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Introduction

A number of effective treatments are available for major de­
pressive disorder. However, following successful treatment, 
relapse is common: 50% to 70% of patients relapse within 
5 years.1,2 Residual symptoms are among the strongest predic­
tors of relapse in recurrent depression.3 Cognitive theories of 
depression posit that biased information processing for emo­
tional stimuli plays a key role in depression development and 
relapse.4 Despite mixed findings, people with clinical depres­
sion and who previously had depression but are currently 
euthymic have repeatedly been reported to orient their atten­
tion toward negative faces rather than neutral or positive 
faces.5–10 Attentional biases and deficits in cognitive control 
may interfere with emotion regulation and mood state. Nega­

tive cognitive biases in depression are thought to be facilitated 
by increased influence from subcortical emotion processing 
regions, combined with attenuated top–down cognitive con­
trol.4,11 There is evidence for blunted responsiveness to positive 
stimuli and reward in depression.12–14 At the same time, re­
searchers have linked depression to dysregulated attentional 
processing of both positive and negative stimuli.15–17

Computerized attentional bias modification (ABM) pro­
cedures are aimed at implicitly retraining biased attentional 
patterns.18 Although there is debate about the true effect size 
of ABM in depression,19,20 some studies have reported re­
duced depressive symptoms after successful modification of 
attentional bias.21–24 Antidepressant treatments have been 
shown to dampen negative biases before clinical effects on 
mood are measurable,25 and these observations have led to a 
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Background: Attentional bias modification (ABM) may lead to more adaptive emotion perception and emotion regulation. Understanding 
the neural basis of these effects may lead to greater precision for the development of future treatments. Task-related functional MRI 
(fMRI) after ABM training has not been investigated in depression so far. The main aim of this randomized controlled trial was to explore 
differences in brain activity after ABM training, in response to emotional stimuli. Methods: A total of 134 people with previous depres-
sion, who had been treated for depression and had various degrees of residual symptoms, were randomized to 14 days of active ABM or 
a closely matched placebo training, followed by an fMRI emotion regulation task. The training procedure was a classical dot–probe task 
with emotional face stimuli. In the active ABM condition, the probes replaced the more positively valenced face of a given pair. As partici-
pants implicitly learned to predict the probe location, this would be likely to induce a more positive attentional bias. The placebo condition 
was identical, except for the contingency of the probe, which appeared equally behind positive and negative stimuli. We compared de-
pression symptoms and subjective ratings of perceived negativity during fMRI between the training groups. We explored brain activation 
in predefined regions of interest and across the whole brain. We explored activation in areas associated with changes in attentional bias 
and degree of depression. Results: Compared with the placebo group, the ABM group showed reduced activation in the amygdala and 
the anterior cingulate cortex when passively viewing negative images. We found no group differences in predefined regions of interest 
associated with emotion regulation strategies. Response in the temporal cortices was associated with the degree of change in attentional 
bias and the degree of depressive symptoms in ABM versus placebo. Limitations: These findings should be replicated in other samples 
of patients with depression, and in studies using fMRI designs that allow analyses of within-group variability from baseline to follow-up. 
Conclusion: Attentional bias modification training has an effect on brain function in the circuitry associated with emotional appraisal and 
the generation of affective states. Clinicaltrials.gov identifier: NCT02931487.
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cognitive neuropsychological theory suggesting that modify­
ing negative biases in emotional information processing may 
play a causal role in antidepressant treatment effects.26,27 
According to the theory, symptom improvement should con­
solidate over time. However, there is little empirical evidence 
of the long-term effects of ABM.

It has been suggested that attentional biases are an impor­
tant component of explicit methods of emotion regulation.28 
According to influential theories of emotion regulation,29,30 
redirecting attention toward or away from emotionally 
arousing aspects of a situation enables people to increase or 
decrease the intensity of the emotions.31,32 Psychological mod­
els of reappraisal suggest that many of the cognitive control 
processes used to regulate attention, memory and thoughts 
in general are also used in the cognitive regulation of emo­
tion.33 Thus, it has been hypothesized that one way ABM 
might work could be by improving emotion regulation.28,34

The neural basis of changes in attentional bias, which is 
believed to be the mechanism of change behind symptom 
improvement after ABM training, has not been investigated 
so far. The functional neurobiology of emotion perception 
distinguishes between structures that are critical for ap­
praisal, generation of affective states and emotion regulation. 
The amygdala and insular cortex are particularly important 
in a ventral system linked to the emotional significance of 
stimuli and the production of affective states.35,36 The ventral 
anterior cingulate cortex (ACC) plays a major role in the 
automatic regulation of emotional responses. A dorsal sys­
tem includes the dorsal ACC and prefrontal regions and is 
thought to be involved in effortful regulation of affective 
states and subsequent behaviour.35,37

The neural effects of a single session of ABM in healthy 
people include lateral prefrontal cortex reactivity toward 
emotional stimuli,38 indicating moderation of the dorsal 
neurocircuitry in emotion perception. One resting-state fMRI 
study in young women with subthreshold depression found 
differences between ABM and placebo in measures of spon­
taneous fluctuations in the right anterior insula and right 
middle frontal gyrus,39 areas critical for emotion generation 
and automatic regulation of emotional responses. In a study 
of people with depression, differences in resting-state con­
nectivity between ABM and placebo were found in the mid­
dle frontal gyrus and dorsal ACC (a neural system important 
for cognitive control over emotions) along with changes in a 
network associated with sustained attention to visual infor­
mation in the placebo group.40 Overall, these early results 
provide some evidence that ABM modifies function in emo­
tional regulatory systems, although the small study sample 
sizes and variety of approaches used may underpin the 
absence of consistent effects across studies.41

To our knowledge, no study has investigated ABM-
induced changes in emotion processing using fMRI in a large 
clinical sample after multiple training sessions. In this pre­
registered clinical trial, we used a sample of 134 participants 
previously treated for depression and with various degrees 
of residual symptoms. A major aim was to explore the neural 
effects of ABM in ventral and dorsal emotion-perception cir­
cuitry during an emotion regulation task. The preregistered 

hypotheses were that, compared with placebo: (1) the ABM 
group would show increased blood-oxygenation level–
dependent (BOLD) signal in prefrontal cortical regions and 
(2) the ABM group would reveal decreased BOLD signal in 
the amygdala. We also measured fMRI response in prefrontal 
and subcortical regions of interest (ROIs) in a well-
established emotion regulation circuitry based on previous 
studies. Finally, we examined how changes in attentional 
bias (the mechanism by which ABM is believed to work) and 
changes in symptoms differed between ABM- and placebo-
treated groups.

Methods

Participants and screening procedures

Patients who had been treated for at least 1 previous episode 
of major depressive disorder were randomized into 2 treat­
ment groups with either a positive ABM or a closely matched 
active placebo training condition. We performed block ran­
domization (1:1) at inclusion to ensure equal numbers of par­
ticipants and similar characteristics for the 2 groups. Partici­
pants were invited to be part of the fMRI study immediately 
after training and preferably within 1 week after ABM train­
ing. The current clinical trial (NCT02931487) was an exten­
sion of a larger double-blind, randomized controlled trial 
(NCT02658682) that included 321 patients with a history of 
depression. A total of 136 eligible participants between the 
ages of 18 and 65 years were enrolled for fMRI.

The main recruitment site was an outpatient clinic in the 
Department of Psychiatry, Diakonhjemmet Hospital, in Oslo. 
Participants were also recruited from other clinical sites and 
via social media. Individuals diagnosed with a current major 
depressive episode, current or former neurologic disorder, 
psychosis, bipolar spectrum disorder, substance use disorder, 
attention deficit disorder, or head trauma were excluded dur­
ing prescreening. A history of an anxiety disorder was not an 
exclusion criterion. Informed consent was obtained before 
enrolment. The procedure was approved by the Regional 
Ethical Committee for Medical and Health Research for 
Southern Norway (2014/217/REK sør-øst D). Inclusion 
criteria were people who had experienced more than 
1 major depressive episode (lifetime) that fulfilled the Mini 
International Neuropsychiatric Interview (MINI 6.0.0) A1a 
(depressed mood) and/or A2a (loss of interest or pleasure) 
criteria, more than 5 positive items on A3, and fulfilling the 
A5 criterion (DSM 296.30–296.36 recurrent/ICD-10 F33.x). To 
assess both self- and clinician-rated symptoms, we adminis­
tered the Beck Depression Inventory (BDI-II)42 and the Hamil­
ton Rating Scale for Depression (HAM-D),43 respectively. There 
was no upper or lower threshold for depression symptom 
scores. Raters were blind to the intervention.

Attentional bias modification procedure

The ABM task was a computerized visual dot–probe proced­
ure developed by Browning and colleagues.21 A fixation 
cross was initially displayed, followed by 2 images (the 
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stimuli) presented concurrently at the top and bottom of the 
computer screen. Following stimulus onset, a probe (1 or 
2 dots) immediately appeared at the same location as 1 of the 
image stimuli and remained on the screen until the partici­
pant responded. Responses were collected via a button press 
from 1 of 2 buttons. The types of stimuli were pictures of 
emotional faces. The face stimuli had 3 valences — positive 
(happy), neutral, or negative (angry and fearful) — and were 
based on 4 databases: the Karolinska Directed Emotional 
Faces,44 NimStim,45 Matsumoto and Ekman’s Japanese and 
Caucasian Facial Expressions of Emotion,46 and Ekman Pic­
tures of Facial Affect.47 A single session of the task involved 
96 trials with equal numbers of the 3 stimulus pair types. In 
addition, equal numbers of trials were randomly presented 
for 500 or 1000 ms before the probe was displayed. In each 
trial of the task, stimuli from 2 valences were displayed in 
one of the following pairing types: positive–neutral, 
positive–negative and negative–neutral. In the ABM condi­
tion, probes were located behind positive stimuli in 87% of 
the trials (valid trials), and 13% of probes were located be­
hind negative stimuli (invalid trials). Consequently, partici­
pants could implicitly learn to deploy their attention toward 
positive stimuli, and in this way develop a more positive at­
tentional bias when completing the task. The neutral ABM 
placebo condition was identical except for the location of the 
probe, which was located behind the positive (valid trials) 
stimuli in 50% of the trials. Participants completed 2 sessions 
(192 trials) of ABM daily at home over 14 days (28 sessions 
in total) on identical notebook computers (14” HP EliteBook 
840, 1600 × 900, 8 GB, Intel Core i5–4310U), which were set 
up and used exclusively for ABM training. The duration of 
each training session was approximately 5 minutes. We 
ensured adherence using a calendar system and daily 
reminders on SMS. We calculated adherence rates for the 
training procedure (percentage complete sessions) from the 
computers’ log files; mean adherence rates were 82.32%.

MRI scan acquisition

We conducted scanning on a 3 T Philips Ingenia whole-body 
scanner, with a 32 channel Philips SENSE head coil (Philips 
Medical Systems). We obtained functional images with a 
single-shot T2*-weighted echo planar imaging sequence (rep­
etition time 2000 ms, slice echo time 30 ms, field of view 240 × 
240 × 117, imaging matrix 80 × 80, flip angle 90°, 39 axial 
slices, interleaved at 3 mm thickness, no gap, voxel size 3 × 3 
× 3 mm). The scanning session consisted of 340 volumes, syn­
chronized to the onset of the experiment. We adjusted slice 
orientation to the line running from the anterior to the pos­
terior commissure. We recorded a T1-weighted anatomic 
image with a voxel size of 1 × 1 × 1 mm for registration of the 
functional images (repetition time 8.5 ms, echo time 2.3 ms, 
field of view 256 × 256 × 184, flip angle 7°, 184 sagittal slices).

fMRI experimental procedure

The study used a modified emotion regulation experiment. 
Participants were scanned as they viewed sequences of neg­

ative and neutral images and carried out instructions to 
downregulate their emotional responses using a reappraisal 
strategy or allow themselves to attend to the pictures with­
out trying to influence their emotional reactions. After each 
image, the participants provided a rating of the intensity of 
their emotional state using a visual analogue scale (VAS) 
that ranged from neutral to negative. Stimuli were selected 
from the International Affective Picture System48 and the 
Emotional Picture Set.49 Negative and neutral pictures were 
counterbalanced based on their normative valence and 
arousal ratings (see Appendix 1, available at jpn.ca/180118-a1 
for more detail). Each trial started with a fixation cross, fol­
lowed by a written instruction: “Attend” or “Regulate.” The 
instruction was presented for 2000 ms. Then, a negative or 
neutral image was presented for 6000 ms, followed by a 
rating screen time-locked to 6000 ms. Between stimuli, we 
used a temporal jitter randomized from 2000 to 8000 ms 
(mean interstimulus interval 3700 ms) to optimize statistical 
efficiency in the event-related design.50 The task consisted of 
blocks of 18 trials with a 20-second null trial between the 
2 blocks. The procedure was completed in 2 independent 
runs during the scanning session, for 72 trials in total. In 
each block, 12 items were neutral and 24 items were nega­
tive, providing 3 counterbalanced experimental conditions: 
AttendNeutral, AttendNegative and RegulateNegative. The 
stimulus order in each block was interspersed pseudoran­
domly from 12 unique lists. The total duration of a single 
functional scanning run was approximately 11 minutes, and 
the total scan time was approximately 22 minutes. Stimuli 
were presented using E-Prime 2.0 software (Psychology Soft­
ware Tools). An MRI-compatible monitor was placed at the 
end of the scanner behind the participant’s head. Partici­
pants watched the monitor using a mirror placed at the head 
coil. Responses were collected using a response grip with 
2 response buttons. Physiologic data (heart and respiration 
curves) were recorded at 1000 Hz using a clinical monitoring 
unit digitized together with scanner pulses.

Training and instruction procedures

We used a written protocol with detailed instructions to 
introduce the emotion regulation experiment. The protocol 
was dictated for each participant by the researcher outside 
the MRI scanner in order to standardize the verbal instruc­
tions. The fMRI experiment had 3 in-scanner exercise trials 
before the scan started to familiarize participants with the 
instructions, timing, response buttons and VAS. The train­
ing procedure was repeated before the second run of the 
experiment.

Symptom change and subjective ratings of negativity

We analyzed changes in self-rated and clinician-rated symp­
toms using PASW 25.0 (IBM) and a repeated-measures analy­
sis of variance (ANOVA), with intervention (ABM versus 
placebo training) as a fixed factor. The dependent variable 
was symptoms at baseline and 2 weeks’ follow-up (time). To 
investigate self-reported emotional reactivity (VAS scores) 
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during fMRI, we added a factor based on the 3 experimental 
conditions (AttendNeutral, AttendNegative, RegulateNegative) 
and analyzed it using repeated-measures ANOVA.

fMRI analyses

Whole brain analysis used the AttendNegative > AttendNeutral 
contrast to test whether ABM influenced overall brain activ­
ity in response to passive viewing of emotional stimuli. We 
de-meaned clinician-rated (HAM-D) symptoms at baseline 
(subtracting the mean from the individual value) and used it 
as a covariate. Spatial smoothing full width at half maximum 
was set to 5 mm. We used Featquery for FMRI Expert Analy­
sis Tool (FEAT) result interrogation. We extracted mean local 
percent signal change to explore individual distribution 
within significant clusters from FEAT. We performed interac­
tion analysis to test whether areas in the brain responded dif­
ferently in the ABM and placebo groups in relation to atten­
tional bias and symptom change.

We performed ROI analyses using a small volume correc­
tion (SVC) method with a priori volumes based on coordin­
ates from a recent meta-analysis on neuroimaging and 
reappraisal. The meta-analysis by Buhle and colleagues51 con­
sisted of 48 neuroimaging studies of reappraisal, in which 
most studies involved downregulation of negative affect, and 
which reported 7 clusters related to emotion regulation that 
were consistently found in prefrontal cognitive control areas 
when contrasted with passive viewing of negative images. 
The clusters were situated in the left and right middle frontal 
gyrus, the right inferior frontal gyrus, the right medial frontal 
gyrus, the left and right superior temporal lobe, and the left 
middle temporal gyrus (Appendix 1). The bilateral amygdala 
was reported for the contrast comparing negative viewing to 
emotion regulation. Brain activation derived from passive 
viewing of negative images (as compared with passive view­
ing of neutral images) was not included in the results from 
the meta-analysis.51

We used binary spheres with a 5 mm radius, based on 
Montreal Neurological Institute (MNI) coordinates of peak 
voxels for the predefined regions. We created 2 single masks 
for the emotion regulation contrast (RegulateNegative > 
AttendNegative, AttendNegative > RegulateNegative). We 
combined the 7 cortical spheres and the 2 subcortical spheres 
into 2 single binary ROIs. We set the Z-threshold at 2.3 and 
the cluster p-threshold at 0.05. We extracted the mean local 
percent signal change from the 2 ROIs to explore individual 
distribution in significant clusters from FEAT. Again, clinician-
rated (HAM-D) symptoms at baseline were de-meaned and 
used as a covariate in the ROI analysis.

fMRI data preprocessing and noise reduction

We used the FMRIB Software Library version (FSL version 
6.00; www.fmrib.ox.ac.uk/fsl)52,53 to preprocess and analyze 
fMRI data. We carried out fMRI data processing using FEAT 
version 6.00, a part of FSL (FMRIB Software Library). In con­
junction with FEAT FSL-PNM, we applied 34 explanatory 
variables to regress out physiologic noise from pulse and 

respiration.54 We carried out registration to high-resolution 
structural and/or standard space images using FLIRT.55,56 We 
then further refined registration from high-resolution structural 
to standard space using FNIRT nonlinear registration.57 We 
manually inspected all registrations to ensure proper align­
ment. We carried out time-series statistical analysis using FILM 
with local autocorrelation correction.58 We conducted linear 
registration with 12 degrees of freedom. The Z (Gaussianised 
T/F) statistic images were thresholded using clusters deter­
mined by Z > 2.3 and a (corrected) cluster significance thresh­
old of p = 0.05.59 Two participants were excluded from the 
analyses due to signal loss caused by a technical problem with 
the head coil. We combined the time series from each partici­
pant’s 2 first-level runs using an intermediate fixed-effect 
model in FEAT before submission to second-level analysis. A 
total of 134 participants (64 from the ABM group and 70 from 
the placebo group) were included in the intermediate and 
higher-level FEAT analysis at the group level. We conducted 
nonparametric testing using FSL randomize60 with threshold-
free cluster enhancement61 and 5000 permutations as an alter­
native to FEAT with a cluster-defining threshold.

Results

Sample participant characteristics can be found in Table 1. 

Symptom change after ABM

We found a statistically significant group × time interaction 
for rater-evaluated depression as measured by change in 
HAM-D. Follow-up comparisons for this significant interac­
tion revealed lower symptoms of depression in the ABM 
group (F1,132 = 4.277, η2 = 0.03, p = 0.041). The means and 
standard deviations at baseline were 9.56 ± 6.38 for the 
ABM group and 7.53 ± 4.69 for the placebo group, and 
changed to 7.93 ± 5.90 and 7.77 ± 5.76, respectively, at 
2  weeks’ follow-up. 

We found no statistically significant effects for self-reported 
symptoms as measured by the BDI-II (F1,132 = 2.048, p = 0.16). 
The means and standard deviations at baseline were 17.12 ± 
11.62 for the ABM group and 12.09 ± 8.66 for the placebo 
group, and changed to 13.25 ± 12.04 and 9.82 ± 8.72, respec­
tively, at 2 weeks’ follow-up. 

We found general symptom improvement in both the 
ABM and placebo groups as measured by the BDI-II from 
baseline to after training (F1,132 = 29.775; η2 = 0.18; p < 0.001). 
This finding was in accordance with results from the sample 
from which this smaller cohort was drawn.62

Subjective ratings of perceived negativity

We found a statistically significant difference between task 
conditions in self-reported emotional reactivity as measured 
by VAS scores during the fMRI experiment. The repeated-
measures ANOVA showed that mean VAS scores were 
lowest when viewing neutral images (8.2 ± 7.8), followed by 
when patients were encouraged to regulate negative responses 
to negative images (40.8 ± 16.9), and highest for passive 
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viewing of negative images (62.0 ± 15.3, F1,133 = 0.074, η2 = 0.93, 
p < 0.001). A post hoc test showed that the differences be­
tween the passive and regulated viewing conditions for neg­
ative stimuli was large and statistically significant (F1,133 = 
202.81, η2 = 0.60, p < 0.001). The VAS ratings did not differ 
between the ABM and placebo groups (F1,133 = 0.993, p < 0.65).

Post-treatment differences between ABM- and placebo-
treated groups from whole brain analyses

The RegulateNegative > AttendNegative and AttendNegative 
> RegulateNegative contrasts revealed no group differences. 
Compared with the ABM group, the AttendNegative > 

AttendNeutral contrast revealed greater activation in the 
placebo-treated group in a cluster in the pregenual ACC, the 
paracingulate and the medial cortex bilaterally, extending to 
the right frontal orbital cortex and the frontal pole. The peak 
activation for this cluster was found in the left frontal medial 
cortex (MNI coordinates x, y, z = −16, 36, −10; Z = 3.86, p = 
0.001; Fig. 1).

Post-treatment differences between ABM- and 
placebo-treated groups within predefined ROIs

Analyses masked across predefined emotion regulation 
circuitry revealed more activation in the placebo-treated 

Table 1: Sample characteristics*

Characteristic Placebo (n = 70) ABM (n = 64) F p value†

Age, yr 39.65 ± 13.54 39.09 ± 12.80 0.061 0.81

Female, no. 44 47 1.717 0.20

Education level, ISCED 5.92 ± 1.20 5.85 ± 1.27 0.113 0.74

SSRI medication, no.‡ 23 22 0.035 0.86

No. of major depressive episodes§ 4.48 ± 5.30 4.79 ± 7.56 0.077 0.78

Days between ABM and fMRI 6.94 ± 8.70 6.65 ± 7.19 0.041 0.84

Baseline symptoms

Hamilton Rating Scale for Depression 7.53 ± 4.69 9.56 ± 6.38 4.469 0.036

Beck Depression Inventory II 12.09 ± 8.66 17.12 ± 11.62 8.187 0.005

ABM = attentional bias modification; fMRI = functional MRI; ISCED = International Standard Classification of Education; SSRI = selective 
serotonin reuptake inhibitor.
*Unless otherwise indicated, findings are presented as mean ± standard deviation. 
†Pearson χ2 test for dichotomous variables.
‡Any current use of an antidepressant belonging to the SSRI class.
§According to the MINI International Neuropsychiatric Interview.

Fig. 1: Left: cluster activation (Z > 2.3) for placebo over attentional bias modification (ABM) for the AttendNegative > AttendNeutral contrast. 
Right: distribution of individual percentage signal changes over significant clusters; solid line indicates the median; box indicates the 50th per-
centile of the median; whiskers indicate 95% confidence intervals; dots indicate potential outliers (1.5 standard deviation [SD] outside the 50th 
percentile of the median); asterisk indicates an extreme outlier (3 SD outside the 50th percentile of the median). 
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group than in the ABM group in the right amygdala (MNI 
x, y, z = −18, −6, −20; size = 8, Z = 2.89, p = 0.032) and left 
amygdala (MNI x, y, z = 28, 0, −16; size = 3, Z = 2.55, p = 
0.040) for the passive viewing contrast (AttendNegative > 
AttendNeutral; Fig. 2).

We found no differences between the ABM and placebo 
groups for the emotion regulation contrasts. Across both 
groups, the regulate contrast (RegulateNegative > Attend­
Negative) revealed activation in 2 ROIs in the left inferior 
frontal gyrus (MNI x, y, z = −30, −2, −54; size = 75, Z = 10.5, 
p = 0.017) and right middle frontal gyrus (MNI x, y, z = 60, 26, 
6; size = 29, Z = 5.48, p = 0.048). The opposite contrast 
(AttendNegative > RegulateNegative) revealed increased 
bilateral amygdala activation in both the ABM and placebo 
groups. The largest cluster was in the left amygdala (MNI x, 
y, z = −18, 0, −14; size = 75, Z = 7.93, p = 0.006), and a smaller 
cluster was in the right amygdala (MNI x, y, z = 26, −2, −16; 
size = 13, Z = 4.05, p = 0.026; Appendix 1, Fig. S1).

Nonparametric testing using randomize did not reveal 
statistically significant cluster activation for the whole brain 
or for predefined ROIs.

Interaction with degree of attentional biases and symptom 
change

Two distinct clusters were associated with the interaction be­
tween passive viewing of negative images (AttendNegative > 
AttendNeutral), the intervention and the degree of atten­
tional bias change (MNI x, y, z = 54, −24, 8; size = 1061, Z = 
4.05, p < 0.001; and MNI x, y, z = −50, 0, 10; size = 547, Z = 
3.44, p < 0.020). The degree of change in attentional bias was 

associated with a lower percent signal change in the ABM 
group, and a higher percent signal change in the placebo 
group. (Fig. 3).

We found an interaction between passive viewing 
(AttendNegative > AttendNeutral), the intervention and the 
degree of symptom change (HAM-D) in the right planum 
temporale and the insular cortex (MNI x, y, z = 50 −10 18; 
size = 872, Z = 5.28, p < 0.001). The degree of symptom 
change was associated with a lower percent signal change in 
the ABM group, and a higher percent signal change in the 
placebo group (Fig. 4).

Sensitivity analysis and nonparametric testing

Cluster thresholding determined by Z > 3.1 and a (corrected) 
cluster significance threshold of p = 0.001 did not reveal 
statistically significant cluster activation in the whole brain 
analysis or in SVCs. None of the reported results survived 
nonparametric testing using randomize (5000 permutations, 
threshold-free cluster enhancement).

Discussion

Our results revealed differences in brain activity between 
ABM and placebo training groups related to passive viewing 
of negative stimuli in areas consistently associated with emo­
tional appraisal and the generation of affective states — areas 
in a circuitry known to be altered in depression.4,35,37 The pla­
cebo group showed more pronounced activation in the amyg­
dala, midline structures and the pregenual ACC. We found 
no group differences related to explicit emotion regulation. 

Fig. 2: Amygdala activation for the AttendNegative > AttendNeutral contrast. Left: red voxels represent mean amygdala activation across 
placebo and attentional bias modification (ABM) training groups. Yellow voxels are superimposed and represent peak voxels where the 
placebo group had more activation than the ABM group. Right: distribution of individual percentage signal changes over significant clusters; 
solid line indicates the median; box indicates the 50th percentile of the median; whiskers indicate 95% confidence intervals; dots indicate 
potential outliers (1.5 standard deviation outside the 50th percentile of the median).  
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Analysis of the mechanism of change showed that the degree 
of change in attentional bias was linearly linked to activity in 
the bilateral insular cortex. Symptom improvement after ABM 
was linearly associated with activation in the right insular cor­
tex, an area involved in the generation of affective states.35

Analyses in predefined areas associated with effortful emo­
tion regulation revealed activation in the left inferior frontal 
gyrus and the right middle frontal gyrus across groups.51 The 
amygdala was also more activated during passive viewing 
than explicit regulation of negative stimuli, but this did not 

Fig. 3: Left: areas activated in association with the interaction between attentional bias (AB) and the intervention for AttendNegative > AttendNeutral. 
Right: regression lines and individual distribution in the attentional bias modification (ABM) and placebo conditions.
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differ between the ABM and placebo groups. In line with these 
results, we found no differences between ABM and placebo 
training as measured by subjective ratings (VAS) of perceived 
negativity. This finding was consistent with the primary out­
comes from the clinical trial, which found an ABM effect 
restricted to blinded clinician-rated symptoms, but not self-
rated symptoms.62 Together, these results may imply that the 
early effects of ABM are restricted to changes in emotion gen­
eration and appraisal, rather than more conscious forms of 
emotion regulation linked to the dorsal system.

A considerable number of meta-analyses using functional 
connectivity in depression have shown altered activity in 
areas that distinguished the ABM and placebo groups in the 
current study, including the insula and the ACC.63–67 Midline 
brain structures, including the pregenual ACC, have been 
linked to self-referential processing,68 hopelessness,69 anhedo­
nia70 and impaired emotion processing71 and are identified in 
studies of functional connectivity in depression. Notably, the 
ACC and insula, together with the amygdala, are core areas 
of the salience network, which determines the significance of 
external stimuli. The salience network is thought to play a 
role in switching between task positive and negative net­
works72,73 and may play a role in symptom improvement after 
ABM, as found in this study.

The insula and amygdala are among the core brain areas 
that respond preferentially to negative stimuli in healthy 
people, and activation in the insula and ACC has repeatedly 
been reported across a range of experiments that use emo­
tional tasks with cognitive demand and mental imagery.74,75 
Neural responses to negative stimuli in the amygdala, 
insula and ACC are more pronounced in depressed patients 
than in healthy controls.76 Ma77 describes an emotional cir­
cuit including the insula, the bilateral amygdala and the 
ACC affected by antidepressant medication by decreasing 
activity toward negative stimuli and increasing activity 
toward positive stimuli. Antidepressants have been hypoth­
esized to work by remediating negative affective biases 
(that is, targeting the same mechanism as when applying an 
ABM procedure).26,78,79 Similarly, the moderation of aware­
ness toward negative stimuli via ABM (the hypothesized 
mechanism of change) may alter automatic emotional vigi­
lance and arousal toward negative stimuli. This moderation 
may lead to altered parasympathetic responses via circuitry 
that involves the amygdala and ACC. The translation of 
these changes into improved subjective mood may take 
time as the individual learns to respond to this new and 
more positive social and emotional perspective of the 
world. However, neural correlates of early changes in the 
processing of emotional stimuli might be a marker of a pro­
cess leading to symptom improvement. This model is con­
sistent with cognitive theories of depression4,80 that the 
ABM procedure builds on. Accordingly, studies on cogni­
tive behavioural therapy show that pregenual ACC is posi­
tively correlated with degree of symptom improvement.81–86 
Moreover, given that the pregenual ACC is believed to play 
an important role in the downregulation of limbic hyper­
reactivity,37,87,88 the group difference found in this study may 
reflect more adaptive emotion processing after ABM.

Worldwide, there is a pressing demand for evidence-based 
treatments in mental health. It has been argued that psycho­
therapy research does not provide explanations for how or why 
even the most commonly used interventions produce change.89 
In a recent statement from Lancet Psychiatry’s Commission on 
Treatments Research in Tomorrow’s Science, the authors argue 
that there is an acute need to improve treatment, and clinical 
trials should focus not only on efficacy, but also on identifying 
the underlying mechanisms by which treatments operate.90 The 
current study addresses such mechanisms by targeting changes 
in attentional biases, which is believed to be the mechanism 
that translates to symptom improvement after ABM.

The current study was based on a randomized controlled 
trial with a larger sample of patients that found an ABM effect 
on clinician-rated symptoms. It used a well validated emo­
tion perception task and followed a stringent preregistered 
research protocol, which was a strength. This study exploited 
the link between a psychological mechanism, clinical meas­
ures, and underlying brain function as measured by fMRI, so 
the results should have translational potential. The current 
study is the largest study to investigate changes in emotion 
processing using fMRI after ABM training.

Limitations

A key limitation related to research design is that fMRI 
assessment after ABM does not allow for statistical model­
ling of within-individual variance from baseline to follow-
up. We found an unexpected difference in symptom degrees 
at baseline that could have been associated with group dif­
ferences in brain activation. We sought to address this pos­
sible confound by including symptom degree as a covariate 
in the fMRI analyses. The higher baseline symptom scores in 
the ABM group may still have represented a higher potential 
for change. The sample consisted of patients with previous 
depression and various degrees of residual symptoms; it 
needs to be replicated in studies with other patient groups. 
Brain activation related to ABM may also be conditionally 
mediated by multiple biological and environmental factors 
outside the scope of this study. Future studies should con­
sider experimental designs that include passive viewing and 
upregulation for positive images to match for potential pro­
cess and arousal effects. More precise insight into stimulus 
characteristics such as arousal and valence may help vali­
date future ABM procedures. The risk of false-positive find­
ings should have been reduced by a relatively large sample 
size, correction for physiologic artifacts and a study design 
in which only voxel activation over 2 individual runs was 
submitted to group-level analysis. However, the results did 
not survive nonparametric testing or stricter thresholding as 
suggested by Eklund and colleagues,91 but see also Carter 
and colleagues92 and Poldrack and colleagues.93 Further rep­
lication of the reported findings is warranted.

Conclusion

This study showed that ABM-associated differences in brain 
circuitry were linked to passive viewing but not to conscious 
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regulation of emotional stimuli and represents, to our 
knowledge, the first experimental evidence of an ABM effect 
using task-based fMRI.
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