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Abstract

Bioactivity-guided examination of a Leptolyngbya sp. led to the isolation of leptazolines A-D 

(1-4), from the culture media, along with two degradation products (5-6). DFT NMR calculations 

established the relative configurations of 1-2 and revealed the calculated shifts depended on the 

operating system when using the “Willoughby-Hoye” python scripts to streamline the processing 

of the output files; a previously unrecognized flaw that could lead to incorrect conclusions.
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As part of our long-standing interest in cyanobacterial natural products, we recently began 

screening strains within our culture collection against pancreatic adenocarcinoma (PANCA).
1 This screen flagged several media extracts. While metabolites from cells are well-studied, 

there are comparatively few reports of cyanobacterial secondary metabolites excreted in the 

culture medium to any appreciable degree.2 Excreted metabolites are likely to be more polar 

and structurally different from those isolated from the cell mass. We report here the results 

from the examination of strain O-2–5, a Leptolyngbya sp, i.e., the isolation and 

characterization of leptazolines A-D (1-4), and two hydrolysis products (5–6).3 Assignment 

of the relative configurations of 1 and 2 involved calculating NMR chemical shifts using a 

widely-cited protocol outlined by Willoughby et al.,4 which revealed a surprising operating 

system dependence on the calculated values due to issues with one of the python scripts.

The molecular formula of leptazoline A (1) was established as C13H14ClNO5 from its 

HRESIMS signal at m/z 300.0637 [M+H]+ and isotopic patterns indicative of a chlorine 

atom, i.e. a 3:1 ratio of m/z 300 and 302. The 1H and 13C NMR spectra (Table 1 and Table 

S1; MeOH-d4) revealed the presence of three aromatic proton signals consistent with a 

1,2,4-trisubstituted benzene ring, i.e., δH 7.02 (d, J = 8.8 Hz), 7.47 (dd, J = 8.8, 2.7 Hz), and 

7.53 (d, J = 2.7 Hz). Analysis of the NMR data suggested that a chlorine atom, an oxygen 

atom and

a sp2 hybridized carbon were attached to this ring at C-12, −9 and −8, respectively. These 

assignments were consistent with the carbon chemical shifts reported for 5-chlorosalicylic 

acid, with the same substitution pattern,5 and yielded the lowest mean average error (MAE) 

of the calculated 13C NMR shifts given the other possible isomers (Table S2).
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A COSY correlation connected the lone methyl doublet (H-6) to H-5 (4.77 ppm), while an 

HMBC correlation from H-6 to C-4 (δC 75.7) as well as a COSY correlation between H-5 

and H-4 (δH 3.93) extended the chain. A further network of COSY correlations from H-4 to 

H-3 and then to H-2 completed the proton-coupled spin-system. The large geminal coupling 

constant (>15 Hz) for the methylene protons H-2 indicated an n-acceptor substituent, 

presumably a carbonyl moiety given the molecular formula, was at C-1,6–8 which was 

supported by an HMBC correlation from H-3 to C-1 (δC 173.8), giving a hexanoyl fragment.

The hexanoyl fragment and the 5-chlorosalicylic acid derivative were connected by an 

oxygen atom between C-5 and C-7, based on their chemical shifts and an HMBC correlation 

from H-5. At the time, based on 13C NMR chemical shifts and the molecular formula, we 

assumed C-7 was an ester carbonyl carbon. An HMBC correlation existed between H-4 and 

C-7 as well but we opted for the C-7-O-C-5 connection based on the relatively upfield 

chemical shift of H-4 (3.93 ppm) compared to H-5 (4.77 ppm) that was more consistent with 

the presumed ester.

Thus, the main structural framework of the molecule was established but the additional 

heteroatoms, exchangeable protons and the remaining degree of unsaturation – a ring – 

could not be placed with certainty based on the available spectroscopic data. The carbon 

chemical shifts of C-3, C-4 and C-9 all suggest oxygenation, which given the atoms 

remaining, then suggested C-1 might be an amide assuming C-7 was an ester.

Compound 1 was acetylated to determine which carbons bore heteroatoms with 

exchangeable protons and which were within the ring system. This reaction resulted in the 

formation of two products 7-8, each of which showed nominal m/z values of 342 [M+H]+ 

indicating monoacylation. Purification of these products by HPLC and analysis of the 

resulting 1H NMR spectra showed a downfield shift of H-3 in 7 consistent with acetylation 

of a hydroxyl group, while the other product 8 had acetylation of the phenolic OH. Given 

C-5 and C-7 were already connected via an oxygen atom and C-3 and C-9 had acetylated, 

the unassigned ring must therefore cyclize via some combination of C-1, C-4 and C-7.

It was readily apparent at this point that the location and identity of the nitrogen containing 

functional group was the key to this elucidation. A 1H−15N HMBC experiment resulted in a 

single correlation from H-3 to a nitrogen atom resonating at −170.4 ppm, which clearly 

indicated an amide or amine was not present.9 Assuming a 3-bond correlation, these 

observations indicated the nitrogen atom was attached to C-4, and C-1 was a carboxylic 

acid. A broad singlet signal at 12.28 ppm was observed in the 1H NMR spectrum obtained in 

DMSO-d6 further supporting this conclusion.10 As stated earlier, the chemical shift of C-4 

(75.7 ppm) suggested attachment to an oxygen atom, but it was also in reasonable agreement 

for a carbon atom in an oxazoline ring (Figure 1). While cyanobacteria of the genus 

Leptolyngbya are known to produce various bioactive metabolites, such as the 

palmyrolides11 and the coibamides12, it does not appear that oxazoline-containing 

compounds have been reported from this genus previously.

Due to degradation of 1, the relative configuration was established through DFT calculations 

of the NMR chemical shifts.2 The lowest energy conformers for each diastereomer of 1 were 
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identified using MacroModel (Maestro/Schrodinger), optimized in Gaussian 0913 and their 

zero-point energy calculated before the NMR shielding tensors of the 1H and the 13C nuclei 

were computed. The chemical shift values for each diastereomer were obtained using 

published intercepts and slopes in consideration of the Boltzmann distribution of the 

conformers.

Comparison of the 1H and 13C chemical shifts (Table S3) shows that the experimental values 

are most closely aligned with the computed values for the (3R*,4S*,5S*)-diastereomer (1d). 

Based on the DP4+ probabilities14 computed from these datasets (Table S3), the predicted 

NMR shifts of the diastereomer 1d deviate the least from the experimental data (96.7% 

probability considering 1H and 13C). These calculations suggest that the (3R*,4S*,5S*)-

diastereomer (1d) reflects the correct relative configuration of the compound 1.

The molecular formula of 2 was established as C16H21ClN2O7 from its HRESIMS signal at 

m/z 389.1110 [M+H]+. The spectral data for 2 (Table S4) had many similarities to 1 but 

there were a few noticeable differences, including an additional C3H7NO2 in the molecular 

formula. Analysis of 2D NMR data established that C-2 (73.5 ppm) was oxygenated and C-1 

and C-1’ were linked through an amide bond. Evidence to support the amide bond includes 

the absence of the broad O-H band observed in 1 in the IR spectrum (see Figure S22), and a 

second nitrogen atom observed at −263.0 ppm in the 1H−15N HMBC NMR spectrum. 

Oxygenated carbons C-2’ and C-3’ were magnetically equivalent and attached to C-1’ based 

on COSY correlations from the respective protons, which formed a 2-aminopropan-1,3-diol 

moiety that has been found in other natural products.15, 16 These changes accounted for the 

difference in molecular formula.

Assignment of the relative configuration of 2 relied on calculated NMR shifts. While we 

hypothesized that the three chiral centers shared with 1 would remain unchanged in 2, we 

were able to compute the 1H and 13C NMR chemical shifts of all eight diastereomers using 

minimal computing resources by truncating to the primary amide (2a-h) which reduced the 

number of conformers of each diastereomer from greater than 250 to less than 10. The 

calculated data for the diastereomers 2a-h and their DP4+ probabilities suggest conflicting 

results when 1H and 13C chemical shifts (See Table S5) are considered separately, but 2d, 

which corresponds to (2S*,3S*,4S*,5S*)-2, appears as the clear choice when both data sets 

are taken into account.
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Analogs 3-6 were also isolated. Although there was insufficient material to record 13C NMR 

data, the planar structures and relative configurations could be determined from comparison 

of their HRMS and 1H NMR data with 1–2. For example, 3 and 4 had 1H NMR spectra 

indicative of a 1,2-disubstituted benzene ring without a chlorine atom, which was consistent 

with the MS data. The hydrolyzed products 5 and 6 were determined from the characteristic 

increase of 18 mass units in the mass spectra and examination of the 1D and 2D NMR data, 

and are likely the result of the inclusion of formic acid in the HPLC mobile phase.

Compounds 1 and 2 were isolated in sufficient quantities to be evaluated in our PANC-1 

assay system. While 1 did not significantly inhibit the proliferation of Panc-1 cells, 2 did 

show inhibition of growth (GI50 10 μM). Further biological evaluation was, however, 

hindered due to degradation of the molecules.

While preparing a manuscript, to our surprise, attempts by team members to replicate these 

results produced different calculated NMR chemical shifts despite using the same Gaussian 

files and same procedure outlined by Willoughby et al. For example, all attempts concluded 

1d was the correct diastereomer but these conclusions were based on chemical shifts that 

appeared to depend on the computer system on which Step 15 of that protocol was 

performed (Table 2).

Published in 2014, this Nature Protocols manuscript provides detailed instructions aimed at 

enabling those with minimal theoretical knowledge of the subject area to calculate GIAO 

NMR chemical shifts and includes python scripts to streamline the process. It has been cited 

over 130 times in the last five years. Detailed investigations traced the source of the 

discrepancies to these python scripts which summarize the conformers, free energies, 

Boltzmann distributions and isotopic tensors from the various Gaussian output files and then 

use this information to calculate Boltzmann averaged chemical shifts (Step 15). Specifically 

the script “nmr-data_compilation” extracts the free energy information of each conformer 

and the isotopic tensors for each atom from two files, e.g. 1b-opt_freq-conf-16.out and 1b-

opt_NMR-conf-16.out, respectively, and performs the necessary calculations

In theory, the chemical shift of each atom from each isomer should be properly weighted 

according to the free energy of the conformer, but this was not consistently the case. In the 

end, the inconsistency was traced to differences in the default file sorting algorithm in 
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python across platforms, as shown in Figure 2, and that, as written, the script “nmr-

data_compilation” assumes the frequency and NMR files are sorted in the same order. The 

Boltzmann contribution calculated from the first frequency file in the directory is simply 

applied to the chemical shifts calculated in the first NMR file. For example, in Windows 10 

the script works as designed: two groups of output files, *opt_freq-*-ID.out containing free 

energies and *nmr-*-ID.out containing chemical shifts, are sorted automatically by the 

system such that the conformers are paired correctly (Figure 2B).

However, in LINUX there is no default sorting of file names as this depends on the local 

settings, and the scripts as designed do not check that frequency and NMR files are properly 

matched. As a result, the free energies could be paired with chemical shifts from different 

conformers (Figure 2A) which leads to incorrectly calculated chemical shifts that could 

surely lead to a wrong final conclusion.

To overcome this issue, we amended the script to include a line in the 

read_gaussian_outputfiles subroutine that forces sorting before paring, and a longer file-

matching check function that alerts the user when there is a potential file matching issue (see 

Supporting Information).17 We have tested the revised script across platforms (i.e. MacOS, 

LINUX, and Windows) running different versions of python and it yields consistent results.

This simple glitch18 in the original script calls into question the conclusions of a significant 

number of papers on a wide range of topics in a way that cannot be easily resolved from 

published information since the operating system is rarely mentioned. In the first half of 

2019 alone the protocol was referenced/used during the elucidation of several natural 

products,192021–26 to characterize reaction products,21, 23, 27 and to understand biosynthetic 

pathways.28 Authors who used these scripts should certainly double-check their results and 

any relevant conclusions using the modified scripts in the SI. Ultimately, this example serves 

as a reminder of the principal caveat emptor, and that users should validate non-commercial 

software on their system prior to use on new applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of 1 deduced from COSY (Bold) and 1H−13C (red) and 1H−15N HMBC (Blue) 

correlations.
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Figure 2. 
Inconsistent Sorting of Files
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Table 1.

NMR Spectroscopic Data of Leptazoline A (1) in DMSO-d6

no. δC, type δH (J) COSY HMBC or CIGAR

1 173.8,C

2 39.0,CH2 2.46, dd (15.4, 3.8)
2.37, dd (15.3, 8.6)

1, 3, 4

3 68.0,CH 3.99, dt (8.6, 3.8) 2, 4
1, 2

c
, 5

4 75.7,CH 3.93, dd (6.3, 3.8)
2, 3, 6, 7, 8

c

5 77.7,CH 4.77, p (6.3) 4, 6
3, 4

c
, 7

6 20.5,CH3 1.38, d (6.3) 4, 5

7 163.4,C

8 111.7,C

9 158.2,C

10 118.5,CH 7.02, d (8.8) 11
7
w

, 8, 9, 12, 13
w

11 133.2,CH 7.47, dd (8.8, 2.7)
8
w

, 9, 12, 13

12 122.2,C

13 126.6,CH 7.53, d (2.7)
11

w
7, 9, 10

c
, 11, 12

NH
−170.4

a 12.28, brs

a
Nitrogen chemical shift from 1H−15N HMBC

b15N referenced to MeNO2 (IUPAC std). Referenced to NH3 it resonates at 210.1 ppm

C
CIGAR only

w
Weak correlations
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Table 2.

Variability in Calculated Carbon Chemical Shifts of 1b

no. LINUX (Ubuntu16) Windows (ver. 10) Mac (Mavericks) Mac (Mojave)

1 172.4 173.2 173.2 172.7

2 36.0 37.7 37.7 39.3

3 68.3 68.4 68.4 69.0

4 70.6 70.5 70.5 71.2

5 79.0 78.4 78.4 79.0

6 15.5 13.3 13.3 13.3

7 162.4 162.5 162.5 161.8

8 110.4 109.8 109.8 110.3

9 155.0 156.5 156.5 155.5

10 116.2 115.5 115.5 116.0

11 131.6 131.6 131.6 131.7

12 127.1 126.6 126.6 127.0

13 126.7 125.6 125.6 126.3
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