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Abstract

Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of the critically ill 

patient and is associated with unacceptable morbidity and mortality. Prevention of S-AKI is 

difficult because by the time patients seek medical attention, most have already developed acute 

kidney injury. Thus, early recognition is crucial to provide supportive treatment and limit further 

insults. Current diagnostic criteria for acute kidney injury has limited early detection; however, 

novel biomarkers of kidney stress and damage have been recently validated for risk prediction and 

early diagnosis of acute kidney injury in the setting of sepsis. Recent evidence shows that 

microvascular dysfunction, inflammation, and metabolic reprogramming are 3 fundamental 

mechanisms that may play a role in the development of S-AKI. However, more mechanistic 

studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate 

these findings into potential treatment strategies and add to the promising pharmacologic 

approaches being developed and tested in clinical trials.

Keywords

epidemiology; inflammation; metabolic reprogramming; microvascular dysfunction; prevention; 
sepsis-associated acute kidney injury; sepsis-induced acute kidney injury; treatment

Sepsis-associated acute kidney injury (S-AKI) is a common complication in hospitalized and 

critically ill patients, which increases the risk of developing chronic comorbidities and is 

associated with extremely high mortality.1–4 As individual syndromes, sepsis and acute 
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kidney injury (AKI) render the host susceptible to each other. Although sepsis is the most 

common contributing factor for developing AKI, AKI of any origin is associated with higher 

risk of developing sepsis.5 Sepsis has a complex and unique pathophysiology, which makes 

S-AKI a distinct syndrome from any other phenotype of AKI. Identifying the exact onset of 

injury in sepsis is nearly impossible, leading to difficulty in timely intervention for 

prevention of renal injury. In this review, we will focus on the definition of the syndrome, 

the role of biomarkers, and the recent advances in pathophysiology and treatment of S-AKI.

Limitations of current tools used to define and diagnose S-AKI

The diagnosis of AKI is currently based on an increase serum creatinine concentration 

and/or a decrease in urine output.6,7 As in other forms of AKI, serum creatinine can be an 

insensitive indicator of kidney injury, and oliguria can be nonspecific in S-AKI. However, in 

sepsis, oliguria appears to carry increased significance, and even by 3 to 5 hours, an 

association between oliguria and AKI may be detectable.8,9 Serum creatinine is also limited 

by the absence of baseline value in many patients, and a consensus is lacking as to the best 

way to handle this missing information.10,11

Although sepsis has been long-recognized as the leading cause of AKI in the critically ill, 

Mehta et al.5 found that 40% of critically ill patients develop sepsis after AKI, suggesting 

that AKI may increase the risk of sepsis. However, both sepsis and AKI are clinical 

diagnoses, and it is usually difficult to define the precise time either of these syndromes 

begin. Furthermore, as we shall discuss, sepsis and its treatment expose the kidney to injury. 

Thus, we will use S-AKI to acknowledge the uncertainty around the attribution of etiology.

The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) was 

proposed recently.12 Thus, S-AKI is usually defined as AKI in the presence of sepsis 

without other significant contributing factors explaining AKI or characterized by the 

simultaneous presence of both Sepsis-3 and Kidney Disease: Improving Global Outcomes 

(KDIGO) criteria.13,14 In clinical practice, urine output criteria is often difficult to confirm 

outside the intensive care unit (ICU). Intensive monitoring of urine output is associated with 

(though not necessarily causally related to) improved survival in patients developing AKI,15 

and once AKI has developed, urine output still has an important role for predicting the short- 

and long-term outcomes up to 1 year.16 Patients who reach maximum AKI stage by both 

serum creatinine and urine output criteria have highest rates of in-hospital renal replacement 

therapy (RRT), longer ICU and hospital stays, and increased mortality.16 However, there are 

several limitations to serum creatinine and urine output for the diagnosis of AKI. In animals, 

sepsis reduces muscle perfusion and thus the production of creatine falls, which blunts the 

increase in serum creatinine concentration and limits early detection of AKI.17 Together 

with dilutional effects secondary to aggressive fluid resuscitation in septic shock, AKI may 

be under-diagnosed. Diuretic administration might limit the use of oliguria and other urine 

indices for AKI diagnosis although intact tubular function is necessary for loop diuretics to 

work.18 Urine microscopy is one of the conventional methods widely used for detection of 

kidney disease. Patients with S-AKI had higher urine microscopy scores when compared 

with those with AKI from other causes.19 Urine microscopy was rather specific but poorly 

sensitive to detect worsening AKI—a score ≥3 had a sensitivity and specificity of 0.67 (95% 
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confidence interval [CI]: 0.39–0.86) and 0.95 (95% CI: 0.84–0.99). Thus, urine sediment 

may help establish the cause of AKI and provide prognostic information, but it has poor 

sensitivity to detect AKI and worsening of AKI.

Epidemiology and outcomes of S-AKI

Remarkably, little is known about the epidemiology of S-AKI. This is perhaps due to a lack 

of coordinated epidemiology between sepsis criteria and AKI criteria and among researchers 

working in these areas. Even just the global incidence of sepsis is largely unknown. 

Extrapolating from rates in the United States, Adhikari et al.20 estimated up to 19 million 

cases worldwide per year, but the true incidence is presumably much greater. Because 

roughly 1 in 3 patients with sepsis will develop AKI,21 the annual global incidence of S-AKI 

might be approximately 6 million cases or nearly 1 per 1000 population. However, this 

number is low compared with estimates working backward from AKI incidence. Using a 

500,000-patient database from western Pennsylvania, we found rates of AKI of 12%. Given 

that 35 million Americans are hospitalized each year, this puts the annual AKI rate at 

approximately 4.2 million for the United States and by extrapolation nearly 98 million 

worldwide. If only 10% had sepsis, the annual incidence would be just under 10 million or 

1.4 per 1000 population. Others have reported AKI rates in hospitalized patients ranging 

from 5% to 31%.22–24

For patients in the ICU, sepsis is found in about 40% to 50% of patients with AKI in the 

ICU.1–4 A prospective cohort study including 1177 patients with sepsis across 198 ICUs in 

24 European countries reported a 51% incidence of AKI with an ICU mortality rate of 41%.
25 A retrospective study across China including 146,148 patients found AKI in 47.1% of 

sepsis cases.26 An ancillary analysis of a multicenter randomized controlled trial (RCT) in 

septic shock including 1243 patients, AKI was present at enrollment in the emergency 

department in 50.4% and another 18.7% developed subsequent AKI within 7 days.27,28 Two-

thirds of patients with AKI were classified as stage 2 or 3.28 However, AKI is common even 

among patients without severe sepsis or shock: 34% of nonsevere community-acquired 

pneumonia developed AKI.21

Another aspect of the problem is a semantic or epistemological issue. Because sepsis is 

defined as an infection-associated organ dysfunction, infection plus AKI equals sepsis. Thus, 

we should really be asking about the rates of AKI in patients with infection or the proportion 

of AKI where the inciting event is infection. Current consensus guidelines for sepsis12 use 

the Sepsis-related Organ Failure Assessment score29 for quantifying organ dysfunction, 

including for the kidney rather than the KDIGO definition. Because the Sepsis-related Organ 

Failure Assessment score does not distinguish AKI from CKD nor adequately consider 

demographic differences in baseline creatinine, it cannot reliably assess infection-associated 

kidney dysfunction.

S-AKI is strongly associated with poor clinical outcomes. Among critically ill patients with 

AKI, S-AKI was associated with higher risk of in-hospital death (odds ratio: 1.48) and a 

longer hospital stay compared with AKI from any other causes (37 vs. 21 days).2 In-hospital 

RRT requirement was strongly associated with hospital mortality.30,31 Those who have renal 
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recovery after S-AKI have dramatically improved survival. In 1 study, patients who had 

reversal of S-AKI within 24 hours after documentation of shock experienced a reduced in-

hospital mortality (hazard ratio: 0.64).32 Relapse of AKI is also common after initial 

recovery (Figure 1). In our analysis of 16,968 ICU patients with moderate to severe AKI, 

32% of patients with sepsis experienced AKI relapses during hospitalization after initial 

AKI reversal.30 The long-term outcomes of patients with S-AKI in terms of survival has 

shown to be determined by severity of AKI and recovery status at hospital discharge. Those 

with recovery, even partial, seem to have similar prognosis to those without AKI.28 About 

40% of patients with moderate to severe S-AKI from nonsevere pneumonia experienced 

AKI recovery at hospital discharge and had comparable 3-year survival to those without AKI 

(28% vs. 23% mortality), whereas those with S-AKI who did not recover had the worst 

prognosis (44% mortality).31 After recovery from AKI, patients still carry the risk of 

developing chronic kidney disease (CKD), end-stage renal disease, and death (Figure 1).33 

The severity of AKI, RRT requirement, and recovery status during hospitalization has been 

shown to determine the risk of progression to CKD.34,35 Over 1 year, CKD developed in 

21%, 30%, and 79% of 105 survivors with AKI reversal, recovery, and nonrecovery, 

respectively.35

Pathophysiology of S-AKI

Sepsis is the most common cause of AKI in critically ill patients.4 Despite this, the 

pathophysiologic mechanisms of S-AKI are not well understood. Therefore, therapy remains 

reactive and nonspecific, and no available preventive therapies exist. Advances in the 

understanding of the pathogenesis of AKI have been slow and curbed due to the several 

technical, technological, and ethical restrictions that converge around this field.36 Hence, 

most of the current understanding of S-AKI have been extrapolated from animal models of 

sepsis, in vitro cellular studies, and postmortem observations in septic humans. These 

observations should be interpreted carefully because the response to sepsis in animal models 

may vary widely from that of humans.36 The National Institutes of Health in the United 

States have begun initiatives to address this knowledge deficit such as the Kidney Precision 

Medicine Project that aims to expand our understanding of AKI by obtaining kidney 

biopsies in patients with AKI. The prevailing pathophysiologic paradigm attributes S-AKI to 

the decreased global renal blood flow and secondary tubular epithelial cell death, or acute 

tubular necrosis.37 One reason for this belief was that the leading causes of AKI (e.g., sepsis, 

major surgery, heart failure, and hypovolemia) are all associated with hypoperfusion and 

shock,1 and ischemic injury can cause extensive cell death (e.g., acute tubular necrosis). 

However, it is becoming increasingly clear that ischemia-reperfusion injury is not the only 

mechanism of S-AKI, but rather multiple mechanisms must be at play.38–40 For instance, S-

AKI may develop in the absence of renal hypoperfusion and clinical signs of hemodynamic 

instability21,41,42 and in the presence of normal or increased global renal blood flow.41,43–49 

In addition, histopathological findings in postmortem human observations and harvested 

animal organs are not as severe as expected and do not correlate with functional alterations. 

A heterogeneous, focal, and patchy tubular injury, with minimal tubule-epithelial cell death 

(<5%), apical vacuolization, and minor focal mesangial expansion is observed in these 

samples.50–54 The controversy generated from these data indicates that multiple mechanisms 
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should be at play in the pathogenesis of S-AKI and that the dissociation between structural 

and functional changes could also be the result of adaptive mechanisms in which cells 

prioritize survival at the expense of organ function.38 Regardless of the organ, 3 mechanisms 

are consistent during sepsis organ injury: inflammation,51,55,56 microcirculatory 

dysfunction,57 and metabolic reprogramming.58,59 A “unified theory” of S-AKI has been 

proposed in an attempt to place these various mechanisms into a coherent framework of 

synergic interaction.60 The inflammatory response is the host’s main defense mechanism 

from invading pathogens. However, as the new sepsis definition implies, a dysregulated 

inflammatory response may be responsible for organ dysfunction and poor outcome. During 

sepsis, inflammatory mediators including pathogen- and damage-associated molecular 

patterns are released in the intravascular compartment. These molecules bind membrane-

bound pattern recognition receptors, such as Toll-like receptors, that are present on the 

surface of immune cells, initiating a downstream cascade of signals that will result in the 

synthesis and release of proinflammatory molecules. Renal tubular epithelial cells (TECs) 

also express Toll-like receptors, especially TLR2 and TLR4. When exposed to damage- or 

pathogen-associated molecular patterns filtered through the glomerulus or through 

neighboring peritubular capillaries, proximal TECs exhibit an increase in oxidative stress, 

production of reactive oxygen species, and mitochondrial injury (Figure 2).61–64 There is 

evidence that TECs may also initiate paracrine signaling, which may signal neighboring 

cells to deactivate in an attempt to minimize cell death at the expense of function. In 

addition, histological observations show that kidneys from septic animals, compared with 

nonseptic control animals, have increased infiltrating of monocytes in the glomeruli and into 

the peritubular area.52,65

Tissue perfusion is critical for the adequate functioning of any organ. Alterations in oxygen 

delivery and consumption are a consistent finding in most septic organ injuries,66 which may 

not be dependent on systemic circulatory abnormalities. Several experimental and clinical 

studies show that even in the absence of macrohemodynamic instability, microcirculatory 

alterations still develop during sepsis. These observations have led many investigators to 

consider that microcirculatory alterations should play a key role in the development of organ 

injury.67 S-AKI is characterized by profound heterogeneous changes in microcirculatory 

flow, whereby a decrease in the capillary density is associated with a decrease proportion of 

capillaries with continuous flow and an increase in the proportion of capillaries with 

intermittent and stop flow.56,57,66,68–70 Multiple mechanisms may lead to microcirculatory 

alterations such as endothelial injury, autonomic nervous system response, shedding of the 

glycocalyx, and activation of the coagulation cascade (Figure 2).57,71 Endothelial injury and 

shedding of the glycocalyx caused by inflammatory mediators enhances leucocyte and 

platelets rolling and adhesion with a concomitant reduction in blood flow velocity. Potential 

consequences are increased susceptibility to microthrombi formation and occlusion of 

capillaries and longer exposure of the TECs to inflammatory mediators of activated 

circulating inflammatory cells. Endothelial injury is also associated with vasodilation, 

increased vascular permeability, and endothelial leak. The resulting formation of peritubular 

interstitial edema can have a significant impact on the perfusion of TECs by increasing the 

diffusion distance of oxygen from capillaries to TECs and by increasing venous output 

pressures, thus altering convection.67,72–74 Microcirculatory hemodynamics may also play a 
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key role during S-AKI. As glomerular filtration rate is independent of changes in renal blood 

flow and is determined by intraglomerular hydrostatic pressure, constriction of the renal 

afferent arteriole and dilation of the efferent arteriole have been proposed as a mechanism to 

explain a fall in intraglomerular pressure leading to loss of glomerular filtration rate (Figure 

2).42,67,75,76 In addition, during sepsis, intrarenal blood flow redistribution occurs, driving 

blood flow away from the medulla.77 In addition, the existence of capillaries that bypass the 

glomerulus and connect the afferent directly to the efferent arterioles may explain in part the 

shunting of blood proposed during S-AKI.78,79 However, it is unclear how or when these 

accessory shunt pathways are opened and whether this occurs during sepsis. In summary, 

redistribution of blood flow and the increase in shunting are mechanisms that might explain 

the potential presence of heterogeneous areas at risk for ischemia during S-AKI.67,80

The paucity of TEC death during S-AKI may be explained by key metabolic adaptations that 

occur early during sepsis, whereby cell survival is prioritized at the expense of cell and 

organ function. Multiple theories have been proposed to explain the metabolic reprograming 

that TECs undergo during sepsis. Most of these point to a mitochondrial-mediated process, 

characterized by energy expenditure optimization, reprogramming of substrate utilization, 

and counteraction of proapoptotic triggers.50,54,58,59 Inflammation is associated with 

optimization of energy consumption, which implies a decrease in energy utilization in 

nonvital functions (e.g., protein synthesis or ion transport), and maintenance of energy 

utilization in sustaining vital cell functions (e.g., membrane Na+/K+ adenosine 

triphosphatase pump function) while avoiding cell death. During inflammation, the renal 

tubular expression of ion transporters is downregulated and tubular solute transport is 

decreased (Figure 3),81–85 which in the absence of cell death suggests reprioritization of 

energy expenditure through metabolic reprogramming is an adaptive mechanism for 

survival. It remains unclear how metabolic reprogramming occurs. However, evidence 

suggests that a key component depends on how the cell processes energy-containing 

substrates such as glucose and fatty acids (Figure 3). The consequences of using oxidative 

phosphorylation (OXPHOS) versus aerobic glycolysis (i.e., in the presence of sufficient 

oxygen to use OXPHOS, or Warburg metabolism) with fermentation to lactate as a last step 

seem to have profound effects on the ability of the cells and hosts to survive the septic insult. 

For instance, inhibition of aerobic glycolysis and induction of OXPHOS during sepsis result 

in improved survival and decreased susceptibility to develop AKI.86–88 Macrophages of 

animals exposed to inflammation exhibit a phasic shift, with an early switch toward aerobic 

glycolysis and a later return to OXPHOS.89 Based on this evidence and our preliminary data, 

we have proposed that TECs may exhibit a phasic switch between aerobic glycolysis and 

OXPHOS that is similar to Warburg metabolism (Figure 3).58,90 An integral component of 

metabolic reprogramming is the mitochondria, as these organelles house important 

molecular machinery necessary for substrate processing through OXPHOS among other 

functions. It is well known that sepsis induces significant mitochondrial injury and that 

activation of mitochondrial quality control processes such as mitophagy (specialized 

mechanism by which injured mitochondria are signaled and engulfed into autophagosomes 

within the cell) and biogenesis (the process of synthesis of new, functional mitochondria) 

also improve survival. Although preservation of a functional mitochondrial pool may confer 
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protection through a myriad of mechanisms, it is clear that restoration of OXPHOS for 

substrate processing can only occur if functional mitochondria are available (Figure 3).

One of the most energy-consuming processes cells undergo is replication (duplication of the 

entire genome, proteome, and lipidome of the cell). During the cell cycle, several 

checkpoints serve to evaluate whether the cell will have sufficient energy to replicate. If the 

answer is no, the cell will undergo cell cycle arrest to avoid cell death due to energy failure. 

Therefore, cell cycle arrest is another mechanism of downregulation of energy expenditure 

that TECs may invoke to reprogram metabolism and defend from the septic insult (Figure 3). 

In support of the relevance of this process in human sepsis, 2 markers of cell cycle arrest—

the tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor binding 

protein 7 (IGFBP7)—have been found to be the best predictors of the development of S-

AKI.91 Although several advances have been made in the last few years in the understanding 

of S-AKI and several possible therapeutic strategies have been proposed, more studies are 

necessary to clarify the mechanisms by which sepsis causes organ injury, especially AKI.

Role of biomarkers in S-AKI

Early recognition of AKI in the setting of sepsis is vital to provide optimal treatment and 

avoid further kidney injury. Equally, detection of AKI in the setting of infection is critical 

because it may define sepsis in a given patient (Figure 1). The use of injury (or stress) 

markers together with measures of function may provide more information than either alone.
92 Table 1 summarizes some biomarkers studied in S-AKI.93–107

Neutrophil gelatinase-associated lipocalin (NGAL) has been extensively investigated in 

various AKI phenotypes. NGAL is released by activated neutrophils and various epithelial 

cells including renal TECs. In early studies, NGAL showed good sensitivity for prediction of 

AKI and also was a useful prognostic tool for RRT requirement and in-hospital mortality.
108,109 Patients with S-AKI generally have higher detectable plasma and urinary NGAL 

levels than do patients with AKI from other causes.93 Plasma NGAL appeared to be useful 

for predicting renal recovery at hospital discharge in patients with S-AKI.94 Interpretation of 

NGAL in patients with sepsis should also consider potential nonrenal sources. Plasma 

NGAL may increase in systemic infection and inflammation without evidence for AKI. 

Some studies have found that NGAL failed to discriminate patients with an AKI from those 

with a non-AKI in the setting of sepsis.110–113 Distinguishing AKI from CKD by NGAL 

was also limited by low sensitivity and specificity.114,115

Urinary kidney injury molecule-1 (KIM-1) is another kidney damage biomarker and is 

upregulated in renal proximal TECs after ischemic and nephrotoxic injuries. A meta-

analysis suggested that urinary KIM-1 was a good predictor of AKI (area under the curve of 

0.86, sensitivity of 74%, specificity of 86%).116 Data for KIM-1 specifically used for S-AKI 

are scant. One prospective study showed that using urinary KIM-1 at 24 hours for prediction 

of early AKI in patients with sepsis had an area under the curve of 0.91, and the 

nonsurvivors had significantly higher level of urinary KIM-1 at 24 and 48 hours.95
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Urinary liver-type fatty acid binding protein is upregulated and localized to the cytoplasmic 

region of proximal TECs, especially after hypoxic insults.97 In patients with S-AKI, urinary 

liver-type fatty acid binding protein levels at admission were significantly higher in 

nonsurvivors than in survivors.96 Urinary liver-type fatty acid binding protein levels may 

also reflect the severity of sepsis and monitor the effectiveness of polymyxin B 

hemoperfusion (PMX-HP) treatment.97

Urinary TIMP-2 and IGFBP7 are regulatory proteins involved in G1 cell cycle arrest, a 

protective mechanism during cellular stress. The product of urinary [TIMP-2]∙[IGFBP7] 

outperformed other biomarkers for prediction of AKI with area under the curve of 0.80 in a 

validation study including 728 patients, of which 20% had sepsis.91 Another 2 validation 

studies demonstrated consistent results.117,118 Importantly unlike many biomarkers, 

nonrenal organ failures in sepsis did not result in increased [TIMP-2]∙[IGFBP7].98 A test 

measuring urinary [TIMP-2]∙[IGFBP7] has regulatory approval in the United States, the 

European Union, and other parts of the world for AKI risk stratification.

Prevention of S-AKI

Prevention of S-AKI is usually impossible because most patients developing S-AKI will 

already have it at presentation.28 In general, early appropriate antibiotic administration and 

source control remain the backbone of sepsis treatment, which may also prevent further 

kidney injury. Delayed antibiotic administration in septic shock was associated with early 

AKI development.119 However, certain nephrotoxic agents involving in the treatment such as 

aminoglycosides, vancomycin particularly in combination with piperacillin-tazobactam,120 

and amphotericin B, as well as diagnostic agents such as intravenous radiocontrast media 

should be used with caution to prevent kidney injury according to the KDIGO AKI 

guidelines.7 Strict therapeutic drug monitoring should be considered when applicable.

Fluid resuscitation and S-AKI.

Fluid resuscitation followed by vasopressor medications are cornerstones in the treatment of 

shock. Protocolized resuscitation has been recommended.7 However, 3 landmark clinical 

trials in patients with septic shock (Protocolized Care for Early Septic Shock [ProCESS], 

Australasian Resuscitation in Sepsis Evaluation [ARISE], and Protocolized Management in 

Sepsis [ProMISe]) consistently demonstrated no advantage of protocol-based management 

on mortality or need for RRT.27,121,122 An ancillary analysis of the ProCESS trial focused 

on renal outcomes up to 1 year and found that the use of early goal-directed therapy, 

alternative protocolized resuscitation, or usual care did not influence new AKI development, 

severity of AKI, fluid overload, RRT requirement, or renal recovery.28

Type of resuscitation fluid.

Isotonic crystalloid has been recommended for use in patients at risk of AKI.7 However, 

worsening renal function with chloride-rich solutions (e.g., 0.9% saline) in sepsis has been 

observed in animal and human studies. Observational studies involving ICU patients 

including those with septic shock have shown a reduction in AKI incidence and lower 

mortality when using crystalloid solutions with more physiological chloride concentrations 
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(e.g., Ringer’s solution).123–125 A number of RCTs have investigated the benefit of so-called 

balanced crystalloid (chloride concentrations <110 mmol/l) compared with 0.9% saline on 

clinical outcomes. The 0.9% Saline Versus Plasma-Lyte 148 for Intensive Care Fluid 

Therapy (SPLIT) trial demonstrated no difference in rate of AKI or RRT between the use of 

saline and balanced crystalloid in ICU patients even in the subgroup with sepsis.126 

However, exposure to study fluids was low (<2 l) and the population was generally low risk. 

By contrast, the much larger Saline Against Lactated Ringer’s or Plasma-Lyte in the 

Emergency Department (SALT-ED) and Isotonic Solutions and Major Adverse Renal Events 

(SMART) trials found fewer major adverse kidney events by 30 days (a composite of death, 

dialysis, and persistent renal dysfunction).127,128 Both trials, collectively enrolling nearly 

30,000 patients, found about 1% absolute risk reduction for major adverse kidney events by 

30 days in patients treated with balanced crystalloid. Importantly, sepsis was a preplanned 

subgroup analysis in the SMART trial and the 15% of patients with sepsis or septic shock 

experienced a much larger effect (odds ratio: 0.80, 95% CI: 0.67–0.94, P = 0.01) than the 

rest of the cohort. Thus, there is now substantial evidence that the use of balanced solutions 

should be used instead of saline especially in patients with sepsis.

All intravenous fluids can contribute to adverse renal and patient outcomes by fluid overload 

and renal edema. In a prospective observational study including 2526 ICU patients, daily 

and cumulative fluid balance over the first 3 days was higher in patients with AKI and fluid 

overload was an independent risk factor for AKI and AKI severity.129 Hydroxyethyl starch 

has been found to increase the risk of AKI, RRT requirement, and mortality.130–132 

However, the signal is most evident when large volumes of hydroxyethyl starch are given to 

patients with sepsis130 and the long-term effects on the kidney in lower dose or in lower-risk 

patients is unclear.131 Similarly, gelatin, compared with crystalloid, in patients with sepsis 

may be associated with higher rates of AKI and need for RRT.133 Albumin solutions have 

generally been found to be safe in sepsis resuscitation;134,135 however, evidence that 

hyperoncotic albumin might deteriorate AKI and ICU outcomes is growing.136–138 A recent 

observational study including 11,152 patients with shock found that early exposure to 

hyperoncotic albumin in postoperative shock appeared to be significantly associated with 

AKI.138 Further studies are needed to better elucidate this risk and determine the mechanism 

of toxicity.

Vasopressors and target blood pressure to prevent S-AKI.

Norepinephrine is recommended as an agent of choice for septic shock treatment.139 

Dopamine is not recommended for renal protection and is associated with more adverse 

events than norepinephrine is.139–141 Vasopressin does not appear to increase AKI risk142 

and was even associated with lower RRT rates in an open-label trial.143 A large RCT in 

septic shock showed that a higher mean arterial blood pressure target of 80 to 85 mm Hg, 

compared with a target of 65 to 70 mm Hg, reduced use of RRT in a subgroup of patients 

with chronic hypertension. However, no survival benefit was observed.144
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Timing of RRT initiation in S-AKI

Whereas a survival advantage for early initiation of RRT in patients with severe AKI has 

been seen in observational studies,145,146 RCTs have been less consistent (Table 2).147–149 

The Artificial Kidney Initiation in Kidney Injury (AKIKI) trial, in which 80% of patients 

enrolled had sepsis, failed to demonstrate a benefit of early initiation of RRT.147 A post hoc 

analysis of patients with septic shock (56%) found similar results.150 A survival benefit at 90 

days for early RRT initiation was shown in the Early Versus Late Initiation of Renal 

Replacement Therapy in Critically Ill Patients With Acute Kidney Injury (ELAIN) trial, but 

only 21% of the patients had sepsis.148 Early initiation resulted in a significantly reduced 

rate of major adverse kidney events, mortality, and enhanced renal recovery at 1-year follow-

up.151 The recent Initiation of Dialysis Early Versus Delayed in the Intensive Care Unit 

(IDEAL-ICU) trial specifically focused on patients with septic shock and severe AKI, but it 

demonstrated no significant difference in 90-day mortality between patients receiving early 

versus delayed RRT initiation.149 Concerningly, 9% of the patients died between early and 

delayed initiation. These conflicting results may be explained by distinct study designs in 

heterogeneous settings. An ongoing clinical trial (Standard Versus Accelerated Initiation of 

Dialysis in Acute Kidney Injury [STARRT-AKI], ) may provide a more definitive answer.152

Experimental therapies for S-AKI

Blood purification.

Numerous techniques are available but clinical evidence is still limited (Table 3).153–172 The 

vast majority of studies in patients have not measured target solutes so it remains unclear 

whether negative trials failed to clear inflammatory mediators or were ineffective in terms of 

survival despite clearance. Cytokines are highly variable in patients even with septic shock,
173 and high endogenous clearance means their levels are dynamic. Below are some 

modalities that have been used in recent trials.

High-volume hemofiltration (HVHF) is defined as a continuous treatment with a convective 

dose >35 ml/kg per hour.174,175 Several small studies have investigated the role of HVHF 

(dose ranging from 40 to 100 ml/kg per hour) in patients with S-AKI and found variable 

results in terms of mortality.176–182 A multicenter RCT (Hemofiltration Study: High Volume 

in Intensive Care [IVOIRE]) randomized 140 patients with S-AKI for less than 24 hours to 

receive either HVHF (70 ml/kg per hour) or standard hemofiltration (35 ml/kg per hour) for 

96 hours. No differences in 28-, 60-, or 90-day mortality; duration of RRT; or renal recovery 

were seen between the 2 groups.183 Another RCT that compared the treatment with HVHF 

between doses of 85 ml/kg per hour and 50 ml/kg per hour in S-AKI also found no 

differences in mortality or renal outcome.184 Meta-analysis of HVHF in patients with S-AKI 

from 4 trials showed no benefit of HVHF on 28-day survival, but did show increased rates of 

hypophosphatemia and hypokalemia.185 Some RCTs demonstrated an improvement of 

hemodynamics and organ function,186 as well as a reduction in circulating inflammatory 

cytokines, but these improvements did not influence the clinical outcomes in the high-dose 

arm.187 Recently, a systematic review of 8 clinical studies, including the landmark Veterans 

Affairs/National Institutes of Health Acute Renal Failure Trial Network (ATN)188 and 

Randomized Evaluation of Normal Versus Augmented Level of Replacement Therapy 
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(RENAL)189 trials, demonstrated no significant difference between 20 to 25 ml/kg per hour 

and more intensive ($35 ml/kg per hour) RRT on 30-day mortality, renal recovery, or ICU 

and hospital length of stay (not limited to S-AKI).190 Clinicians should also be aware of the 

potential for increased antibiotic removal when high-intensity continuous renal replacement 

therapy is prescribed.191

PMX-HP has been used as adjunctive treatment for sepsis in Japan since 1994 and is 

claimed to remove circulating endotoxin. Multiple RCTs have been conducted to determine 

the efficacy of PMX-HP in sepsis and have shown conflicting results. A multicenter pilot 

trial in Europe enrolled 36 surgical patients with intra-abdominal sepsis and demonstrated 

that the treatment with 2-hour PMX-HP only once led to an improvement of left ventricular 

function and a decrease in RRT requirement.192 The Early Use of Polymyxin B 

Hemoperfusion in Abdominal Sepsis (EUPHAS) trial studied 64 patients with severe intra-

abdominal sepsis and reported favorable results of treatment with PMX-HP for 2 

consecutive days in terms of hemodynamics, organ functions, and 28-day survival.193 

However, 2 subsequent, larger RCTs were negative. The Effects of Hemoperfusion With a 

Polymyxin B Membrane in Peritonitis With Septic Shock (ABDOMIX) trial including 243 

patients with septic shock secondary to peritonitis compared standard therapy with 2 PMX-

HP sessions plus standard therapy. Patients in the PMX-HP group had no improvement in 

survival or organ failure.194 The Safety and Efficacy of Polymyxin B Hemoperfusion for 

Septic Shock (EUPHRATES) trial enrolled 450 adults with septic shock from various 

sources of infection and an endotoxin activity assay level of ≥0.60 to receive either 2 PMX-

HP sessions or sham hemoperfusion plus standard therapy. No significant difference in 28-

day mortality or other secondary outcomes including RRT-free days was found between the 

groups.195 Based on the saturation effect of the polymyxin column in patients with very high 

circulating endotoxin that could reduce treatment efficacy, the post hoc subgroup analysis in 

patients with an endotoxin activity assay level of ≥0.6 to 0.89 found a benefit of PMX-HP in 

hemodynamic improvement, ventilator-free days, and mortality.196 Recently, the 

immunomodulation effect of PMX-HP has been reported in another RCT by improvement of 

monocyte and neutrophil functions in patients with sepsis without a benefit in mortality or 

renal outcome.197

Pharmacologic therapy.

A number of new drugs for AKI are currently being investigated,198 but relatively few are 

focused specifically on S-AKI. Several molecules have been studied in septic animal models 

to amend mitochondrial dysfunction, inflammation, and oxidative stress.199 The notable 

exceptions are reltecimod (AB103; AtoxBio, Durham, NC), which is under active 

investigation to improve recovery from AKI (Phase 2 Study of Reltecimod Versus Placebo in 

Patients With Sepsis-associated Acute Kidney Injury, ), alkaline phosphatase, angiotensin II, 

and levocarnitine (Table 3). Given that sepsis is the leading cause of AKI in the critically ill 

and given the dramatic effects from AKI on sepsis survival, it is our sincere hope that other 

companies will join the search for an S-AKI treatment.

Human recombinant alkaline phosphatase (AP) is an endogenous enzyme that confers renal 

protection during sepsis via the dephosphorylation of various compounds, including 
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bacterial endotoxins and proinflammatory mediators such as extracellular adenosine 

triphosphate, which is released by mitochondria in response to inflammation and hypoxia.
200 AP is depleted in the kidney following an ischemic insult in rats.201 In animal sepsis 

models, treatment with AP attenuated systemic inflammation, organ dysfunction, and 

improved survival.202 In 2 small clinical trials, administration of bovine AP significantly 

improved kidney function in patients with S-AKI.203,204 In septic shock, infusion of AP 

inhibits the upregulation of renal inducible nitric oxide synthase, leading to subsequent 

reduced nitric oxide metabolite production, and attenuated tubular secretion of glutathione 

S-transferase A1–1 (a marker of proximal tubular injury) in urine.203 An RCT evaluated this 

effect in 36 patients with S-AKI by intravenous infusion of AP (bolus injection followed by 

continuous infusion for 48 hours or placebo) starting within 48 hours of AKI onset and 

showed improvement of endogenous creatinine clearance, requirement for and duration of 

dialysis, decreased urinary biomarkers of renal injury (KIM-1 and interleukin-18), and 

inflammatory biomarkers from baseline to day 28 in patients receiving AP.204 Human 

recombinant AP is a highly stable, biologically active enzyme. The recent A Safety, 

Tolerability, Efficacy, and QoL Study of Human recAP in the Treatment of Patients With 

SA-AKI (STOP-AKI) trial is an international double-blind RCT conducted in 301 patients 

with S-AKI that aimed to investigate the optimal therapeutic dose, effect on kidney function, 

and adverse effects of human recombinant AP.169 AP was administered within 24 hours after 

S-AKI was documented and then 24 and 48 hours following the first dose. Improvement in 

endogenous creatinine clearance from days 1 to 7 were not different between groups. The 7-

day period might have been too short for evaluation the effect of treatment on the kidney. 

Mortality, a secondary endpoint, was found to be reduced with AP.

Angiotensin II (ATII) is a potent vasoconstrictor acting via angiotensin II type 1 receptors 

and appears to cause vasoconstriction of efferent more than afferent arterioles, resulting in 

increasing glomerular perfusion pressure and filtration rate.205 Sepsis leads to relative 

scarcity of ATII.206 In addition, ATII is a potent vasopressor without inotropic or 

chronotropic properties. Unlike norepinephrine, ATII may preserve medullary perfusion and 

oxygenation.80,207 ATII infusion restored blood pressure, increased urine output and 

creatinine clearance despite decreased renal blood flow in septic animals.208 A pilot study in 

patients with catecholamine-resistant septic shock (Intravenous Angiotensin II for the 

Treatment of High-Output Shock [ATHOS]) found that ATII restored blood pressure and 

increased urine output.170 A recent RCT (ATHOS-3), which mainly examined the effect of 

intravenous ATII in patients with catecholamine-resistant high-output shock (80% were 

diagnosed with septic shock), showed increased blood pressure and decreased need for other 

vasopressors.209 Post hoc analysis in patients with AKI requiring RRT (n = 105) found a 

23% risk reduction in 28-day mortality and more patients discontinued RRT in the ATII 

group.171 Thus, patients with S-AKI with shock may benefit from ATII. An ongoing 

Angiotensin in Septic Kidney Injury Trial (ASK-IT; ) aims to evaluate the effect of ATII on 

hemodynamics and urine output in patients with S-AKI.

Recovery from S-AKI and long-term follow-up

Evaluation of renal recovery after AKI has many concerns including assessment of baseline 

renal function, definition, and timing of recovery.210 Recently, the Acute Disease Quality 
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Initiative developed consensus definitions for renal recovery after AKI.211 Many factors may 

determine recovery including preexisting renal functional reserve, severity, duration, and 

repetitive episodes of AKI.212 In sepsis, several factors may contribute to maladaptive repair 

leading to delayed recovery and progression to CKD. Persistent inflammation, fibrosis, and 

vascular dropout lead to persistent tissue ischemia and hypoxia and thus promote interstitial 

fibrosis.212,213 Pharmacologic treatments to ameliorate fibrosis and oxidative stress (e.g., 

hypoxia-inducible factor activation, Nuclear factor erythroid 2–related factor 2 (Nrf-2) 

activation, vascular endothelial growth factor) are still experimental and there is limited data 

in sepsis models.214–216 Thus, prevention, early recognition, and treatment of sepsis; 

avoidance of renal hypoperfusion and nephrotoxic insults; and close follow-up are the 

mainstay to promote renal recovery (Figure 1).

Long-term follow-up for development of CKD, recurrent sepsis, recurrent AKI, and 

cardiovascular consequences should be considered for all S-AKI survivors regardless of AKI 

severity. Early follow-up by a nephrologist after an AKI episode in those requiring RRT was 

associated with improved survival.217 However, observational studies have shown that the 

rate of nephrology referral for post-AKI follow-up is low.218,219 An RCT in AKI survivors 

comparing nephrologist follow-up versus usual care for 1 year is ongoing (Nephrologist 

Follow-up Versus Usual Care After an Acute Kidney Injury Hospitalization [FUSION]; ). 

The primary outcome is development of a major adverse kidney events.

Conclusion

S-AKI is the result of a dysregulated response of the host to infection. Patients who develop 

S-AKI have various clinical trajectories in which renal recovery is possible and is associated 

with improved outcomes. Clinicians need to clearly understand the clinical course of this 

complex syndrome to improve patient care both in the short and long terms. The value of 

biomarkers has been established and may be complementary to clinical judgment, functional 

tests, and current criteria to improve early detection, potentially guide management, and 

monitor recovery. Advances in understanding the pathophysiologic mechanisms have 

provided insight into potential new therapies; however, effective, specific interventions for 

prevention and treatment of S-AKI are still lacking. Future research must focus on better 

understanding the mechanisms leading to S-AKI and on bridging and streamlining the 

transition of knowledge from bench, big data-based population studies, and clinical trials.
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Figure 1 |. Clinical course and outcomes of sepsis-associated acute kidney injury (S-AKI).
The exact onset of kidney injury in sepsis is unknown. Patients who present with sepsis 

should be suspected for AKI, and, vice versa, those who present with AKI should be 

suspected for sepsis as well. AKI may present simultaneously with sepsis at hospital 

admission (a) or develop during hospitalization (b). In the latter case, it is still possible to 

prevent AKI by optimal resuscitation and appropriate sepsis treatment. Novel biomarkers 

have an established role in the early recognition of AKI at this point. Once S-AKI is 

diagnosed, close monitoring and timely organ support should be done together to prevent 

further kidney injury. However, S-AKI is still associated with an extremely high risk of in-

hospital death. The survivors have various clinical trajectories and outcomes. S-AKI is able 

to reverse early during the first week after being documented and is associated with a good 

prognosis. Some patients may experience 1 or more episodes of relapse after the initial 

reversal of AKI during hospitalization. This emphasizes that close monitoring and avoidance 

of nephrotoxic insults are mandatory along the clinical course of S-AKI even after early 

reversal or recovery. Patients with complete recovery of S-AKI may be discharged with good 

health; however, they still carry the risk of chronic kidney disease (CKD) and other 

consequences, including recurrent sepsis (dotted lines). Those patients who do not 

completely recover by 7 days after being documented AKI will be classified as having acute 

kidney disease (AKD), which may recover later or progress to CKD and is associated with 

adverse long-term outcomes. Further research regarding the potential role of biomarkers for 

the prediction of renal recovery is needed. S-AKI survivors who are discharged from the 

hospital should be followed up in the long term with optimal care by a nephrologist to 

monitor progression to CKD and other long-term consequences. CVD, cardiovascular 

disease; ED, emergency department.
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Figure 2 |. Microcirculatory and inflammatory alterations.
Sepsis-associated acute kidney injury can occur in the absence of overt signs of 

hypoperfusion and clinical signs of hemodynamic instability. Several theories involving 

microcirculatory, including hemodynamic, changes and inflammation have been proposed to 

explain the dissociation between the structural findings and the altered renal function 

observed during sepsis-associated acute kidney injury. Glomerular filtration rate is correlated 

with the glomerular blood flow and the intraglomerular pressure (Pc). Glomerular shunting 

and constriction of the efferent arteriole result in a Pc decrease with the subsequent decline 

in glomerular filtration rate and urine output. Pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular patterns (DAMPs) released after the invasion of 

infectious pathogens have the ability to bind to a family of receptors known as pattern 

recognition receptors, especially Toll-like receptors (TLRs), which are expressed on the 

surface of immune cells, endothelial cells, and tubular epithelial cells (TECs). These result 

in a downstream cascade of signals and an increased synthesis of proinflammatory 

cytokines, reactive oxygen species (ROS), oxidative stress, and endothelial activation. 

Endothelial activation promotes rolling and adhesion of leucocytes and platelets, resulting in 

increased risk of thrombi formation and flow continuity alterations (intermittent or no flow). 

Also, endothelial activation is associated with increased vascular permeability and leakage, 

causing interstitial edema and increasing oxygen diffusion distance to the TECs. In addition 

to these endothelia and flow alterations, DAMPs and PAMPs can also directly affect TECs. 

It has been demonstrated that TECs also expressed TLRs on their surface. DAMPs and 

PAMPs are small enough to be filtered in the glomeruli and then to be exposed to TLR 

present on the TEC surface, resulting in increased production of ROS, oxidative stress, and 

mitochondrial damage. APCs, antigen-presenting cells; RBCs, red blood cells.
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Figure 3 |. Metabolic reprogramming.
During sepsis-associated acute kidney injury (AKI), a reprioritization of energy occurs that 

seeks to meet metabolic vital needs prioritizing survival at the expense of cell function. 

Multiple highly consuming adenosine triphosphate (ATP) functions are downregulated to 

save energy, including protein synthesis and ion transportation, especially in the proximal 

tubular epithelial cells (TECs) and cellular replication. In addition to this shutdown of 

nonvital functions, experimental studies have suggested that TECs may reprogram their 

metabolism switching to aerobic glycolysis and oxidative phosphorylation to fulfill energy 

requirements during sepsis. Preservation of functional mitochondrial poll is necessary to 

carry out all the metabolic changes. During sepsis, mitochondria enter a series of quality 

control processes such as mitophagy and biogenesis to preserve the mitochondrial pool to 

confer protection and fulfill the necessary energetic requirements. ACC, acetyl coenzyme A 

carboxylase α; AMPKα, adenosine monophosphate kinase α; C-Myc, cell Myc gen; Cpt1, 

carnitine palmitoyltransferase 1; FA, frataxin; FAO, fatty acid oxidation; G0–G2, phases of 

the cell cycle; Gluc, glucose; GO, golgin; HIF-1α, hypoxia-inducible factor-1α; IGFBP7, 

insulin-like growth factor binding protein 7; LDH, lactic acid dehydrogenase; mTORC1, 

mammalian target of rapamycin complex 1; PDH, pyruvate dehydrogenase; PDHK, pyruvate 

dehydrogenase kinase; PGC-1α, peroxisome proliferator-activated receptor gamma 
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coactivator-1α; PKM2, pyruvate kinase isozyme M2; Sirt, sirtuins; TIMP-2, tissue inhibitor 

of metalloproteinase-2; TNF, tumor necrosis factor.
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