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Abstract

Rafflesia possesses unique biological features and known primarily for producing the
world’s largest and existing as a single flower. However, to date, little is known about key
regulators participating in Rafflesia flower development. In order to further understand the
molecular mechanism that regulates Rafflesia cantleyiflower development, RNA-seq data
from three developmental stages of floral bud, representing the floral organ primordia initia-
tion, floral organ differentiation, and floral bud outgrowth, were analysed. A total of 89,890
transcripts were assembled of which up to 35% could be annotated based on homology
search. Advanced transcriptome analysis using K-mean clustering on the differentially
expressed genes (DEGs) was able to identify 12 expression clusters that reflect major
trends and key transitional states, which correlate to specific developmental stages.
Through this, comparative gene expression analysis of different floral bud stages identified
various transcription factors related to flower development. The members of WRKY, NAC,
bHLH, and MYB families are the most represented among the DEGs, suggesting their
important function in flower development. Furthermore, pathway enrichment analysis also
revealed DEGs that are involved in various phytohormone signal transduction events such
as auxin and auxin transport, cytokinin and gibberellin biosynthesis. Results of this study
imply that transcription factors and phytohormone signalling pathways play major role in
Rafflesia floral bud development. This study provides an invaluable resource for molecular
studies of the flower development process in Rafflesia and other plant species.
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Introduction

Rafflesia is a member of the holoparasitic plant family, Rafflesiaceae, which is known to produce
the world’s largest flower. There are over 30 species of Rafflesia that can be found in the tropical
rainforest of Southeast Asia. Rafflesia cantleyi was the first species identified from Peninsular
Malaysia, with more species identified later on [1-2]. Besides an extraordinary flower size, the flo-
ral structure of R. cantleyi is highly modified compared to other angiosperms. It has no apparent
leaves, stems or roots, and only appears as a flower, which parasitises a specific host, Tetrastigma
[3]. Rafflesia possesses five perigone lobes as perianth connected to a diaphragm enclosing a large
and bowl-shaped floral chamber with a central column as the reproductive organ [4]. Apart from
gigantism, flowering of R. cantleyi is irregular, infrequent, and the development of floral bud
takes up to nine months. At the early developmental stage, the swollen bud of R. cantleyi appears
through the bark of Tetrastigma covered with bracts and continues to grow progressively. Upon
maturation and bracts abscission, the bud opens gradually over a 24 to 48-hour period [5].

Flower development, preceded by the flowering process is the most important developmental
event in a plant’s life cycle. Molecular and genetic studies in the annual model species Arabidop-
sis present an intricate genetic network that orchestrates the flowering process, controlled by
diverse exogenous and endogenous factors. Endogenous factors include hormones, autonomous
pathway, and aging pathway, whereas exogenous factors comprise of photoperiod and vernalisa-
tion [6]. Subsequently, genes involved in the flowering pathway converge on floral integrators to
activate floral meristem identity genes, which are essential for floral organ development. Floral
integrators include FLOWERING LOCUS T (FT), CONSTANS (CO), CONSTANS-LIKE (COL),
SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOCI), FLOWERING LOCUS C (FLC), as well
as floral meristem identity genes, including LEAFY (LFY) and APETALAI (API) [7]. Floral inte-
grators activate floral organ identity genes known as ABC (extended to ABCDE) model genes
[8]. Additionally, transcription factors (TFs) such as bHLH, MYB, and MADS-box families are
important regulatory proteins of transcription in flower development [9].

Substantial progress has been achieved in understanding the mechanism of flower develop-
ment, particularly in Arabidopsis [8, 10]. However, while considerable work has been carried
out in recent years on the different aspects of Rafflesia [11-12] including genes potentially
involved in the growth and flower development [13-14], our knowledge regarding the molecu-
lar mechanism of R. cantleyi floral development is still very limited due to scarce sample avail-
ability, challenges during sample collection, lack of suitable material in the wild, undeveloped
analytical methodologies, and inadequate molecular resources. In an effort to address this issue,
we have previously generated RNA-seq data from early, mid and advanced R. cantleyi bud
stages [15]. The cross-sections of these three bud stages showed the early (floral bud stage 1),
mid (floral bud stage 2) and advanced (floral bud stage 3) developmental stages. Floral bud
stage 1 (FBS1) consists of undifferentiated cells while floral bud stage 2 (FBS2) contains moder-
ately differentiated and visible internal organs, whereas floral bud stage 3 (FBS3) have more
developed and mature internal organs. In this study, functional annotation of the transcriptome
data and differential gene expression analysis were carried out to glean insights into molecular
genetics underlying the regulation of flower development in R. cantleyi. This valuable genomic
resource will facilitate further study of flower development in Rafflesia and other plant species.

Materials and methods
Transcriptome de novo assembly and functional annotation

Raw data previously generated as described in [15] were used in this study. The raw data
obtained for three different floral bud stages (early, mid and advanced) has been registered
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under NCBI BioProject with the accession number PRINA378435. The raw reads were
trimmed and quality-filtered using Trimmomatic [16]. The high-quality raw reads were
pooled for de novo assembly using the Trinity (v2.0.6) analysis pipeline [17]. The generated
contigs were assembled and constructed sequences that could not be extended on either end
are considered as unique transcripts [18], herein referred as transcripts. All the assembled
transcripts were subjected to BLASTX similarity search against the NCBI non-redundant (Nr)
(www.ncbi.nlm.nih.gov) and Swiss-Prot (www.uniprot.org) databases with an E-value cut-off
of 1e”. Based on Nr BLAST result, BLAST2GO [19] was performed to obtain Gene Ontology
(GO) annotation of assembled transcripts to represent biological process, cellular component,
and molecular function categories. WEGO [20] was employed to retrieve the GO functional
classification to explain the distribution of gene functions. Transcript sequences were also
searched against the Cluster of Orthologous Groups (COG) protein database (www.ncbi.nlm.
nih.gov/COG/). Furthermore, annotated transcripts were searched against the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway maps database [21] for mapping of biological
pathways represented by the R. cantleyi bud transcriptome. Protein coding sequences of R.
cantleyi transcriptome were predicted via Transdecoder (transdecoder.github.io) implemented
in the Trinity analysis pipeline. Trinotate annotation pipeline (trinotate.github.io) was carried
out to annotate the transcriptome against Pfam [22-23].

Identification of transcription factors

The transcripts were aligned against known TFs, as grouped in Plant Transcription Factor
Database (PInTFDB) [24], using default parameters and cut-off E-value of le”. PInTFDBis a
comprehensive library of plant TFs that provides the complete lists of TFs families of fully
sequenced genomes. Online protein sequence data for all genes listed in PIntTFDB version 3.0
(pIntfdb.bio.uni-potsdam.de/v3.0/) were downloaded for transcript annotation using
BLASTX. Heatmaps depicting the expression patterns of TF families at different bud stages of
R. cantleyi were created using the MeV tool (www.tm4.org/mev.html).

Differential gene expression analysis

To compare the differences in gene expression between different bud stages, transcript abun-
dance was estimated from mapped reads with RSEM [25]. The relative gene expression levels
for each bud samples were normalised and expressed as Fragments per Kilobase of Exon per
Million Reads Mapped (FPKM) values. Bioconductor package edgeR [26] was used to deter-
mine the DEGs by evaluating the dispersion of the entire dataset. Significant DEGs were
defined by P-value < 0.001, Benjamin-Hochberg False Discovery Rate (FDR) < 0.05 and |Log,
fold change| > 2.

KEGG pathway and GO enrichment analysis of DEGs

The pathway enrichment analysis with hypergeometric test was performed using ‘Annotate’
and ‘Identify’ programs in KEGG Orthology-Based Annotation System (KOBAS 2.0) with
Benjamini-Hochberg FDR correction [27] to annotate putative pathways and biological func-
tions of DEGs. The web-based ReviGO software (revigo.irb.hr) was used to reveal enriched
gene GO functional categories identified from DEGs [28].

Data validation by RT-qPCR

R. cantleyi buds of different developmental stages (early mid, and advanced) for RT-qPCR
were sampled independently from the Forest Reserve in Raub, Pahang, Malaysia (3° 47’ 24" N,
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101° 51'25"E). Samples were rinsed using 10% (v/v) Clorox® solution (1% sodium hypochlo-
rite) after carefully dissected from the host plant, followed by three rinses with sterile water,
and flash frozen in liquid nitrogen before stored at -80°C. Inner tissues (for FBS2 and FBS3
perigone lobe) of the floral buds were used for the isolation of total RNA using modified
CTAB extraction protocol [29-31]. RNA quality and quantity were evaluated using gel electro-
phoresis, ND-1000 Nanodrop spectrophotometer (Thermo Scientific) and Agilent 2100 Bioa-
nalyzer with a minimum RNA integrity number of 7. Using PrimerBlast 5.0, primers were
designed to amplify short regions for each target and reference genes ranging in product size
from 90 to 120 bp. The primer sequences of references genes and 12 selected genes are listed in
S1 Table. For each sample, one-step RT-qPCR was performed on the BioRad CFX96
TouchTM Deep Well Real-Time PCR, using the QuantiNova® SYBR®) Green RT-PCR kit
(Qiagen, USA) with 1 pg DNase-treated (RNA-free DNase, Qiagen, USA) RNA. The amplifi-
cation was carried out with the following cycling programme: 30 min at 50°C, 30 s at 95°C, 39
cycles of 30 s at 60°C, and 30 s at 76°C. Data were analysed with BioRad CFX Manager soft-
ware (version 1.3). To determine the relative fold change differences for each sample, the Cr
value of each candidate genes was normalised to the Cr values of two reference genes GLYC-
ERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH) (TR42340|c0_g6_i1) and
UBIQUITIN5 (UBQ5) (TR35146|c0_g3_il) based on the comparative Cr (2"22€T) method
(Schmittgen and Livak, 2008). Relative expression in RNA-seq was confirmed by three inde-
pendent biological replicates along with respective three technical replicates.

Results
Morphological characteristics of R. cantleyi floral buds

The morphological changes in R. cantleyi floral buds were examined and three bud stages were
proposed, which correspond to floral organ primordia initiation, floral organ differentiation,
and floral bud outgrowth (Fig 1). At FBS1, bud appears on the stem while the Tetrasigma bark
still cover the bud. In the undifferentiated R. cantleyi bud, three whorls can be distinguished.
First whorl of five perianths (perigone) lobes is derived from the outer whorl organ primordia
(sepals), the diaphragm is derived from the middle whorl (petals), whereas the reproductive
column is derived from the inner or third whorls (stamens). The longitudinal section of FBS1
indicates control of cell proliferation, expansion, and growth in the floral meristem during the
early stage of floral organ primordia initiation (Fig 1A). Sepal, petal, and stamen primordia
cells are arranged in concentric rings, in a similar robust pattern that can be observed during
floral organ determination in eudicot flowers. In this study, FBS1 is defined at the time point
when petal primordia and stamen primordia are visible while sepal primordia covering the
rest of the meristem. Based on our observations, flower primordia were initiated before FBS1
as the rapid coordinated burst of cell division and expansion already occurred, generating a
group of cells as a spherical flower primordium, from which all floral tissues are derived.

FBS2 represents the initiation of floral organ separation and specification (Fig 1B). The bud
was covered with bracts, which turned dark brown towards the end of this stage. Bracts are
present throughout floral bud development and have a protective function [32]. The differenti-
ation of reproductive column and perianth lobes is notable, while ramenta, a series of multicel-
lular, vascularised and branched structures, are visible at the inner surface of the perianth tube.
The five fused-perianth lobes (connation) elongate and overlap, covering the developing sta-
mens. The perianth lobes emerge gradually in a spiral and together with the diaphragm grow
above the floral apex, which form the perianth tube. Following the appearance of the dia-
phragm, stamens are initiated on the flanks of the floral apex [14]. With progressive growth,
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Fig 1. Morphology of Rafflesia cantleyi floral bud developmental stages. Longitudinal section of (A) floral bud stage 1 with
the initiation of reproductive development, (B) floral bud stage 2 of with organ differentiation and outgrowth, and (C) floral bud
stage 3 with fully developed floral organs for blooming. Structures identified are perianth lobes (1), diaphragm (2), floral
chamber (3), reproductive column (4) and ramenta (5).

https://doi.org/10.1371/journal.pone.0226338.9001

the change in floral color is also obvious. The diaphragm in R. cantleyi bud is the lowest layer
beneath the perianth lobes.

FBS3 is the later stage of floral organ growth. The pre-anthesis stage in R. cantleyi is when
bracts detach and the outer side of perianth lobes becomes visible (Fig 1C). In advanced floral
buds, all organs lengthened with more pronounced elongation of perianth lobes, while fused dia-
phragm-perianth lobes (adnation) still appear morphologically similar and can only be identified
based on their position in perianth tube. At this stage, the floral chamber is fully developed.
Anthesis in R. cantleyi only occurs when all floral organs are fully grown and differentiated.
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Functional annotation and classification of R. cantleyi bud transcriptome

A total of 91,638,836 clean reads were obtained from the three different developmental stages
and assembled into 89,690 transcripts with an N50 of 1,653 bp and 20,592 predicted protein
sequences. Results of functional prediction and classification are summarised in S2 Table.
Based on sequence similarity search against the NCBI Nr protein database and the Swiss-Prot
protein sequence database, 31,444 transcripts (35%) and 21,781 transcripts (24.3%) were anno-
tated, respectively. Furthermore, 5,850 transcripts (6.5%) were annotated using the KEGG
database and 5,069 transcripts (5.6%) by the Pfam database. The highest number of R. cantleyi
transcripts showed similarity to sequences from Vitis vinifera (23%), followed by Ricinus com-
munis (19.5%), Populus trichocarpa (19%), and Theobroma cacao (9%) (S1A Fig). According
to the E-value distribution of significant hits against the Nr database, 61.7% of the matched
sequences showed E-value < 1.0 E-50 (S1B Fig). Other than that, the similarity distribution of
the top Nr BLAST hits revealed that similarity scores of more than 57% of matched sequences
were higher than 70%, while 27% of transcripts showed similarity ranging from 50% to 70%
(S1C Fig).

A total of 7,172 (7.9%) transcripts were assigned to 25 COG categories. Of these, the largest
category was ‘general function prediction only’ (2,134), followed by ‘replication, recombina-
tion and repair’ (1,361), ‘transcription’ (1,226), ‘signal transduction mechanisms’ (788);
whereas the categories of ‘nuclear structure’ (3) and ‘cell motility’ (13) represented the smallest
classifications (Fig 2). These assigned functions of transcripts covered a wide range of COG
classifications, indicating that the floral bud transcriptome represented a broad variety of tran-
scripts in R. cantleyi. These include two COG terms related to flower development, ‘cell cycle
control, cell division” and ‘signal transduction mechanism’ (S2 Fig).

For GO term assignment, 28,992 (32.3%) transcripts were classified into 46 GO categories
of 20 biological processes, 14 cellular components, and 12 molecular functions (Fig 3, S3
Table). Under the biological process category, ‘metabolic process’ (16,950), ‘cellular process’
(16,346), and ‘single-organism process’ (11,855) were prominently represented. Within cellu-
lar components, ‘cell’ (15,385), ‘cell part’ (15,345), and ‘organelle’ (12,145) were the most
highly represented categories. For the molecular function category, the largest proportion of
transcripts was grouped into ‘binding’ (14,992) and ‘catalytic activity’ (12,510). Additionally,
only a few sequences were assigned to ‘rhythmic process’, ‘virion’, ‘virion part’ and ‘nutrient
reservoir activity’ terms with less than one hundred sequences each.

Pathway-based analysis provides information on molecular regulation in response to envi-
ronmental and developmental changes. Generally, transcripts in the same pathway confer sim-
ilar biological functions. In total, there were 5,850 transcripts mapped and assigned to 141
KEGG pathways (54 Table). The most represented KEGG pathways fell under the ‘metabolism’
category followed by the ‘organismal systems’, ‘environmental information processing’ and
‘genetic information processing’ categories. A large portion of the transcripts was mapped to
pathways in the ‘metabolism’ category, including the ‘purine metabolism’ (3488), ‘thiamine
metabolism’ (1865) and ‘biosynthesis of antibiotic’ (960) pathways. Rafflesia transcripts were
also mapped to the T cell receptor signaling pathway’ (239) and ‘Th1 & Th2 cell differentia-
tion” pathway (203) in the ‘organismal systems’ category, and ‘phosphatidylinositol signaling
system’ pathway (219) and ‘mTor signaling pathway’ (34) in the ‘environmental information
processing’ category.

Transcriptome dynamics and co-expression analysis of DEGs

We compared the expression levels of each transcript between the three floral bud stages based
on pairwise DEG analysis (Fig 4). In the FBS1-FBS2 comparison, 2,312 differentially expressed
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Fig 2. COG classification of Rafflesia cantleyi floral bud transcripts. A total of 7,172 transcripts were assigned to 25 COG categories. The y-axis indicates
the number of transcripts in each category.
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transcripts were detected, in which 927 transcripts were up-regulated and 1,340 were down-
regulated. In the FBS2-FBS3 comparison, 3,961 differentially expressed transcripts were
detected in which 1,769 transcripts were up-regulated and 2,192 transcripts were down-regu-
lated. In the FBS1-FBS3 comparison, 4,642 differentially expressed transcripts were identified
with 1,999 up-regulated and 2,643 down-regulated.

In total, 6,290 DEGs were assigned to 12 clusters by the K-means method (Fig 5A), which
reflect the major trends and the key transitional states during the flower development process
in R. cantleyi. Clusters 3 and 8 with 1,469 and 464 transcripts respectively showed opposite pat-
tern whereas clusters 1 and 6 showed the same pattern. Transcripts in clusters 9 and 11
expressed at the earliest floral stages were subsequently down-regulated compared to clusters 2
and 3, which showed up-regulation from FBSI to FBS3, indicating their different roles in
flower development. The DEGs in clusters 5, 8, 9, 11 and 12 were highly expressed in FBS1,
while the DEGs showing FBS2 stage-specific expression level were grouped into clusters 1, 6
and 10. DEGs showing FBS3 stage-specific expression were grouped into clusters 2, 3 and 4,
which indicate that they may be involved in bud outgrowth. DEGs assigned to clusters 3 and 4
were activated during early flower development when organ primordia were initiated and
remain expressed (highly expressed in FBS3) until flowers have reached maturity, suggesting
that many of them might play roles in floral organ development. The DEGs in clusters 3 and 4
include zinc finger transcription factor MIF]I that are involved in mediating the control of Ara-
bidopsis development by multiple hormones including abscisic acid (ABA), auxin, brassinos-
teroid, cytokinin and gibberellin (GA) [33], as well as genes involved in jasmonate
biosynthesis (ACX1, ACX5, LOX3, LOX4), jasmonate response (MYB24) and auxin response
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Fig 3. Gene Ontology functional classification of Rafflesia cantleyi floral bud transcriptome. The results are summarised in three GO categories: biological
process, molecular function and cellular component. The y-axis indicates the number of transcripts in each category.
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(IAA4). This indicates that hormone-signalling pathways play a significant role in R. cantleyi
flower development.

The centroid values of each cluster, which specify the expression pattern, were clustered to
compare the relationship between clusters (Fig 5B). Three major groups were identified by K-
means method, which showed correlation to three developmental stages. This suggests the
association of specific genes cluster with developmental processes that coincide with anatomi-
cal and morphological changes of the floral bud.

Identification of transcription factors related to flower development

Transcription regulators act through the interplay between transcription factors and specific
regions of the genome to change the gene expression and causes developmental changes in
plants. Some TFs are considered master regulators as their expression affect downstream acti-
vation or repression of other TFs. Among TF families, MADS-box [34], MYB [35], ARF [36—
37], and AP2 [38] were found to be particularly important during flower and reproductive
development in different plant species.

In total, 1,860 TFs from 54 families were identified in floral bud transcriptome from search
against PInNTFDB. Among the top 10 abundance during floral bud development, several large
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transcription factor families include WRKY (279 transcripts), bHLH (173 transcripts), C2H2 (143
transcripts) and NAC (123 transcripts) (S3 Fig). A total of 761 DEGs were annotated as differen-
tially expressed TFs, which were grouped into 40 families (Fig 6). The largest number of differen-
tially expressed TFs comprised of the WRKY, NAC, bHLH, MYB, C2H2, and MIKC families.

Several TF families were significantly up-regulated from FBS1 to FBS3, such as bZIP, E2F/
DP and Trihelix in cluster 2 (S3B Fig). In contrast, other TF families including MYB-related,
HB-other, BES1 and SRS in cluster 3, and NAC, SBP, bHLH and TCP in cluster 4, were signifi-
cantly down-regulated after FBS2 (S3 Fig). Besides that, the majority of TFs families such as
MYB, WRKY, MIKC, GRF, C2H2, ARF and HD-ZIP in cluster 5 were significantly down-reg-
ulated from FBSI to FBS3 (S3 Fig).

Identification of transcripts involved in pathways of various flower
development-related hormones

The role of phytohormones including auxin, ABA, cytokinin, GA, and jasmonic acid (JA) in
flower development has been well studied [39]. In this study, a total of 37 key regulators in the
auxin signalling pathway, 30 key regulators in the ABA signalling pathway, 20 key regulators
in the cytokinin signalling pathway, 15 key regulators in the GA signalling pathway, and seven
key regulators of JA signalling pathway were identified in our data. Most of these key regula-
tors showed a stage-specific expression pattern. Moreover, five key regulators were identified
in both auxin and ABA signalling pathways, three key regulators were identified in both auxin
and GA signalling pathways, two key regulators were identified in both ABA and CK signalling
pathways, and one key regulator was identified in both ABA and JA signalling pathways. Based
on our result, no shared transcript was found between GA and cytokinin signalling pathways
during flower development process in R. cantleyi (Fig 7).

Verification of gene expression through RT-qPCR

To validate the RNA-seq data, we randomly selected 12 transcripts and performed RT-qPCR
analysis on samples collected from all three different developmental stages (Fig 8A). RT-qPCR
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results were highly correlated with RNA-seq data (R* > 0.8) (Fig 8B). This supports that tran-
script abundance estimation from transcriptomic analysis was reliable.

Discussion

R. cantleyi floral bud functional transcriptome profiling

In plants, morphological and gene expression changes reflect developmental stage transitions.
During R. cantleyi floral bud development, the bud size progressively increased and bracts
detached as the buds grow. In the young floral bud, three whorls of sepal, petal and stamen are
notable. Floral organs differentiation is apparent at FBS2 and become fully mature at FBS3. Of
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the assembled transcriptome, only 35% of all transcripts were annotated in R. cantleyi against
the NCBI Nr protein database, which is much fewer than distantly related species such as V.
vinifera (69%) and T. cacao (56.1%) (Argout et al., 2008; da Silva et al., 2005). The proportion
reported functional annotations to range from 13% to 86% in the literature, depending on the
species, the sequencing depth, and the parameters of the BLAST search [40-41]. Apart from
technical issues during sequencing, many transcripts without BLAST hit might be caused by
biological factors, like fast-evolved genes (having orthologs in other species but so highly diver-
gent that hardly recognised as orthologs), species-specific genes (present in the studied species
but absent from the databases), and the perseverance of non-coding fractions mainly from
untranslated regions of the transcripts [42]. This indicates that the functions of a large portion
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of the genes of R. cantleyi have not yet been identified. It is also noteworthy that scarce geno-
mic resources are available in databases for Rafflesiaceae (Rafflesia, Rhizanthes, Sapria) com-
pared to its close relative, Euphorbiaceae, which Rafflesiaceae believed to be derived from [43].
Given that the genomic and transcriptomic information is limited for R. cantleyi, the lineage-
specific genes associated with the unique floral morphology may not have function annotation,
implying potential for novel genes to be discovered from our transcriptome dataset and for
further functional studies of this species and its relatives. Interestingly, most transcripts hit to
V. vinifera, which shares the same family (Vitaceae) with the host of Rafflesia, Tetrastigma. It
has been reported that some actively transcribed genes in Rafflesia are likely of host origin
[44]. This is supported by the identification of large number of homologous R. cantleyi tran-
scripts to V. vinifera.

In this study, we performed comparative analysis of gene expression of three floral bud
stages. We identified a number of DEGs involved in various biological processes, which are
likely to be associated with the regulation of the R. cantleyi floral bud development. The num-
ber of down-regulated genes is larger than up-regulated genes between FBS1 and FBS2, indi-
cating that flower development requires more gene suppression than activation in R. cantleyi
and the onset of flower development was accompanied by the repression of many genes similar
to previously reported in Arabidopsis during the incipient of floral primordia [45]. In our
study, down-regulated genes between FBS1 and FBS2 include several transcription factor fami-
lies, such as MIKC, ARF, GRF, MYB, NF, and AP2 (S3B Fig). Members of transcription factor
families, including NAC, ARF, NF, MYB, SBP, and HD-ZIP, have been predicted as regulatory
targets of miRNAs which are implicated in plant developmental patterning or cell differentia-
tion [46]. Also, it has been suggested that miRNA-transcription factor module regulates lateral
organ size and patterning in Arabidopsis [47]. Plant miRNAs are reported to control develop-
mental decisions by down-regulating important developmental transcription factors including
AP2-like [48], AP2 [38], MYB and NAC [49]. In our study 30 out of 66 transcripts involved in
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miRNA production (GO:0035196) were up-regulated between FBS1 and FBS2. Besides, the

GO enrichment analyses of FBS1-FBS2 DEGs supported this notion that functional categories
including ‘negative regulation of transcripts” and ‘reproductive system development’ were sig-
nificantly enriched (54 Fig).
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Furthermore, through comparative gene expression analysis, we found that the transition
from FBS1 to FBS2, which reflects the differentiation of floral organs in R. cantleyi is character-
ised by a massive gene down-regulation. Unlike our data, the previous study on Arabidopsis
incipient floral primordia reported the predominance of gene activation during the differentia-
tion of floral organs [45]. Although there was a significant difference between Arabidopsis and
R. cantleyi in the number and expression pattern of genes with differential expression, it is
interesting to note that the same members of TF families were identified in both Arabidopsis
and R. cantleyi including member of bHLH, MADS box, MYB and AP2 families.

Besides that, our analysis showed that there is a higher number of DEGs in FBS2-FBS3
compared to FBS1-FBS2. The higher number of DEGs at the later stage of the flower develop-
ment was also reported in other plants [50-51], which might indicate that R. cantleyi bud was
going through a basal metabolic activity before entering an active growth stage. Although the
number of DEGs in FBS1-FBS2 is less than FBS2-FBS3 and FBS1-FBS3, the remarkable mor-
phological alteration at FBS2 indicates the involvement of complex developmental event with
fewer numbers of DEGs. Moreover, the DEGs in FBS2-FBS3 showed greater numbers of genes
appeared to be differentially expressed for promoting floral bud maturation. The floral bud
outgrowth is associated with various pathways such as starch and sugar biosynthesis, cell cycle
regulation [52] and cytokinin signalling pathways [53], which are cooperatively required for
organogenesis. The GO enrichment analyses of DEGs supported this concept that functional
categories including ‘carbohydrate derivative catabolism’ and ‘cell division” in FBS1-FBS3, and
‘cytokinin-activated signaling pathway’ in FBS2-FBS3 were significantly enriched (54 Fig).
Besides that, 40% of all DEGs (2,539 transcripts) were grouped into clusters 5, 8, 9 and 11 that
showed FBS1-preferential expression (Fig 5), suggesting the significance of gene down-regula-
tion in underlying the stage transition from FBS1 to FBS2 in R. cantleyi flower development.

TFs involved in the R. cantleyi flower development

Previous molecular studies have shown the important roles of TFs in the reproductive develop-
ment of plants [34]. Amongst the TF families, MYB, bHLH, NAC, WRKY, ARF and GRF are
particularly important during flower development in R. cantleyi. The GRFs form a small tran-
scription family with nine and 12 members in Arabidopsis and Oryza sativa, respectively.
GRFs consist of two highly conserved regions, the QLQ (GlIn, Leu, Gln) and the WRC (Trp,
Arg, Cys) domains. Genetic data have shown that GRFs act as transcription activators that are
involved in regulating the morphogenesis of leaf and petal [54]. The high abundance of GRF
transcripts in actively growing and developing tissue such as immature leaf and flower bud
suggests their role in regulating cell proliferation [55]. The significantly high expression of
GRFs (16 transcripts) at FBS1 showed these genes might operate similarly in this plant.

The MYB protein family has been identified as a flower developmental regulator [35],
which is involved in the regulation of secondary metabolism, control of cellular morphogene-
sis, regulation of meristem formation, and cell cycle [56]. It has been shown that several MYBs
(MYB21, MYB24, and MYB57) are DELLA-responsible GA-response genes that are involved
in stamen and pollen maturation [57]. Interestingly, the homologues of MYB24 and MYB57
genes were also found in R. cantleyi. Significantly high expression of MYB genes during the
early stage of flower development suggests an important regulatory role of MYBs in R. cantleyi
flower development.

ARFs function to regulate auxin-responsive genes. In Arabidopsis, ARF3 is involved in
regional identity determination by integrating AG and AP2 in floral meristem determinacy
[37]. ARFI and ARF2 regulate floral organ abscission and bind directly to the FT promoter to
repress floral transition in Arabidopsis [58]. In R. cantleyi, 15 putative ARF homologues
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including ARFI, ARF2, and ARF3 were highly expressed in FBS1 indicating their importance
in the early development of R. cantleyi floral bud.

The NAC and bHLH families regulate various flower developmental processes. In Arabi-
dopsis, the bHLHs regulate the developmental signalling pathways, including light signalling
[59] and flowering time [60]. A total of 51 putative bHLHs homologues were identified as
DEGs, which implies their potential role in R. cantleyi flower development. NACs are known
to be involved in embryonic, vegetative and flower development [46]. Several NAC transcrip-
tion factor genes including ANAC075, SND2 and NST1I are key regulators of the secondary
wall formation in Arabidopsis growth and development [61-62]. In our data, these genes were
expressed throughout the bud stages, with significantly up-regulated NST1 in FBS3, suggesting
their role in latter development of R. cantleyi floral bud.

The ABC genes in R. cantleyi flower development

According to the ABC model, A function genes (API and AP2) specify the identity of the
sepal, A function genes together with B function genes (AP3 and PI) specify the petals, B func-
tion genes together with C function genes (AG) specify the stamen, and C function genes spec-
ify the carpel [10]. The homologues of ABC model genes were identified in R. cantleyi. In a
previous study, AP3, PI, AG and SEPI were detected in Rafflesia [14]. In our study, AP2, AP3,
PI, AG and SEPI were identified while AP2, PI, AG and SEPI were identified as differentially
expressed genes. Interestingly, in the GO enrichment analyses of DEGs, the GO term ‘specifi-
cation of floral organ identity’, which refers to ABC model genes was only identified in FBS1-
BFS2 DEGs cluster and the GO term ‘cell morphogenesis involved in differentiation” was iden-
tified in FBS2-FBS3, which are in very good agreement with morphological observations as
well as DEG profiling (54 Fig). However, the floral chamber of R. cantleyi is composed of mod-
ified organs which are specialised in function and structure, showing that the regulatory mech-
anism of A, B and C function genes should be further studied in this species. These genes are
important candidates for molecular cloning and functional analysis of flower development
regulation in R. cantleyi.

Hormone-related gene expression in R. cantleyi flower development

KEGG pathway enrichment analysis showed that the significantly enriched DEGs were
involved in various phytohormones metabolism and signal transduction processes (Fig 9, S5
Table). Also, GO enrichment analysis of DEGs showed that phytohormones might play a role
in flower development of R. cantleyi (S4 Fig).

Auxin plays an essential role in the diverse aspects of flower development including the ini-
tiation of floral primordial and floral organ identity [63] as can be seen in Arabidopsis and
Camellia azalea [64-65]. In R. cantleyi, a number of auxin-related genes showed significant
differential expression during floral bud differentiation. Previous study on R. cantleyi flower
reported that the AUX/IAA and ARF families were constitutively expressed in all flower stages
[66]. The homologues of ARFs and AUX-IAA were found in floral bud, indicating the crucial
role of ARF-AUX/IAA regulatory pathway for R. cantleyi flower development. Among the
genes that were differentially expressed, six auxin responsive factor homologues including
ARF1, ARF3, ARF5, ARF7, ARF11, and ARF19 were highly expressed, whereas homologues of
TAAI, IAA3, IAA8 and SAUR-like were lowly expressed during FBS1 suggesting dynamic
auxin signalling in R. cantleyi floral initiation and organogenesis (Fig 7). In the model plant
Arabidopsis, JAA8 was identified as a component of auxin response machinery, interacting
with both ARF6 and ARF8 to change JA levels, which is involved in flower development [65].
In R. cantleyi, IAA8 showed high expression during flower development process, suggesting a
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putative function of IAA8 in flower development. IAA4 showed interactions with JAAI and
TAA2 to regulate auxin biosynthesis during carpel development [67]. In our study, IAA4 was
predominantly expressed in FBS3, in contrast to IAA I, suggesting their different functions in
flower development of R. cantleyi. Other than that, PINs, which are auxin efflux carrier-encod-
ing genes and are important part of a network for auxin distribution throughout the plant, are
involved in primordium development and formation of all plant organs [68]. ARF3 is involved
in regional identity determination by integrating AG and AP2 in floral meristem determinacy
[37]. PIN2, PIN4 and ARF3 showed the highest expression during FBS2, suggesting their puta-
tive function in organ formation. Thus, auxin and auxin transport may be required for floral
meristem determinacy and organ formation in R. cantleyi.
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GA also plays an important role in flower development by regulating floral meristem genes
LFY and cross-talks with other hormones for their growth control function [69]. Amongst the
GA related genes, the GA20 family has been identified in different plant species. In our study,
most of the homologues related to GA were highly expressed during the FBS1 except two GA
biosynthesis genes, GA20X4 and GA20X8. This showed the diversity of regulatory mecha-
nisms in GA biosynthesis during flower development. Also, gibberellin biosynthesis related
transcripts (diterpenoid biosynthesis) showed differential genes expression in pre-anthesis
stage (Fig 7). This may suggest gibberellin biosynthesis functions to promote late stages of
organ development, which is consistent with a previous finding regarding the involvement of
GA through repression of DELLA protein activity in promoting late stages of petal, stamen
and gynoecium development in Arabidopsis [70].

Apart from auxin and GA, cytokinin has also been reported to be involved in flower develop-
ment by activating MADS-box genes in Sinapis alba [71]. In our study, many cytokinin signalling
related transcripts and MADS-box genes were identified as DEGs, proposing an involvement of
cytokinin-MADS pathway in the regulation of flower development in R. cantleyi. SHOOT MER-
ISTEMLESS (STM), a promoter of cytokinin biosynthesis gene through the activation of ISOPEN-
TYL TRANSFERASE 7 (IPT7), is required to prevent stem cells from being incorporated into
organ primordia, and thus from differentiating [72], which is in good agreement with its high
expression in FBS1. The biosynthesis of cytokinin involves three key enzymes encode by IPT,
CYP735A and LONELY GUY (LOG). In contrast, cytokinin oxidase (CKX) degrades the active
cytokinins, lowering their cellular level [73]. Regardless of decreased IPT expression, increased
CYP735A and LOG expression together with decreased CKX expression suggest that there is an
increase in cytokinin biosynthesis during floral bud break. Based on GO enrichment analysis of
DEGs, the GO term ‘cytokinin-activated signaling pathway’ were identified in FBS2-FBS3 while
‘auxin-activated signaling pathway’ were identified in FBS1-FBS2 cluster, which suggests specific
regulators were required for the stage transition in R. cantleyi, and different developmental path-
ways were converged for orchestrating the floral bud development (54 Fig).

The role of ABA is not well understood in the regulation of flower development. The inhibitory
effect of ABA on flower development is mediated by ABSCISIC ACID-INSENSITIVE 5 (ABI5) in
Arabidopsis [74]. High expression of ABI5 in FBS2 may result in the inhibition of R. cantleyi devel-
opment. In addition, SnRK functions as a positive regulator of ABA signalling pathway, which is
directly repressed by PROTEIN PHOSPHATASE 2C (PP2C). PP2C, on the other hand, is inhib-
ited by ABA receptor PYRABACTIN RESISTANCE 1-LIKE (PYL) [75]. SnRK2.6, SnRK3.4 and
PYL9 showed relatively constant expression level in FBS1 and FBS2 with down-regulation in FBS3
whereas HIGHLY ABA-INDUCED PP2C GENE 2 (HAI2) was significantly up-regulated in FBS3,
which might also indicate that ABA functions as an inhibitor in R. cantleyi flower development.

In addition, arginine is involved in the production of nitric oxide, polyamines and proline,
which play crucial roles in regulating developmental processes [76]. Alpha-linolenic acid
metabolism is essential for JA biosynthesis. JA occurs organ-specifically in flowers and
involves in flower development and fertility [77]. Moreover, enriched C5-branched dibasic
acid metabolism and alpha-linolenic acid metabolism pathways were shown to be associated
with cell fate transition [78]. Taken together, KEGG enrichment of DEGs related to arginine
and proline metabolism, C5-branched dibasic acid, and alpha-linolenic acid metabolism path-
ways suggests the importance of JA in R. cantleyi flowering (Fig 9).

Conclusions

In this study, the analysis of transcriptional changes during flower development in R. cantleyi
showed that initial flower development involved suppression on various genes with higher
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number of DEGs identified approaching maturation. Down-regulated genes related to various
TF families and highly expressed hormone-related genes further suggested their importance in
R. cantleyi flower development. The identification of these DEGs provides opportunity for fur-
ther studies to elucidate their functions and contribute towards the understanding of flower
development in Rafflesia and other plant species.
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