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Abstract

Speed-accuracy trade-offs are often considered a confound in speeded choice tasks, but individual 

differences in strategy have been linked to personality and brain structure. We ask whether 

strategic adjustments in response caution are reliable, and whether they correlate across tasks and 

with impulsivity traits. In Study 1, participants performed Eriksen flanker and Stroop tasks in two 

sessions four weeks apart. We manipulated response caution by emphasising speed or accuracy. 

We fit the diffusion model for conflict tasks and correlated the change in boundary (accuracy – 

speed) across session and task. We observed moderate test-retest reliability, and medium to large 

correlations across tasks. We replicated this between-task correlation in Study 2 using flanker and 

perceptual decision tasks. We found no consistent correlations with impulsivity. Though moderate 

reliability poses a challenge for researchers interested in stable traits, consistent correlation 

between tasks indicates there are meaningful individual differences in the speed-accuracy trade-

off.
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1 Introduction

Response control is one of the cornerstones of cognitive psychology, and a topic of interest 

for both experimental and correlational approaches. Individual differences in tasks such as 

the Stroop (Stroop, 1935) and Eriksen flanker (Eriksen & Eriksen, 1974), have been linked 

to executive functioning (Miyake et al., 2000), impulsive behaviour (Sharma, Markon, & 

Clark, 2014), and a variety of neuropsychological conditions (Chambers, Garavan, & 

Bellgrove, 2009; Gauggel, Rieger, & Feghoff, 2004; Lansbergen, Kenemans, & van 

Engeland, 2007; Moeller et al., 2002; Verdejo-Garcia, Perales, & Perez-Garcia, 2007). From 

an experimental perspective, response control paradigms feature prominently in modelling 

and neurophysiological studies, where the goal is to characterise the general mechanisms 

responsible for the control of action (Bompas, Hedge, & Sumner, 2017; Logan, Yamaguchi, 
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Schall, & Palmeri, 2015; Munoz & Everling, 2004). Though the application of these tasks 

across different disciplines is promising for the development of a coherent understanding of 

response control, recent work has illustrated that there are challenges to interpreting 

individual differences because they can arise from different sources, including strategic 

processes (Boy & Sumner, 2014; Hedge, Powell, Bompas, Vivian-Griffiths, & Sumner, 

2018; Miller & Ulrich, 2013). Here, we ask whether strategic processes, often considered to 

be a confound in cognitive studies, represent a reliable and general component of decision 

making.

1.1 Multiple processes underlying individual differences in response control

In conflict tasks, such as the Stroop, flanker or Simon tasks, we typically subtract reaction 

times or errors in a baseline condition (congruent or neutral) from a condition in which the 

stimulus provides conflicting information (incongruent). When used in an individual 

differences context, the resultant RT or error costs are treated as an index of the individual’s 

ability to resolve competition between conflicting response options (e.g. Friedman & 

Miyake, 2004). However, the processes underlying behaviour are multifaceted, and 

variability in the magnitude of an RT cost or error cost cannot easily be attributed to a single 

mechanism (Hedge, Powell, Bompas, et al., 2018; Miller & Ulrich, 2013). For example, it 

has long been theorised that an individual’s reaction time reflects not only their ability to 

process a stimulus, but also their strategic choice to favour speed or accuracy (Pachella, 

1974; Wickelgren, 1977). Indeed, one of the reasons why we use within-subject designs 

when examining differences between conditions in average RTs is to account for this so 

called speed accuracy trade-off (SAT). However, individual differences in strategy still 

contribute to variability in the RT costs. Individuals who favour accuracy over speed produce 

larger RT costs, as well as smaller error costs (Hedge, Powell, Bompas, et al., 2018; Hedge, 

Powell, & Sumner, 2018; Wickelgren, 1977).

In order to dissociate contributions of strategy and ability in a cognitive task, we require a 

framework that characterises the contributions of both to behaviour. One such framework is 

that of sequential sampling models (Brown & Heathcote, 2008; McKoon & Ratcliff, 2013; 

Ratcliff & McKoon, 2008; Ulrich, Schroter, Leuthold, & Birngruber, 2015). These models 

assume that choice RT behaviour can be captured by a process of accumulating evidence 

sampled from the environment, until a boundary or threshold is reached. The rate at which 

evidence is accumulated represents the efficiency of processing, and the height of the 

boundary reflects the amount of evidence that an individual waits for before deciding on the 

response (i.e. their level of response caution, or strategy). By dissociating these processes, 

and for their ability to simultaneously account for both the RT and accuracy of responses, 

sequential sampling models could provide a useful window into individual differences in 

response control (see e.g. Hedge, Powell, Bompas, et al., 2018; White, Curl, & Sloane, 

2016).

1.2 Response caution as a meaningful component of response control

To many researchers conducting choice RT tasks, strategic processes are considered a 

confound to the mechanisms of interest. For example, composite measures of RT and 

accuracy have been proposed with the explicit intention of providing a better control for 
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SATs than traditional subtractions in studies of (e.g.) executive functioning (Draheim, Hicks, 

& Engle, 2016; Liesefeld & Janczyk, 2018). However, there is evidence that strategic control 

itself may be a meaningful measure of individual differences, as captured by sequential 

sampling models. For example, more cautious response strategies are often observed in 

healthy older adults, relative to younger adults (e.g. Ratcliff, Thapar, & McKoon, 2006; 

Thapar, Ratcliff, & McKoon, 2003). Studies have also observed changes in response caution 

in individuals with autistic spectrum disorders, though the studies vary in the direction of the 

effect (Karalunas et al., 2018; Pirrone, Dickinson, Gomez, Stafford, & Milne, 2017; Powell 

et al., 2019). Finally, in multiple response control task datasets, we observed a correlation 

between tasks in model parameters representing response caution, in the absence of 

correlations in parameters reflecting conflict processing (Hedge, Powell, Bompas, & 

Sumner, 2019).

Participants in the aforementioned studies are typically instructed to be both fast and 

accurate, such that the levels of response caution observed are interpreted as the individual’s 

‘default’ strategy when given no explicit instruction to favour speed or accuracy. However, 

individuals are also able to flexibly adjust their strategy if instructed. In SAT paradigms, 

participants are instructed to prioritise speed in some blocks and accuracy in others, which is 

(primarily) captured in sequential sampling models by an individual decreasing or increasing 

their boundary (for a review, see Heitz, 2014). The extent to which individuals are able or 

willing to adjust their level of caution has also been the subject of individual differences 

research. Larger decreases in caution under speed emphasis relative to accuracy emphasis in 

a perceptual decision task were correlated with increased BOLD activation in the striatum 

and pre-SMA (Forstmann et al., 2008), as well as increased structural connectivity between 

those regions (Forstmann et al., 2010; though see Boekel et al., 2015 for a non-replication of 

the connectivity). An association has also been observed between response caution under 

speed emphasis and self-reported “need for closure” (Evans, Rae, Bushmakin, Rubin, & 

Brown, 2017). Need for closure is a personality trait theorised to reflect an individual’s 

preference for certainty over ambiguity (Webster & Kruglanski, 1994), from which Evans et 

al. predicted that a greater need for closure would lead to more urgent decision making. In 

line with this prediction, when the data were fit with the linear ballistic accumulator model 

(Brown & Heathcote, 2008), individuals with a greater need for closure set a lower threshold 

(Evans et al., 2017).

In sum, the research to date suggests that individual differences in response caution and its 

strategic adjustments have the potential to inform our understanding of cognitive functioning 

in both healthy individuals and neuropsychological conditions. However, this promise is 

tempered by several unknowns. First, the psychometric properties of response caution and 

its strategic adjustments are not well understood. Test-retest reliability is an important 

consideration for individual differences research, reflecting the degree to which individuals 

can be consistently ranked on the dimension of interest (i.e. more or less cautious). Recent 

work has suggested that traditional measures of response control have sub-optimal 

reliability, and these concerns may also extend to model-based analyses (Hedge, Powell, & 

Sumner, 2018; Paap & Sawi, 2016). Though a few studies have examined the test-retest 

reliability of model parameters representing response caution (Enkavi et al., 2019; Lerche & 
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Voss, 2017; Schubert, Frischkorn, Hagemann, & Voss, 2016), to our knowledge none have 

examined the reliability of strategic adjustments of caution in a SAT paradigm.

A second consideration is the extent to which individual differences in strategic control 

adjustments can be generalised from a single task. Several studies have observed 

correlations in response caution between tasks when neither speed nor accuracy are 

preferentially reinforced (Hedge et al., 2019; Lerche & Voss, 2017; Ratcliff, Thompson, & 

McKoon, 2015), though those that have examined the SAT have used a single perceptual 

decision task (Evans et al., 2017; Forstmann et al., 2008, 2010).

Here, we address this gap in the literature with two experiments. In the first, we apply a 

model of response control (the diffusion model for conflict tasks; Ulrich et al., 2015) to test-

retest data from the flanker and Stroop tasks under different SAT instructions. This allows us 

to examine whether adjustments in control are reliable over time within the same task, and 

whether they generalise across tasks within the same cognitive domain. In the second 

experiment, we examine generalisability more broadly by comparing a response control task 

(flanker) to a perceptual decision task (random dot motion) commonly used in the decision 

making literature. To examine potential relationships with related constructs, we also 

collected data on self-reported impulsivity in both studies, as well as compliance and 

personality in Study 2.

2 Study 1: Method

2.1 Participants

Participants were 57 (6 male) undergraduate and postgraduate psychology students. 

Participants took part either for payment or for course credit. All participants gave their 

informed written consent prior to participation in accordance with the revised Declarations 

of Helsinki (2013), and the experiments were approved by the local Ethics Committee.

2.2 Design and procedure

Participants completed both the Stroop and flanker task in two 90 min sessions taking place 

approximately 4 weeks apart. A schematic of these tasks, as well as the random dot motion 

task used in study 2, can be seen in Fig. 1. We administered the UPPS-P, a self-report 

measure with subscales for different types of impulsivity, (Lynam, Whiteside, Smith, & 

Cyders, 2006; Whiteside & Lynam, 2001), after participants complete the behavioural tasks. 

Participants completed the tasks in a dimly lit room from a viewing distance of 

approximately 60 cm. Stimuli were presented on a 36.5 cm by 27.5 cm display (60 hz, 1280 

× 1024).

2.2.1 Eriksen flanker task—Participants responded to the direction of a centrally 

presented arrow (left or right) using the z and m keys. On each trial, the centrally presented 

arrow (1 cm × 1 cm) was flanked above and below by two other symbols separated by 0.75 

cm, so that flankers were individually visible. Flanking stimuli were either arrows pointing 

in the same direction as the central arrow (congruent condition), straight lines (neutral 

condition), or arrows pointing in the opposite direction to the central arrow (incongruent 

condition). Trials were separated by an interval of 750 ms.
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2.2.2 Stroop task—Participants responded to the colour of a centrally presented word 

(Arial, font size 70), which could either be red (z key), blue (x key), green (n key) or yellow 

(m key). The colours were not purposely matched for luminance. The presented word could 

be the same as the font colour (congruent condition), one of four non-colour words (lot, 

ship, cross, advice; neutral condition), or a colour word corresponding to one of the other 

response options (incongruent). Trials were separated by an interval of 750 ms.

For each session and task, participants completed 12 blocks, consisting of 4 each for speed, 

standard and accuracy instructions. Each block consisted of 144 trials, with 48 each of 

congruent, neutral and incongruent stimuli (192 trials total per congruency and instruction 

condition). The order of blocks was randomised, as was the order of trials within blocks. At 

the beginning of speed-emphasis blocks, participants were instructed “Please try to respond 

as quickly as possible, without guessing the response”. For accuracy blocks, participants 

were told “Please ensure that your responses are accurate, without losing too much speed”. 

For standard instruction blocks, participants were instructed “Please try to be both fast and 

accurate in your responses”. In speed blocks, if participants responded slower than 500 ms in 

the flanker or 600 ms in the Stroop, the message “Too slow” appeared on screen for 500 ms. 

In the accuracy condition, the message “Incorrect” appeared if participants made an error. In 

all blocks, the message “Too fast” appeared if participants responded faster than 150 ms in 

the flanker and 200 ms in the Stroop task (typically < 1% of trials). Participants received 

feedback about both their average RT and accuracy after each block in all instruction 

conditions.

Stimuli were presented until response. In the Stroop task, stimuli were presented for a 

maximum duration of 1950 ms. Trials exceeding this were rare (0.3% and 0.2% of trials in 

session 1 and 2).

2.3 Data processing

Two participants were removed because they did not return for the second session. We 

excluded participants if there average accuracy across all instruction blocks fell below 60%. 

This resulted in more participants being retained for the flanker task (N = 47) than the 

Stroop (N = 43). These participants were retained for the reliability analysis in the flanker 

task, but were excluded when calculating correlations across tasks. We removed RTs less 

than 100 ms, and greater than the individual’s median plus three times their median absolute 

deviation for each condition (Leys, Ley, Klein, Bernard, & Licata, 2013). We did not code 

trials as incorrect on the basis that they exceeded our deadline for feedback in speed blocks, 

as changing the relationship between RT and accuracy would confound our modelling. The 

data are available on the Open ScienceFramework (https://osf.io/zag7c/).

For the reliability analysis, we calculated Intraclass Correlation Coefficients using the psych 

package in R (ICC2; Revelle, 2018; Team & R Development Core Team, 2016). This value 

is the ratio of between-subject variance in the measure to the total variance, comprising 

between-subject variance, between-session variance, and error variance. The form of the 

ICC corresponds to a two-way random effects model for absolute agreement (Shrout & 

Fleiss, 1979).
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While the ICC is interpreted as a correlation, ranging from zero to one, different criteria are 

used to interpret the degree of reliability compared to interclass correlation effect sizes 

(Pearson’s R and Spearman’s rho). ICCs above 0.8 are typically considered excellent, while 

0.6 and 0.4 are categorised as good and moderate reliability (Cicchetti & Sparrow, 1981; 

Fleiss, 1981; Landis & Koch, 1977). In contrast, Pearson’s R values of 0.5, 0.3 and 0.1 are 

typically interpreted as large, medium and small effect sizes respectively (Cohen, 1988). The 

higher convention for the ICC primarily reflects the application rather than the calculation, 

as high levels of reliability are typically a pre-requisite to correlational work. When 

calculated on the same data, intra and interclass correlations usually produce similar values 

(see supplementary material A for different calculations).

2.4 The diffusion model for conflict tasks

The diffusion model for conflict tasks (DMC; Ulrich et al., 2015) is a mathematical model of 

two-choice reaction time behaviour in response conflict tasks. It assumes that the response 

options are represented by an upper and lower boundary, here corresponding to the correct 

and incorrect response respectively. The decision processes can be described by a process of 

accumulating evidence from the stimulus until one or the other boundary is reached (see Fig. 

2A). The reaction time on a given trial is determined by the time it takes for a boundary to 

be reached, plus the duration of sensory and motor (non-decision) processes. For 

mathematical details, see Ulrich et al. (2015).

Boundary separation is the critical parameter for our current goal of measuring individual 

differences in response caution. Individuals who are more averse to making errors and slow 

their responses to avoid them should have higher boundary separation values. When 

participants are instructed to emphasise speed, this is primarily captured by lowering their 

boundary in that block (for reviews, see Heitz, 2014; Ratcliff, Smith, Brown, & McKoon, 

2016). Recent evidence has indicated that the changes under speed emphasis are also 

reflected in non-decision time to a degree in non-conflict tasks, and sometimes also by a 

change in drift rate (see e.g. Rae, Heathcote, Donkin, Averell, & Brown, 2014). However, 

the sensitivity of DMC parameters to the SAT manipulations have not been examined. Given 

the time-consuming nature of the fitting process for our datasets, and the relatively large 

number of possible variants, we make the simplifying assumption that only boundary 

separation varies across SAT instruction conditions here.

The DMC assumes that the accumulation process on a trial is a combination of processing 

from controlled and automatic pathways (De Jong, Liang, & Lauber, 1994; Ridderinkhof, 

2002). The controlled route is responsible for processing the task-relevant stimulus feature 

(e.g. the central arrow in the flanker task), and is represented by drift rate parameter that is 

constant across conditions. Automatic activation is implemented as a re-scaled gamma 

function, described by two free parameters (amplitude and time-to-peak) and one fixed 

parameter (shape). Initially, the automatic activation receives a strong input, reflecting the 

capture of a prepotent response by (e.g.) the flanking arrows. After it reaches a maximum 

value (amplitude) at a specified point in time (time-to-peak), the automatic activation 

decreases, reflecting decay or active suppression (Hommel, 1994; Ulrich et al., 2015). In 

addition to the aforementioned parameters, which are typically the focus of interest, the 
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model has two parameters describing variability in the starting point of the accumulation 

processes and variability in the duration of non-decision time respectively.

2.5 Model fitting

For each participant and task, we estimated nine parameters: boundary separation under 

speed emphasis, boundary separation under standard instructions, boundary separation under 

accuracy emphasis, the amplitude of automatic activation (A for congruent trials, 0 for 

neutral trials, -A for incongruent trials), the time to peak automatic activation, mean non-

decision time, drift rate of the controlled process, the shape parameter of the starting point 

distribution, and variability in non-decision time. Variability in starting points and non-

decision time are captured by a beta and normal distribution respectively. As with Ulrich et 

al. (2015), the diffusion constant/within-trial noise (σ) was fixed to 4, and between-trial 

variability in drift rates was fixed to 0. We fixed the shape parameter of the automatic 

activation function to 2 for all tasks, following Ulrich et al. (2015).

We accuracy-coded our data, such that the upper and lower response boundaries 

corresponded to the correct and incorrect response options. This allowed us to collapse 

across different stimulus configurations (e.g. a congruent flanker stimulus irrespective of 

whether the arrow was pointing left or right), and also to fit the same model to the four-

choice Stroop data (Voss, Nagler, & Lerche, 2013). Though this level of abstraction is not 

ideal, it relates RT and accuracy to capture the strategic processes that we are interested in, 

and there is currently no extension of the model for four choice tasks.

After excluding outlier RTs as described above, correct and incorrect RTs from congruent, 

neutral and incongruent conditions in each instruction block were separately binned into 

quantiles. We fit the DMC to experimental data using the similar approach to that used by 

the Diffusion Model Analysis Toolbox (DMAT; Vandekerckhove & Tuerlinckx, 2008). 

Correct RTs were binned using five quantiles (0.1, 0.3, 0.5, 0.7, 0.9). Incorrect RTs were 

binned using five quantiles if the total number of errors in that condition > 10, otherwise 

they were not used. The application of five quantiles produced six bins per RT distribution 

(corresponding to: 0–10%, 10–30%, 30–50%, 50–70%, 70–90%, 90–100%). Therefore, 

participants’ fits would be based on either 6 or 12 data points per instruction and congruency 

condition, resulting in between 54 and 108 data points in total. These quantiles are 

commonly used when fitting sequential sampling models (c.f. Ratcliff & Tuerlinckx, 2002). 

We calculated the deviance (-2 log-likelihood) between observed and simulated quantiles, 

which was minimised with a Nelder-Mead simplex (Nelder & Mead, 1965) implemented in 

the fminbnd function in Matlab. We constrained the search such that all free parameters were 

positive, and the shape of the starting point distribution was greater than one.

Initially, we fit each participant’s data using 5000 parameter sets that were randomly 

generated from a uniform distribution (see supplementary material B for maximum and 

minimum values). This was done to explore plausible starting points for our fitting 

algorithm. We then took the 15 best parameter sets resulting from this initial search, and 

submitted each of those to the simplex algorithm, in which we simulated 10,000 trials per 

condition at each iteration. The simplex was re-initialised 3 times to avoid local minima. 

After the process was completed, we took the single best fitting parameter set for each 
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individual. This process took approximately 6 days per dataset, and was performed on 

Cardiff University Brain Research Imaging Centre’s (CUBRIC) high performance computer 

cluster.

3 Results and discussion

3.1 Descriptive statistics

3.1.1 Behavioural data—Reaction times and error rates for both tasks are shown in Fig. 

3. To verify that the average performance reflected the expected manipulations, we 

conducted separate 3(instruction) × 3(congruency) repeated-measures ANOVAs on RTs and 

error rates for each session and task. In all cases we observed significant main effects for 

both congruency and instruction (all p < .001; see Supplementary Material C for full 

ANOVA results). Error rates and RTs increased for incongruent relative to congruent stimuli. 

Further, error rates increased and RTs decreased when participants were instructed to 

prioritise speed over accuracy.

3.1.2 Model parameters—Descriptive statistics for the best fitting parameters can be 

seen in Table 1. Graphical displays of the model fits can be seen in Supplementary Material 

D.

The values are numerically similar to previous fits we have observed in a non-SAT context 

(Hedge et al., 2019), with the Stroop showing a relatively slower time-to-peak and a higher 

value for the shape of the starting distribution (corresponding to less variability in start 

points). This reflects that the manual Stroop task does not tend to show fast errors (see 

Supplementary Material D). The model was successful in capturing the relative speed and 

accuracy of participants, though the data show more fast errors under speed-emphasis than 

the model. In both tasks and sessions, boundary separation was decreased under speed 

relative to neutral and accuracy emphasis, indicating that the parameter captured the SAT 

manipulation in the expected way.

3.2 Within-task reliability of strategic adjustments of response caution

We quantified strategic adjustments in response caution by taking the difference in boundary 

separation under speed-emphasis relative to accuracy emphasis for each individual. Strategic 

adjustments showed moderate reliability across both tasks (flanker ICC = 0.5, Stroop ICC = 

0.40; see Fig. 4). To put these model parameter correlations in context of the behaviour from 

which they’re derived, we also examined the reliability of adjustments to RT and accuracy 

rates in isolation (averaged across congruency conditions). This led to a similar range of 

values, with ICCs from 0.46 to 0.68 (see Supplementary Material A for a full report). In 

other words, the reliability of the model parameters were not systematically higher or lower 

than the behavioural measures. Note that boundary separation is theorised to reflect a 

balance between RT and accuracy, and so would not have the same interpretation as either 

behavioural measure in isolation.

See Table 2 for the reliability of all the DMC parameters. We also draw attention to the 95% 

confidence intervals (CI) given in this table. While a CI cannot be interpreted as an indicator 

of the precision of an estimate (c.f. Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016), 
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under similar assumptions as those used to calculate a p-value, it can be interpreted to 

contain the values we cannot reject based on our statistical test (Morey, Hoekstra, Rouder, & 

Wagenmakers, 2016). In other words, just as we reject the null hypothesis (ICC = 0) based 

on the interval for adjustments in the flanker task (95% CI: 0.26–0.69), we also reject values 

that correspond to excellent or clinically required levels of reliability (ICC > 0.7).

3.3 Between-task correlation of strategic adjustments of response caution

Our second key question is whether strategic adjustments in response caution correlate 

between tasks, which we assessed using Spearman’s rho. We observed moderate to large 

correlations between tasks in each session (session 1 rho = 0.56, p < .001; session 2 rho = 

0.40, p = .038; Fig. 5). Again, these were similar to the correlations observed in the 

adjustments of RTs and accuracy in isolation, which ranged from 0.31 to 60 (see 

Supplementary material A).

We present the correlations between strategic adjustments of response caution and UPPS-P 

subscales in supplementary material E. Briefly, we see no consistent correlation across our 

datasets.

3.4 Reliability of other model parameters

As we are the first to examine the test re-test reliability of the DMC parameters (not just the 

strategic adjustments to boundary), we present these in Table 2, along with the between task 

correlations. The reliability of the three main non-conflict parameters (drift rates, boundary 

separation in each instruction condition and non-decision time) ranges from moderate to 

good, and are similar to those observed for the standard drift-diffusion model (Lerche & 

Voss, 2017). For conflict processing parameters, the amplitude of the automatic activation 

showed moderate reliability in both tasks, whereas the time-to-peak was relatively poor. The 

between-task correlations are generally similar to that which we observed with these tasks in 

our other work (that did not include a SAT manipulation; Hedge et al., 2019).

3.5 Interim discussion

We discuss the implications of these values in more detail in the general discussion. First, we 

follow up on the observation that strategic adjustments in response caution correlate between 

the flanker and Stroop tasks in both sessions. This result is promising, and suggests that we 

can generalise our interpretation of individual differences in strategic control beyond a single 

task. However, it raises the question of whether it generalises outside of response control 

tasks, or if strategic adjustments may differ depending on the broad cognitive domain. This 

is particularly relevant as previous papers that have examined individual differences in 

strategic adjustments have used a perceptual decision task, rather than conflict tasks (Evans 

et al., 2017; Forstmann et al., 2008, 2010). To assess whether individual differences in 

response caution also generalise across cognitive domains, we conducted a second study in 

which participants performed the flanker task along with a random dot motion 

discrimination task under a SAT manipulation.

Hedge et al. Page 9

Conscious Cogn. Author manuscript; available in PMC 2019 December 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4 Study 2: Method

4.1 Participants

Participants were 81 (6 male) undergraduate and postgraduate psychology students. 

Participants took part either for payment or for course credit. Six participants that 

participated in Study 1 also participated in Study 2. The studies took place a year apart. All 

participants gave their informed written consent prior to participation in accordance with the 

revised Declarations of Helsinki (2013), and the experiments were approved by the local 

Ethics Committee.

4.2 Design and procedure

Participants completed both the flanker task and a dot motion discrimination task based on 

(Pote et al., 2016). The participants also completed a number of questionnaires for the 

purpose of exploratory analyses: the UPPS-P impulsivity scale, the NEO-FFI personality 

inventory (McCrae & Costa, 2004), the Gudjonsson Compliance Scale (Gudjonsson, 1989), 

and a Situational Compliance Scale (Gudjonsson, Sigurdsson, Einarsson, & Einarsson, 

2008).

The flanker task appeared as described above. Participants performed 12 blocks of 144 trials 

in total. Twelve participants did not complete all blocks within the allotted time, so data 

were only available for 11 (11 participants) or 10 (1 participant) blocks.

In the dot motion task, each frame consisted of 50 white dots (5x5 pixels in size) displayed 

within an oval patch (14.7 cm high × 23.7 cm wide) in the centre of a grey screen (60 hz, 

1680 × 1050). On each frame, either 30% (high coherence) or 15% (low coherence) of the 

dots were chosen as signal dots, which moved in a consistent direction (left or right) by 29 

pixels. The lifetime of the dots was 3 frames. Non-signal dots reappeared in a random 

position on each frame. The stimulus was displayed for a maximum of 2000 ms, with a 500 

ms ISI. Participants were asked to determine the direction of the coherent motion. Each 

block consisted of 120 trials, 60 of each coherence level. Participants performed 12 blocks in 

total, except for 5 participants who completed 11 blocks, and 1 participant who completed 

10.

Feedback relating to speed, accuracy or neutral blocks was given as described in Study 1. 

For the dot motion task, participants were informed that their responses were too slow in 

speed blocks if their RT exceeded 700 ms. Participants were informed that they were too fast 

in all blocks if their responses were shorter than 250 ms.

4.3 Data processing

The same inclusion criteria and RT cut-offs described in study 1 were applied. After 

exclusions, 73 participants were retained for the analysis of between-task correlations.

4.4 The drift-diffusion model

As the dot-motion task is not a conflict task, and the DMC extends the standard drift-

diffusion model with conflict-specific parameters, we opted to fit the dot motion data with 
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the standard drift-diffusion model (DDM; Ratcliff, 1978; Ratcliff & Rouder, 1998). Though 

the DMC is an extension of the DDM, it is possible that they capture variance associated 

with response caution in slightly different ways due to different parameterisations. However, 

we are interested in the conclusions that researchers would draw if they had used the model 

that was most appropriate for the task they had used. Critically for our purposes, strategic 

adjustments in response caution are conceptually captured by a change in boundary 

separation in both models.

The primary difference between the DMC and the DDM is that, whereas accumulation rates 

in the DMC reflect a composite of controlled and automatic processes, accumulation rates in 

the DDM are determined by a single drift rate parameter. This means that the underlying 

accumulation rate in a given trial is constant over time, albeit subject to noise as in the 

DMC. Conditions with varying difficulty are captured by differences in average drift rates 

(see Fig. 6).

4.5 Model fitting

We fit the DMC to the flanker data using the same process described for study 1. For the 

DDM, we used the Diffusion Model Analysis Toolbox (DMAT; Vandekerckhove & 

Tuerlinckx, 2008). Similar to our approach with the DMC, observed RT quantiles from 

correct and incorrect are compared to data simulated from the model, and the deviance 

minimised using a Nelder-Mead simplex (Nelder & Mead, 1965). As with the flanker task, 

for simplicity we assumed that only boundary separation varied across instruction condition. 

For each participant and task, we estimated eight parameters: boundary separation under 

speed emphasis, boundary separation under standard instructions, boundary separation under 

accuracy emphasis, drift rate for high coherence trials, drift rate for low coherence trials, 

mean non-decision time, starting point variability and non-decision variability. Between-trial 

variability in drift rates was fixed to 0.1, starting point bias was fixed to boundary 

separation/2, and within-trial noise was fixed to 0.1. Note that DMAT assumes uniform 

distributions for starting point and non-decision variability, whereas our implementation of 

the DMC uses a beta and normal distribution respectively (following Ulrich et al., 2015).

5 Results and discussion

5.1 Descriptive statistics

5.1.1 Behavioural data—Reaction times and error rates for both tasks are shown in Fig. 

7. As in Experiment 1, we verified that the average performance reflected the expected 

manipulations by conducting separate repeated-measures ANOVAs on RTs and error rate in 

each task. In all cases we observed significant main effects for both congruency/coherence 

and instruction (all p < .001; see Supplementary Material C for full ANOVA results). Error 

rates and RTs increased for incongruent (flanker) and low-coherence (dot-motion) stimuli 

relative to congruent and high-coherence stimuli. Further, error rates increased and RTs 

decreased when participants were instructed to prioritise speed over accuracy.

5.1.2 Model parameters—Descriptive statistics and graphical displays of the fits for the 

best fitting parameters can be seen in Supplementary material F. In both tasks, as expected, 
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boundary separation was decreased under speed relative to neutral and accuracy emphasis. 

Values for the flanker task are similar to those observed in Study 1. Values for the DDM 

parameters fit to the dot-motion task were within typically observed ranges (Donkin, Brown, 

Heathcote, & Wagenmakers, 2011; Matzke & Wagenmakers, 2009).

5.2 Between-task correlation of strategic adjustments of response caution

As in study 1, we observed a large correlation in strategic adjustments in response caution 

(rho = 0.50, p < .001; Fig. 8). Thus, behavioural variability captured by parameters 

representing response caution do share commonality across tasks from different cognitive 

domains. As in Study 1, this was numerically similar to the correlation observed in the 

adjustments in RT and accuracy in isolation (both rho = 0.40).

For correlations between self-report measures and strategic adjustments in response caution, 

see Supplementary material E. Correlations with self-report were generally small and 

inconsistent across the tasks.

6 General discussion

The aim of the current work was to examine whether individual differences in strategic 

adjustments of response caution are a reliable and generalisable dimension of response 

control. The answer to both questions is yes, though this is caveated by the magnitude of the 

effects that we observe. In Experiment 1, we observed moderate test-retest reliability in the 

change in response caution in both the flanker and Stroop tasks, as represented by the 

change in boundary separation between accuracy-emphasis and speed emphasis instructions. 

It is not trivial that these strategic adjustments show non-zero reliability, though the 

magnitude is below the levels typically considered good or excellent for conducting 

individual differences research (Cicchetti & Sparrow, 1981; Fleiss, 1981; Landis & Koch, 

1977). The implication of this is that researchers interested in examining relationships 

between strategic adjustments in response caution and personality or brain structure will 

likely require large sample sizes to detect relationships, if they exist.

With regards to generalisability, we show medium to large correlations in response caution 

adjustments across tasks conducted in the same experimental session. We observed this 

between conflict tasks (study 1), and between a conflict and a perceptual decision task 

(study 2). We focus our discussion on the interpretation of strategic control adjustments, and 

practical recommendations for researchers interested in response caution.

6.1 Meaningful individual differences in default caution and its strategic adjustment

There is increasing evidence that there are meaningful individual differences in response 

caution (Evans et al., 2017; Forstmann et al., 2010; Hedge et al., 2019; Karalunas et al., 

2018; Pirrone et al., 2017; Powell et al., 2019; Ratcliff et al., 2006a). Recently, we applied 

the DMC to three response control datasets, comprising the flanker and Simon tasks, flanker 

and Stroop tasks, and two variants of the Simon task. Our aim was to examine whether the 

model could uncover hidden correlations between mechanisms of conflict processing that 

are obscured in traditional measures (Hedge, Powell, Bompas, et al., 2018). Though we 

observed no correlation in the conflict parameters (amplitude and time-to-peak), we 
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consistently observed correlations in boundary (see also Lerche & Voss, 2017; Ratcliff et al., 

2015). This finding is mirrored in our results here, with boundary separation consistently 

showing correlation between tasks. The novel contribution of this work is that we also see 

correlation in the strategic adjustment in response caution, captured by the change in 

boundary separation between different SAT instructions.

We manipulated participant’s levels of response caution through verbal instruction, which is 

the same method used by the previous studies that have examined individual differences in 

response caution adjustments (Evans et al., 2017; Forstmann et al., 2008, 2010). There are 

numerous alternative methods for eliciting a SAT (for a review, see Heitz, 2014). These 

include the use of payoff structures, in which participants receive different rewards and 

penalisations based on accuracy and/or RT (e.g. Fitts, 1966; Swensson & Edwards, 1971); 

and the use of response deadlines, where participants are informed that they must respond 

within certain time limits (e.g. Pachella & Pew, 1968). Heitz notes that verbal instructions 

are popular because they are easily understood by participants, and produce large effects 

with relatively few trials. However, just as the interpretation of the common instruction in 

choice RT tasks to be both fast and accurate is subjective, so too is the instruction to favour 

speed. Our reliabilities and correlations suggest that participants interpret these instructions 

somewhat consistently, though we do not know what the basis is for the criteria they set. In 

part, this is what we seek to understand by examining correlations with personality 

constructs such as impulsivity. To our knowledge there has not been a systematic 

examination of the consequences of the choice of SAT manipulation for individual 

differences relationships (though some have been compared experimentally, e.g. Dambacher 

& Hübner, 2013). It would benefit future research in this area to elucidate whether the 

method makes a difference.

6.2 Do strategic control adjustments go beyond boundary separation?

A wealth of literature exists for the speed-accuracy trade-off, spanning both behavioural and 

neurophysiological approaches (for a review, see Heitz, 2014). In the context of the 

sequential sampling models, faster RTs and lower accuracy under speed emphasis are 

primarily attributed to reduced boundary separation: a relative decrease in the amount of 

evidence required to initiate a response (Ratcliff et al., 2016). However, performance under 

speed emphasis has also been captured by additional reductions in non-decision time, as 

well as sometimes lower drift rates (Rae et al., 2014; Starns, Ratcliff, & McKoon, 2012; 

Zhang & Rowe, 2014). Further, it has been argued that strategic adjustments can be captured 

by time-varying decision processes, such as urgency signals or collapsing boundaries (Cisek, 

Puskas, & El-Murr, 2009; Ditterich, 2006a, 2006b; Drugowitsch, Moreno-Bote, Churchland, 

Shadlen, & Pouget, 2012; though see Hawkins, Forstmann, Wagenmakers, Ratcliff, & 

Brown, 2015). Here, we fit a relatively simple model that only allowed boundary separation 

to vary across instruction conditions. Therefore it is possible that our fits absorbed variance 

in behaviour that might be captured by other parameters in a more complex model. Note that 

in the introduction, we highlighted the difficulty in translating assumptions from within-

subject contexts to the study of individual differences. The SAT paradigm is also an 

approach that has largely been developed in within-subject experimental contexts, and the 

average best fitting model may not be appropriate for every individual. For example, we 
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could ask whether every individual shows a decrease in boundary, non-decision time, and/or 

information processing parameters (c.f. Haaf & Rouder, 2018). Our results here provide a 

starting point for further examination; that we observe some reliability and cross-task 

correlation in response caution here suggests that there is reliable variance in the behaviour 

to be captured.

6.3 Previous literature on the reliability of response caution

To our knowledge, we are the first to examine the reliability of parameters of the diffusion 

model for conflict tasks. Previous work has examined the test-retest reliability of the 

standard drift-diffusion model (Lerche & Voss, 2017; Schubert et al., 2016), including 

applications to conflict tasks (Enkavi et al., 2019), though not in a SAT paradigm. 

Nevertheless, we can contrast our estimates of the reliability of boundary separation under 

standard instructions with theirs.

Lerche and Voss (2017) reported one week reliability for a lexical decision task, a 

recognition memory task, and an associative priming task. They observed correlations of 

approximately r = 0.8 for boundary separation in all tasks (see maximum likelihood 

estimates in their Fig. 2). Schubert et al. (2016) report eight month reliabilities for three 

tasks, including a two- and four-choice variant of a visual choice RT task, a Sternberg 

memory scanning task, and a Posner letter matching task. Correlations for boundary 

separation between sessions ranged from r = 0.2 to r = 0.6 (see their Table A2). Recently, 

Enkavi et al. (2019) applied the hierarchical drift diffusion model (Wiecki, Sofer, & Frank, 

2013) to reliability data from 15 choice RT tasks, including a three choice Stroop task. The 

average time between sessions was approximately 16 weeks. The reliability of boundary 

separation in the Stroop task was 0.29, which was slightly below the median reliability for 

all the tasks (0.31; see their HDDM values in Fig. 5). Taking these previous studies together, 

our results fall within the range of reliabilities previously observed, but the range is broad. It 

would be premature to suggest that there are systematic differences between tasks in the 

consistency of response caution that they elicit, though we note that it was relatively low for 

the Stroop task in both our Study 1 and in Enkavi et al. (2019) data.

6.4 Model choice and model complexity

To examine the reliability of strategic adjustments in response caution, we applied the drift-

diffusion model (Ratcliff, 1978), and an extended diffusion model for conflict tasks (Ulrich 

et al., 2015). Though the drift diffusion model is widely applied in SAT studies (e.g. Mulder 

et al., 2010; Ratcliff, 1985; Zhang & Rowe, 2014), there are alternative models for both 

conflict (Hubner, Steinhauser, & Lehle, 2010; White, Ratcliff, & Starns, 2011) and non-

conflict tasks (Brown & Heathcote, 2008; Usher & McClelland, 2001). Several empirical 

and theoretical reviews have considered the relationship between different models, and it has 

been noted that there is often a high degree of mimicry between them, such that researchers 

would often reach the same conclusion irrespective of the model chosen (Bogacz, Brown, 

Moehlis, Holmes, & Cohen, 2006; Donkin et al., 2011; Ratcliff & Smith, 2004; White, 

Servant, & Logan, 2017). Nevertheless, we briefly consider the potential impact of this 

choice.
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Both Forstmann et al. (2010) and Evans et al. (2017) examined individual differences in 

response caution adjustments using the Linear Ballistic Accumulator model (Brown & 

Heathcote, 2008). Whereas in the DDM a single drift process represents the difference in 

evidence between to alternatives, the LBA consists of separate accumulators for each 

response alternative and a single threshold. Starting points for the accumulators in the LBA 

are drawn from a uniform distribution, and response caution is captured by the difference 

between the edge of the start point distribution and the height of the threshold. Forstmann et 

al. (2010) noted that applying the drift-diffusion model to their data did not produce the 

correlation between white matter strength and caution adjustments seen with the LBA (see 

their Supplementary Online Material). They suggested that this may be because the diffusion 

model captured the SAT manipulation in both non-decision time and drift rates, in addition 

to boundary separation. An imperfect mapping between the response caution parameters has 

also been noted when fitting one model to data generated from the other (Donkin et al., 

2011). Given this discrepancy, researchers may wish to check the robustness of conclusions 

drawn from one model to another.

Though we made the simplistic assumption that the SAT manipulation was specifically 

captured by changes in boundary separation in our fits, we added complexity by including 

parameters representing inter-trial variability in non-decision time and the starting point of 

the accumulation process. Including these variability parameters often produces better fits to 

empirical data at the sample average level (Ratcliff & Tuerlinckx, 2002), but they may also 

lead to poorer recovery of individual differences in the main parameters of interest, 

particularly with fewer trial numbers (Lerche & Voss, 2016; van Ravenzwaaij, Donkin, & 

Vandekerckhove, 2017). We reran some of our analyses without including the variability 

parameters, and it produced almost identical estimates for the reliability of strategic 

adjustments (see Supplementary Material G). This may be in part because we had a large 

number of trials, and a model that was quite well constrained across multiple conditions. 

Where researchers have smaller trial numbers, they may wish to implement a simpler model, 

or check that their conclusions are not specific to a particular parameter choice.

6.5 Strategic adjustments and personality traits

Willingness or reluctance to commit errors while attempting speeded responses has been 

linked to the concept of impulsivity (Kagan, 1966), and recently correlated with need for 

closure (Evans et al., 2017) and brain structure (Forstmann et al., 2010). However, we see 

little evidence for a correlation with any self-report impulsivity dimension in our data 

(Supplementary Material E; see also Dickman & Meyer, 1988). We also tested correlations 

with self-report compliance and the big five personality traits (neuroticism, extraversion, 

openness, agreeableness, conscientiousness; Digman, 1990; McCrae & Costa, 2004; McCrae 

& John, 1992). There were no consistent relationships.

The absence of a correlation with impulsivity measures is particularly notable here, given 

the conceptual overlap between impulsivity and a lowered boundary. For example, Metin et 

al. (2013) examined whether differences in RT and accuracy in children with attention-

deficit/hyperactivity disorder relative to healthy controls were best captured by “inefficient” 

or “impulsive” information processing in the context of the drift diffusion model. These 

Hedge et al. Page 15

Conscious Cogn. Author manuscript; available in PMC 2019 December 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



corresponded to drift rate and boundary separation respectively. Despite the common 

terminology, our findings mirror a trend in the impulsivity literature to observe little to no 

correlation between behavioural and self-report measures (Sharma et al., 2014). It remains a 

possibility that there are non-zero correlations that we did not have sufficient power to 

detect. As we discuss in the next section, given that the reliability of strategic adjustments is 

suboptimal, we should expect correlations with other variables to be small.

6.6 Practical considerations for future research

The consistent between-task correlation in strategic adjustment indicates that the extent to 

which an individual adjusts their behaviour is not entirely task or domain specific. A 

practical consideration for researchers interested in response caution and its strategic 

adjustments, and are not specifically interested in a particular cognitive domain (e.g. 

response conflict) is that fitting the DMC to our response conflict tasks was substantially 

more demanding on time and/or computational resources than fitting the DDM to a 

perceptual decision making task. Note that this is not specific to the DMC (White et al., 

2017), but rather reflects more complex models that do not have analytical solutions that 

allow faster estimation. Until faster methods can be realised (e.g. Mestdagh, Verdonck, 

Meers, Loossens, & Tuerlinckx, 2018), it may be more tractable to use non-conflict tasks to 

which the DDM or linear ballistic accumulator (Brown & Heathcote, 2008) can be applied.

The reliabilities of strategic adjustments of response caution that we observe fall in the range 

typically interpreted as “moderate” (Cicchetti & Sparrow, 1981; Fleiss, 1981; Landis & 

Koch, 1977). We have recently discussed how reliabilities in this region are potentially 

problematic for examining individual differences in cognitive tasks (Hedge, Powell, & 

Sumner, 2018). The ICC reflects the relative contribution of between-subject variance 

(individual differences) and measurement error to variance in the variable of interest. In 

order to examine whether adjustments in response caution are related to trait measures (e.g. 

personality), we desire variance in our behavioural measure to also reflect individual 

differences that are stable over time. When measures are noisy, correlations with external 

variables will be weaker and require larger samples to detect.

To put the ICCs we observe in context, they are similar to or exceed those we observed for 

several commonly used measures of response control and processing (e.g. flanker RT cost: 

0.50, stop-signal reaction time: 0.43, Navon global precedence: 0; Hedge, Powell, & 

Sumner, 2018). Notably in the case of those traditional measures, we did not observe 

correlation between tasks in our previous study, despite it being commonly assumed that 

they share common mechanisms (see also Rey-Mermet, Gade, & Oberauer, 2017). Here, 

with strategic adjustments of response caution, we do consistently observe a correlation 

between tasks. Nevertheless, poor reliability corresponds to a reduced ability to detect 

correlation using those measures that must be compensated for (e.g. by increasing statistical 

power).

It is possible that future work would benefit from developments in model-based analyses, by 

integrating individual differences measures of interest in to the parameter estimation (Evans 

et al., 2017; Turner et al., 2013; Wiecki et al., 2013). Here, we fit the models to each task 

and individual independently. In contrast, hierarchical models describe both the sample and 
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individual simultaneously, as well as allow for regressors to be used to inform parameter 

estimation. For example, Evans et al. (2017) compared three different models when 

examining the relationship between response caution and need for closure. They first fit a 

hierarchical linear ballistic accumulator model in which parameters were determined by the 

behavioural data alone. The second model did not allow for individual differences in 

response caution, assigning everyone the same value, though differing between speed- and 

accuracy-emphasis. In the third model, rather than estimating response caution from the 

behavioural data, it was determined by a function that linked the parameter values to 

participants’ questionnaire values. Unsurprisingly, the first (unconstrained) model provided 

the best fit to the data. However, the third model outperformed the second, suggesting that 

there are common individual differences in the personality questionnaire and behavioural 

responses. In a second experiment by Evans et al. this improvement when comparing models 

contrasted against non-significant correlations between parameter estimates (and RTs) fit 

independently and subsequently correlated with the questionnaire values. Such joint 

modelling techniques may provide more powerful tests where appropriate.

6.7 Conclusions

The extent to which an individual prioritises accuracy or speed in choice RT tasks is 

commonly discussed but has less often been the focus of interest than individual differences 

in cognitive abilities. Here, we provide evidence that questions about individual differences 

in caution and its strategic adjustment are at least somewhat viable. On a given occasion, 

individuals show consistency in the extent to which they strategically adjust their levels of 

response caution across different tasks. Across time points, individuals show non-zero, but 

sub-optimal, levels of reliability in strategic adjustments. Though these levels of reliability 

raise power concerns for future research, we believe that our results and previous literature 

are evidence that there is value in pursuing such questions.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of tasks used in Study 1 (flanker and Stroop) and study 2 (flanker and random dot 

motion). The stimuli for the flanker and Stroop task are identical to those we have used 

previously (Hedge, Powell, & Sumner, 2018). See text for details.
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Fig. 2. 
Schematic of the diffusion model for conflict tasks (Ulrich et al., 2015). Panel A shows the 

noisy accumulation of evidence to a boundary on a single trial. It is assumed that when 

speed is emphasised, participants set the boundary (grey line) closer to the start of the 

accumulation processes than under accuracy emphasis (black horizontal line), corresponding 

to waiting for less evidence before making a response. A small distance between the upper 

and lower boundary leads to faster RTs, but an increased likelihood of hitting the lower 

boundary, producing an error. This change in boundary between accuracy and speed 

Hedge et al. Page 24

Conscious Cogn. Author manuscript; available in PMC 2019 December 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



emphasis, represented by the arrow, is the strategic adjustment of response caution that is the 

focus of this study. Panel B shows the average underlying patterns of activation. The black 

diagonal line corresponds to the speed of controlled processing, represented by a drift rate 

parameter. The blue and red functions represent automatic activation in congruent and 

incongruent trials respectively. The function initially receives a strong input until reaching a 

maximum value (amplitude parameter) at a point defined by the time-to-peak parameter. 

Panel C shows the composite drift rates for congruent and incongruent trials. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 3. 
Violin plots showing the distribution of mean reaction times and accuracy for each task and 

session. Filled circles show the means. All plots show the expected patterns, with accuracy 

and RT increasing from speed to accuracy emphasis.
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Fig. 4. 
Test re-test reliability for strategic adjustments of control in the Flanker task (N = 47; panel 

A) and Stroop task (N = 43; panel B). Strategic adjustments in response caution are defined 

as the change in boundary separation in the diffusion model for conflict tasks under speed 

emphasis relative to accuracy emphasis. The measurement units are the absolute differences 

in the upper boundary parameter values.
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Fig. 5. 
Correlation (Spearman’s rho) between strategic adjustments in response caution in the 

Flanker and Stroop task. Session 1 (panel A) and session 2 (panel B) shown separately (both 

N = 43). Strategic adjustments in response caution are defined as the change in boundary 

separation in the diffusion model for conflict tasks under speed emphasis relative to 

accuracy emphasis. The measurement units are the absolute differences in the upper 

boundary parameter values.
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Fig. 6. 
Schematic of the average underlying processing in the drift-diffusion model (DDM; Ratcliff, 

1978; Ratcliff & Rouder, 1998). The blue and red lines correspond to evidence accumulation 

rates to stimuli with more and less information respectively. Strategic changes in response 

caution are captured by lowering the boundary when speed is emphasised. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 7. 
Mean reaction times (top row) and accuracy (bottom row) for Flanker task (left panels) and 

dot-motion (right panels; N = 73 for both tasks).
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Fig. 8. 
Between task correlation (Spearman’s rho) for strategic adjustments of control (boundary 

under accuracy emphasis – boundary under speed emphasis) in the flanker task and dot 

motion task. The measurement units are the absolute differences in the boundary separation 

parameter values. Note that the data point on the far right came from unusually low and high 

fitted boundary separation values under speed and accuracy emphasis respectively, leading 

to an apparently large strategic adjustment. However, excluding this individual from our 

correlational analysis had little impact on the observed effect.
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Table 1

Mean and standard deviations (in parentheses) of parameters from the diffusion model for conflict tasks 

(Ulrich et al., 2015).

Flanker (N = 47) Stroop (N = 43)

Parameter Session 1 Session 2 Session 1 Session 2

Response caution

Boundary: Speed 26 (12.4) 25.5 (11.9) 31.4 (13.4) 22.7 (13.9)

Boundary: Standard 46.8 (13.5) 43.5 (15.8) 62.9 (12.8) 56.2 (19.6)

Boundary: Accuracy 64.8 (16.4) 58 (13.7) 71.4 (15) 67.1 (18.1)

Boundary: Accuracy – Speed 38.8 (20.5) 32.5 (18.7) 39.9 (16.4) 44.4 (19.6)

Boundary: Standard – Speed 20.7 (12.1) 18 (16.2) 31.5 (13.4) 33.5 (17.3)

Conflict processing

Amplitude 27.9 (9.8) 26.3 (8.6) 20.8 (8.8) 20.2 (9.3)

Time-to-peak 132 (47) 135 (39) 543 (161) 575 (211)

Non-conflict parameters

Drift rate 0.73 (0.19) 0.73 (0.18) 0.29 (0.07) 0.31 (0.09)

Non-decision time 316 (23) 310 (24) 385 (34) 385 (35)

Start shape 2.2 (0.9) 2.3 (0.9) 8.3 (4) 8.7 (5.4)

Non-decision variability 50 (10) 48 (10) 80 (21) 84 (21)

Conscious Cogn. Author manuscript; available in PMC 2019 December 18.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Hedge et al. Page 33

Table 2

Test re-test reliability of model parameters in the flanker task (N = 47) and Stroop task (N = 43), and between 

task correlations (N = 43). 95% confidence intervals are shown in parentheses.

Parameter Reliability (ICC) Between task (rho)

Flanker Stroop Session 1 Session 2

Response caution

Boundary: Speed 0.53 (0.29–0.71) 0.41 (0.09–0.65) 0.53 (0.23–0.72) 0.64 (0.36–0.82)

Boundary: Standard 0.71 (0.53–0.83) 0.39 (0.12–0.61) 0.57 (0.31–0.75) 0.63 (0.39–0.79)

Boundary: Accuracy 0.49 (0.22–0.69) 0.5 (0.24–0.69) 0.4 (0.13–0.62) 0.33 (0.01–0.59)

Boundary: Accuracy – Speed 0.5 (0.26–0.69) 0.4 (0.12–0.62) 0.56 (0.31–0.73) 0.4 (0.05–0.67)

Boundary: Neutral – Speed 0.43 (0.17–0.63) 0.44 (0.16–0.65) 0.62 (0.41–0.76) 0.44 (0.14–0.65)

Conflict processing

Amplitude 0.55 (0.32–0.72) 0.47 (0.2–0.67) 0.2 (−0.1–0.46) 0 (−0.29–0.29)

Time-to-peak −0.04 (−0.33–0.25) 0.19 (−0.12–0.46) −0.02 (−0.3–0.28) 0.2 (−0.12–0.49)

Non-conflict parameters

Drift rate 0.77 (0.62–0.86) 0.48 (0.22–0.68) 0.38 (0.09–0.6) 0.04 (−0.32–0.36)

Non-decision time 0.73 (0.54–0.84) 0.57 (0.33–0.75) 0.38 (0.09–0.61) 0.5 (0.23–0.69)

Start shape 0.15(−0.14–0.42) 0.04 (−0.27–0.33) 0.19 (−0.14–0.47) −0.03 (−0.33–0.28)

Non-decision variability 0.61 (0.39–0.76) 0.41 (0.14–0.63) 0.18 (−0.17–0.47) 0.31 (−0.01–0.58)

Note. Confidence intervals for Spearman’s rho were calculated using a bootstrap method (Revelle, 2018).
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