure 9. Laminar distribution of superficial excitatory neuron types validated by 
single molecule (sm)FISH.
a, smFISH (image, 100x) was performed with probes against SLC17A7, CUX2, CBLN2, 
RFXP1, GAD2, COL5A2, LAMP5, PENK, and CARTPT mRNA. Spots for each gene are 

pseudo-colored as indicated in the bottom right legend. Layer demarcations are indicated in 

magenta. Scale bar = 300 μm. b, Spot indications for each gene, pseudo-colored as indicated 

in the bottom right legend, as in a. a,a’) Superficial layer 2 cells express 

SLC17A7(lavender), CUX2 (magenta), and LAMP5 (mint). b,b’) At deeper locations in 

layer 2, an example of an SLC17A7-expressing cell with CUX2, LAMP5 and COL5A2 
expression. Note that LAMP5 expression (mint) decreases in CUX2/SLC17A7-expressing 

cells, while COL5A2/CUX2-expressing cells increase with depth along Layers 2 and 3 (see, 

c,c’; d,d’; e,e’). c, Probe density (spots per 100 μm2) for 9 genes assayed across layers 1-4 

(and partially layer 5) of human MTG. The cortical slice was approximately 0.5mm wide 

and 2mm deep. Points correspond to cellular locations in situ where the y-axis is the cortical 

depth from the pial surface and the x-axis is the lateral position. Point size and color 

correspond to probe density. Cells that lack probe expression are shown as small grey points. 

Experiments were repeated on 3 donors with similar results. d, In situ location of cells 

mapped to indicated cell types and classes (different panels) based on expression levels of 9 
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genes shown in (a). Numbers indicate qualitative calls of the layer to which each cell 

belongs based on cytoarchitecture, and 0 indicates that the cell was not annotated.
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Extended Data Figure 10. Layer distributions and frequencies of inhibitory neuron types.
a, b Constellation diagram showing cluster relationships, relative frequencies, and average 

layer position for LAMP5/PAX6 (n=2,320 nuclei) (a) and SST/PVALB (n=1,844 nuclei) (b) 

classes of inhibitory neurons. c, Chromogenic ISH for TH, a marker of Inh L5−6 SST TH, 

and NPY, a marker of Inh L3−6 SST NPY, from the Allen Human Brain Atlas. Left 

columns show grayscale images of the Nissl section nearest the ISH section shown in the 

right panel for each gene. Red dots show cells positive for the gene assayed by ISH. 

Experiments were repeated 9 (NPY) and 40 (TH) times with similar results. Chromogenic 

ISH for Th and Npy in mouse temporal association cortex (TEa) from the Allen Mouse 

Brain Atlas are to the right of the human images. Experiments were repeated 6 (Npy) and 2 

(Th) times with similar results. Scale bars: human (250 μm), mouse (100 μm). d, RNAscope 

mutiplex fluorescent ISH for markers of Inh L2−5 PVALB SCUBE3. Left - inverted DAPI-

stained cortical column with red dots marking cells positive for the genes GAD1, PVALB, 

and NOG (scale bar, 250 μm). Middle - cells positive for GAD1, PVALB, and the specific 

marker genes NOG (top, scale bar 10 μm) and COL15A1 (bottom, scale bar 10 μm). White 

arrows mark triple positive cells. Experiments were repeated on 3 donors with similar 

results. Right: counts of GAD1+, PVALB+, NOG+ cells across layers (expressed as 

percentage of total triple positive cells). Bars show the mean, error bars the standard 

deviation, and dots the data points for individual specimens (n=3 subjects). Violin plot 
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shows gene expression distributions across clusters in the PVALB subclass (n=802 nuclei) 

for the chandelier cell marker UNC5B and the Inh L2−5 PVALB SCUBE3 cluster markers 

NOG and COL15A1. Rows are genes, black dots correspond to median expression, and 

maximum expression (CPM) is listed on the far right. Expression values are on a linear 

scale. e, Inverted DAPI-stained cortical column illustrating laminar positions of cells labeled 

with interneuron class markers. Green dots mark GAD1+/Gad1+, ADARB2+/Adarb2+, and 

LHX6−/Lhx6− (i.e. ADARB2 branch interneurons) cells; blue dots mark GAD1+/Gad1+, 

ADARB2−/adarb2−, and LHX6+/Lhx6+ (i.e. LHX6 branch interneurons) cells; pink dots 

mark GAD1+/Gad1+, ADARB2+/Adarb2+, LHX6+/Lhx6+ (i.e. Inh L2-6 LAMP5 CA1 
cells in human or Lamp5 Lhx6 cells in mouse) cells. f, Representative images of cells 

labeled with the GAD1, ADARB2, and LHX6 gene panel for human (top) and mouse 

(bottom). Left to right: cells double positive for GAD1 and ADARB2; cells double positive 

for GAD1 and LHX6; GAD1, ADARB2, and LHX6 triple positive cells. Scale bars, 15 μm 

(human), 10 μm (mouse). Experiments were repeated on 3 donors and 3 mice with similar 

results.
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Extended Data Figure 11. Aligning single nucleus and single cell RNA-seq data from human and 
mouse cortex.
a, Heatmap of Pearson’s correlations between average MetaNeighbor AUROC scores 

(n=384 gene sets) for three broad classes of human and mouse cortical cell types. Rows and 

columns are ordered by average-linkage hierarchical clustering. b, Human (blue; n=3,594 

nuclei) and mouse (orange; n=6,595 cells) inhibitory neurons projected on the first two 

principal components of a PCA combining expression data from both species. Almost 20% 

of expression differences are explained by species, while 6% are explained by major classes 

of interneurons. c, Number of highly differentially expressed (>10-fold change) genes (out 

of 14,551 orthologous genes) between homologous cell types matched between species (n = 

37 types), mouse cortical area22 (n = 103 types), and sample type 26 (n = 11 types). Boxplots 

show median, interquartile interval, range, and outlier values. d, Schematic of scAlign 

analysis to align RNA-seq data from human nuclei and mouse cells. e, t-SNE plots of human 

(blue; n=3,503 nuclei) and mouse (orange; n=4,127 cells) excitatory neurons after alignment 

with scAlign and colored by species and cluster. Arrow highlights two human nuclei that 

cluster with the mouse-specific (M) L5 PT Chrna6 cluster. f, t-SNE plots of human (blue; 

n=670 nuclei) and mouse (orange; n=671 cells) non-neuronal cells colored by species and 

cluster. g, t-SNE plots of human (blue; n=3,594 nuclei) and mouse (orange; n=6,595 cells) 

inhibitory neurons after alignment with scAlign (as in Fig. 5c) and Seurat and colored by 

species. h, Consistently higher accuracy and alignment of inhibitory neurons using scAlign 

versus Seurat with several neural network architectures and parameter settings. Boxplots 

show median and interquartile interval of values.
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Extended Data Figure 12. Quantifying human and mouse cell type homology and comparing cell 
type frequencies between species.
a-d, Heatmaps with inferred cell type homologies highlighted in blue boxes. For each pair of 

clusters, the shade of grey indicates the minimum proportion of samples that co-cluster. 

Homologies for human and mouse inhibitory neurons (a), excitatory neurons (b), and non-

neuronal cells (c) were predicted based on shared cluster membership using mouse cells 

from two cortical areas (V1 and ALM) and two unsupervised alignment algorithms (scAlign 

and Seurat). d, Mouse V1 and mouse ALM excitatory neurons were aligned with scAlign. 

Blue boxes indicate V1 and ALM clusters that align to the same human clusters in b and are 

members of homologous cell types. Note that cell types can be matched at higher resolution 

within than between species, as expected. e, Left to right: violin plot (n=10,525 nuclei) 

showing expression of specific markers of the putative extratelencephalic (ET) EXC L4-5 

FEZF2 SCN4B cluster (black box) and NPTX1, a gene expressed by all non-PT excitatory 

neurons. Each row represents a gene, the black dots in each violin represent median gene 

expression within clusters, and the maximum expression value for each gene is shown on the 

right-hand side of each row. Expression values are shown on a linear scale. Representative 
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inverted DAPI-stained cortical column (scale bar, 200 μm) with red dots marking the 

position of cells positive for the genes SLC17A7 and FAM84B and negative for NPTX1 
illustrates the relative abundance of the EXC L4-5 FEZF2 SCN4B type in human MTG. 

Representative examples (arrows) of FAM84B (scale bar, 25 μm) and POU3F1-expressing 

cells (scale bar, 25 μm). Expression of Fam84b in mouse TEa (scale bar, 75 μm) is shown in 

the adjacent panel. panel. f, mFISH for NPTX1, a marker of non-PT excitatory types and 

SLC17A7, shows that NPTX1 labels most SLC17A7+ cells across all cortical layers. Boxed 

region Boxed region shown at higher the magnification to the right. One SLC17A7+ cell 

(white arrow) cell (white arrow) is NPTX1−, but all other all other SLC17A7+ cells are 

NPTX1+. Scale bars, left (200 μm), right (50 μm). Right: representative inverted DAPI-

stained cortical column with red dots that represent SLC17A7+, NPTX1−, and POU3F1+ 
cells. Scale bar, 200 μm. e, f, Experiments were repeated on 3 donors (human) and 2 mice 

with similar results. g, ISH validation of layer distributions in human MTG and mouse 

primary visual cortex (data from Tasic et al.22). Cells are labeled by cluster marker genes in 

human (RORB+/CNR1−/PRSS12+) and mouse (Scnn1a+/Hsd11b1+). ISH was performed 

on 3 human donors with similar results. For mouse, 1 experiment was performed.
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Extended Data Figure 13. Marker genes with relatively conserved expression in homologous cell 
types between human and mouse.
Expression heatmaps of homologous cell type markers in human cortical nuclei and mouse 

cortical cells. Rows: Median expression based on intronic and exonic reads and log-

transformed (log10CPM + 1). Values listed on the right side of each heatmap indicate the 

maximum expression level (CPM) for each gene. Columns: Single nuclei (human) or cells 

(mouse) grouped by homologous types identified in this study. For each homologous type, 

up to 10 marker genes were identified based on relatively specific expression (median CPM 

> 1 in six or fewer clusters and ordered by tau score) in both species. Note that many more 

genes support individual homologies but may not be cell type specific markers.
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Extended Data Table 1.
Summary of human tissue donor information.

Tissue types - P, postmortem, N - neurosurgical. Cause of death - CV, cardiovascular, N/A, 

not applicable. PMI - postmortem interval. RIN - RNA Integrity Number. Tissue RIN was 

measured using 3 tissue samples per donor, except for H16.06.009 where RIN was derived 

from a single tissue sample. Values listed are the mean ± standard deviation.

Specimen
ID

Tissue
Type

Age Sex Race Cause
of

Death

PMI
(hr)

Tissue
RIN

Hemisphere
Sampled

Reason 
for

Surgery

Number
of 

nuclei
sampled

H200.1023 P 43 F Iranian 
descent

Mitral 
valve 
prolapse

18.5 7.4 
± 0.7

L N/A 6170

H200.1025 P 50 M Caucasian CV 24.5 7.6 
± 1.0

L N/A 1334

H200.1030 P 54 M Caucasian CV 25 7.7 
± 0.8

L N/A 7331

H16.24.010 P 66 M Caucasian CV 21 7.2 
± 1.4

L N/A 371

H16.06.002 N 35 F Caucasian N/A N/A 7.1 
± 0.9

R Epilepsy 97

H16.06.008 N 24 F Hispanic N/A N/A 8.1 
± 0.8

L Epilepsy 197

H16.06.009 N 48 F Caucasian N/A N/A 7.1 L Epilepsy 220

H16.03.004 N 25 M Not noted N/A N/A 8.2 
± 0.8

R Tumor 
removal, 
epilepsy

208
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Figure 1. Cell type taxonomy in human middle temporal gyrus (MTG).
a, Schematic of RNA-sequencing of neuronal (NeuN+) and non-neuronal (NeuN-) nuclei 

isolated from human MTG. Human brain atlas image from http://human.brain-map.org/ b, t-

SNE visualization of 15,928 nuclei grouped by expression similarity and colored by cluster, 

donor, and dissected layer. c, Taxonomy of 69 neuronal and 6 non-neuronal cell types based 

on median cluster expression. Branches are labeled with major cell classes. Cluster sizes and 

estimated laminar distributions (white, low; red, high) are shown below. d, Median log-

transformed expression of marker genes (blue, non-coding) across clusters with maximum 

expression (CPM) on the right.
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Figure 2. Excitatory neuron diversity and marker gene expression.
a, Estimated layer distributions of cell types based on dissected layer of nuclei (dots). Layer 

1 dissections included some excitatory neurons from layer 2. b, Violin plots of marker gene 

(blue, non-coding) expression distributions across clusters (n=10,525 nuclei). Rows are 

genes, black dots are median expression, and maximum expression (CPM) is on the right. c, 

Representative inverted images of DAPI-stained cortical columns with cells (red dots) in 

each cluster (red bars in a) identified using listed marker genes. Experiments repeated on ≥2 

donors per cell type. Scale bar, 250 μm. Bar plots summarize layer distributions for at least 

n=2 donors per cell type. d, t-SNE maps of superficial excitatory neurons with nuclei in the 

Exc L2-3 LINC00507 FREM3 cluster (n=2,284) colored by dissected layer and expression 

of PDGFD, LAMP5, and COL5A2. e, Single molecule fluorescent in situ hybridization 

(smFISH) quantification of LAMP5 and COL5A2 expression.
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Figure 3. Inhibitory neuron diversity and layer distribution.
a, b Layer distributions of cell types estimated based on dissected layer of nuclei (n=4,164) 

(dots) and validated in situ for three clusters (red bars, Extended Data Fig. 10a, b). c, d 
Violin plots of marker gene (blue, non-coding) expression distributions across clusters (c, 

n=2,320 nuclei; d, n=1,844 nuclei). Rows are genes, black dots are median expression, and 

maximum expression (CPM) is on the right. e, Relative proportions and layer distributions 

of interneuron classes in human MTG and mouse temporal association area (TEa) quantified 

by in situ labeling of marker genes with mFISH. Bars show the mean, error bars the standard 

deviation, and circles represent n=3 specimens for human and mouse. Two-tailed t-test with 

Holm-Sidak correction for multiple comparisons, df=20, *p<0.05 **p<0.01, ***p<0.001.
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Figure 4. Non-neuronal cell type diversity and marker gene expression.
a, Layer distributions of cell types estimated based on dissected layer of nuclei (n=914) 

(dots). b, Violin plots of marker gene (blue, non-coding) expression distributions across 

clusters. Rows are genes, black dots are median expression, and maximum expression 

(CPM) is listed on the far right. c, Immunohistochemistry (IHC) for GFAP demonstrates 

morphologically-defined human astrocyte types. Boxed regions shown at higher 

magnification on the right. Scale bars: low magnification (250 μm), high magnification (50 

μm). d, Heatmap of marker gene expression with nuclei (columns) ordered by dissected 

layer. Several nuclei in deep layers (black box) express distinct markers. e, mFISH and 

immunohistochemistry of astrocyte subtype markers highlighted (red boxes) in b, d. 

Experiments repeated on n=2 human donors. Left: Cells with high expression of AQP4 and 

GFAP in layer 1 (white arrowheads). Scale bar, 25 μm. Right: Top row: Cell in layer 1 co-

expresses AQP4 and ID3 and has long, GFAP-labeled processes. Middle row: Protoplasmic 

astrocyte in layer 3 lacks expression of ID3. Bottom row: Fibrous astrocyte at the white 

matter (WM)-layer 6 boundary expresses AQP4, ID3, and GFAP protein. Asterisks mark 

lipofuscin. Boxed areas are magnified to the right. Scale bars: low magnification (25 μm), 

high magnification (15 μm).
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Figure 5. Evolutionary conservation of cell types between human and mouse.
a, Similar functional gene families (n=384 gene sets) discriminate inhibitory neuron types in 

human and mouse. Error bars correspond to the SD of mean MetaNeighbor AUROC scores 

across 10 sub-samples of cells. b, Schematic of unsupervised alignment and clustering of 

combined human and mouse cortical samples using scAlign or Seurat. c, t-SNE visualization 

of human (n=3,594 nuclei) and mouse (n=6595 cells) inhibitory neuron clusters after 

alignment with scAlign. d-e, Human and mouse cell type homologies for inhibitory neurons 

(d) and excitatory neurons from mouse V1 (e) predicted based on shared cluster 

membership. Grey shade corresponds to the minimum proportion of human nuclei or mouse 
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cells that co-cluster. Rows are human clusters and columns are mouse clusters. Homologous 

clusters were labeled based on human and mouse cluster membership and include excitatory 

neuron projection targets (IT, intratelencephalic; ET, extratelencephalic/pyramidal tract; NP, 

near-projecting; CT, corticothalamic). Known morphologies indicated for mouse inhibitory 

types. f, Taxonomy of 32 neuronal and 5 non-neuronal homologous cell types and cell 

classes. Asterisks mark one-to-one matches.
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Figure 6. Divergent cell type expression between human and mouse.
a, Comparison of expression levels of 14,553 orthologous genes between human and mouse 

for Sst Chodl and OPCs. Genes outside the blue lines have highly divergent expression 

(>10-fold change) and include cluster specific markers (orange dots). Benjamini & 

Hochberg Pearson correlation (r). b, Patterns of expression change between human and 

mouse for 9748 divergent genes (67% of orthologous genes). Groups of genes with similar 

patterns are labeled by the affected cell class. Top row: number of genes with expression 

divergence restricted to each broad class of cell types. c, Distribution of scores (Methods) 

that measures the magnitude of expression change across homologous cell types for all 

genes (dark blue) and housekeeping genes (light blue). d, Gene families (n > 10 genes) with 

the most divergent expression patterns (highest score) include neurotransmitter receptors, 

ion channels, and cell adhesion molecules. e, Expression (trimmed average CPM) of most 

serotonin receptors has changed in homologous cell types. Scores listed on far right. f, g, 

ISH of divergent genes show shifts in laminar expression consistent with different cell type 

expression in human and mouse. Red bars show layers with enriched expression. Scale bars: 

human (250 μm), mouse (100 μm).
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