
Analysis of the genetic architecture of maize kernel size
traits by combined linkage and association mapping
Min Liu1,†, Xiaolong Tan1,†, Yan Yang1, Peng Liu1, Xiaoxiang Zhang1, Yinchao Zhang1, Lei Wang1, Yu Hu1,
Langlang Ma1, Zhaoling Li1, Yanling Zhang1, Chaoying Zou1, Haijian Lin1, Shibin Gao1, Michael Lee2,
Thomas L€ubberstedt2, Guangtang Pan1 and Yaou Shen1,3,*

1Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
2Department of Agronomy, Iowa State University, Ames, IA, USA
3State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), Chengdu, China

Received 5 April 2019;

revised 26 May 2019;

accepted 1 June 2019.

*Correspondence: (Tel +86 13882434942;

fax: 028-86290912;

email: shenyaou@sicau.edu.cn)
†These authors contributed equally to this

work.

Keywords: maize, kernel size,

genome-wide association study, QTL

mapping, co-localization, functional

genes.

Summary
Kernel size-related traits are the most direct traits correlating with grain yield. The genetic basis

of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT),

was investigated in an association panel and a biparental population. A total of 21 single

nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 9 10�6)

associated with these three traits in the association panel under four environments. Furthermore,

50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the

intermated B73 9 Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were

repetitively identified in at least three environments. Combining the two mapping populations

revealed that 56 SNPs (P < 1 9 10�3) fell within 18 of the QTL confidence intervals. According

to the top significant SNPs, stable-effect SNPs and the co-localized SNPs by association analysis

and linkage mapping, a total of 73 candidate genes were identified, regulating seed

development. Additionally, seven miRNAs were found to situate within the linkage disequilib-

rium (LD) regions of the co-localized SNPs, of which zma-miR164e was demonstrated to cleave

the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma-miR164e

resulted in the down-regulation of these genes above and the failure of seed formation in

Arabidopsis pods, with the increased branch number. These findings provide insights into the

mechanism of seed development and the improvement of molecular marker-assisted selection

(MAS) for high-yield breeding in maize.

Introduction

Maize (Zea mays) is one of the most important staple crops,

which serves as a resource for human nutrition, animal feed

and bioenergy (Godfray et al., 2010). Therefore, improving

maize yield is an essential measure to ensure food security,

considering the global decrease in cultivated areas. Kernel size,

a major component determining kernel weight, is one of the

most important yield traits, which includes kernel length (KL),

kernel width (KW) and kernel thickness (KT; Li et al., 2013a; Liu

et al., 2016c). Compared with grain yield itself, kernel size traits

show higher heritability and better stability across environments

(Messmer et al., 2009; Raihan et al., 2016). Accordingly,

elucidation of the genetic basis of kernel traits will facilitate

in the elucidation of the regulatory mechanisms involved in

maize seed development and the design of strategies to

improve corn yield.

Currently, quantitative trait loci (QTL) mapping and genome-

wide association studies (GWAS) are effective tools for analysing

the genetic structure of complex quantitative traits. In the last few

decades, many loci or candidate genes associated with kernel-

related traits have been identified by linkage and/or association

mapping (Cook et al., 2012; Yang et al., 2016). For instance, Liu

et al. (2017a) identified 729 QTL for kernel size and weight in 10

recombinant inbred line (RIL) populations (Liu et al., 2017a). Li

et al. (2018a) identified 27 associated loci involving 39 candidate

genes for amylose content using an association population (Li

et al., 2018a). Li et al. (2018b) identified 74 loci significantly

associated with kernel oil concentration and fatty acid compo-

sition by GWAS (Li et al., 2013b). Zhang et al. (2017a) detected

108 QTL for eight ear and grain traits by combined linkage and

association mapping (Zhang et al., 2017a). However, these

researches in maize are relatively fewer compared to those

involving rice. Numerous genes involved in rice kernel traits have

been isolated and functionally characterized using map-based

cloning and GWAS strategies, such as LONG KERNEL 3 (GS3),

GRAIN SIZE 5 (GS5), GRAIN WEIGHT 2 (GW2), GRAIN WIDTH 5

(GW5), Grain Width/Length QTL on chromosome 7 (GW7/GL7)

and GRAIN WIDTH 8 (GW8; Fan et al., 2006; Li et al., 2011; Mao

et al., 2010; Si et al., 2015; Song et al., 2007; Wang et al.,

2012b, 2015a,b; Weng et al., 2008). However, in maize, most of

the functional genes involved in kernel development were

identified using maize mutants, such as opaque2(o2), defective

kernel 1(dek1), empty pericarp2 (emp2), empty pericarp4(emp4),

empty pericarp5(emp5), empty pericarp16 (emp16), shrunken1

(sh1), glutamine synthetase1(gln1), embryo defective14 and U6

biogenesis-like1 (Echt and Chourey, 1985; Fu et al., 2002;

Guti�errez-Marcos et al., 2007; Li et al., 2015, 2017; Lid et al.,

2002a,b; Liu et al., 2013; Maitz et al., 2000; Martin et al., 2006;

Th�evenot et al., 2005; Xiu et al., 2016; Zhou et al., 2016).

Moreover, some functional genes that control maize kernel weight

and size were identified using homology-based cloning, including
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the orthologues of rice GW2 and GS3, ZmGW2 and ZmGS3 (Li

et al., 2010a,b). However, these mutant- or homology-based

cloned yield-related genes are greatly limited in application to

improving maize yield by molecular marker-assisted (MAS) breed-

ing due to the lack of identified superior allelic variations. To date,

only a few genes that influence maize kernel traits have been

isolated through positional cloning, such as ZmCKX10, which was

cloned by fine mapping of a major QTL (qKL1.07) for kernel length

(Qin et al., 2016). Therefore, illustrating the genetic architecture of

maize yield and revealing superior alleles by combination of GWAS

and QTL mapping will contribute to MAS and genomic selection

(GS) breeding of high-yield maize as well as to identify functional

genes that control maize yield.

The development of maize kernels is regulated by a large

number of genes at the transcriptional and post-transcriptional

levels (Chen et al., 2014; Li et al., 2016). Plant microRNAs

(miRNAs) are endogenous ~22-nt RNAs that play important

regulatory roles at the post-transcriptional level during develop-

ment and stress response (Chen, 2009). The function of miRNAs is

to bind its target genes and cleave their mRNAs or inhibit their

translation (Park et al., 2002). Currently, miRNAs have attracted

much attention for their importance in various development

processes. For example, a dynamic expression profile of miRNAs

was found to occur during maize kernel development (Li et al.,

2016). Liu et al. (2014a) combined small RNA and degradome

sequencing identifiedmiRNAs and their target genes in developing

maize ears, confirming 22 conserved miRNA families and discov-

ering 26 novel miRNAs that regulate ear development (Liu et al.,

2014a). Moreover, the overexpression of miR156 in switchgrass

was found to improve biomass production (Fu et al., 2012). The

miR157/SPL axis has been proven to control floral organ growth

and ovule production by regulating MADS-box genes and auxin

signal transduction to improve cotton yield (Liu et al., 2017b). Zhu

et al. (2009) revealed that miR172 causes loss of spikelet deter-

minacy, floral organ abnormalities and seed weight reduction in

rice (Zhu et al., 2009). Plant miRNAs have become important

regulatory factors of plant genes, which have the potential to

improve complex traits such as crop yield. However, the identifi-

cation of miRNA loci associated with target traits by GWAS and

QTL has not been reported to date. In this study, candidatemiRNAs

associated with kernel size traits were excavated according to the

co-localized region of GWAS loci and QTL. The findings of this

study will improve our understanding of the molecular mechanism

underlying kernel yield formation in maize.

In the present study, we used an association panel, including

310 maize inbred lines and an intermated B73 9 Mo17 (IBM)

Syn10 doubled haploid (DH) population containing 265 DH lines

to: (i) identify genetic loci and candidate genes for KL, KT and KW

in multiple environments by GWAS; (ii) detect the QTL for KL, KT

and KW traits in different environments using an ultra-high-

density bin map; and (iii) determine co-localized candidate genes

associated kernel size by joint linkage mapping and GWAS.

Remarkably, seven miRNAs were found to situate within the

linkage disequilibrium (LD) regions of the co-localized SNPs, of

which zma-miR164e was demonstrated to cleave the mRNAs of

Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of

zma-miR164e resulted in the down-regulation of these genes

above and the failure of seed formation in Arabidopsis pods, with

the increased branch numbers. The present study aims to improve

our understanding of the genetic architecture and molecular

mechanism of maize kernel yield and contribute to the improve-

ment for kernel yield in maize.

Results

Phenotype description for kernel size traits in the
association panel and linkage population

Generally, abundant variations in kernel size traits were observed

in the association panel and the biparental population (Tables S1,

S2; Figure 1). KL, KW and KT ranged from 6.50 to 13.60 cm,

4.81 to 9.93 cm and 15.91 to 33.29 mm, with a mean of 9.65,

7.27 cm and 23.21 mm, respectively, across different environ-

ments in the association panel (Table S1). For the IBM population,

KL, KW and KT had a range from 7.12 cm to 13.07 cm, 4.82 cm

to 10.45 cm and 3.43 cm to 4.99 cm, with an average of

10.50 cm, 7.15 cm and 4.42 cm, respectively, across various

environments. The broad-sense heritability (H2) of the three-grain

traits ranged from 81.61 (%) to 88.08 (%) in the association

panel, and 73.03 (%) for KL, 84.06 (%) for KW and 93.61 (%) for

KT in the IBM population. Skewness and kurtosis indicated that

these phenotypes all conformed to a normal distribution in the

two populations. In the association panel, KW was consistently

significantly positively correlated with KT [r = 0.293 (E1a), 0.217

(E2a), 0.309 (E3a); P < 0.01] across the three environments, and

KL was significantly negatively correlated with KT [r = �0.252

(E2a), �0.127 (E3a); P < 0.05] across two of the environments

(Table S3). In the IBM population, KL was consistently significantly

positively correlated with KW at the level of P < 0.05, and the

correlation coefficient was 0.158–0.594 across the six environ-

ments. Moreover, KW was consistently significantly positively

correlated with KT [r = 0.186 (E4a), 0.196 (E5a), 0.136 (E6a);

P < 0.05] for all three of the environments in the IBM population

(Table S4). These results suggested that KL, KW and KT were

coordinately developed to regulate kernel size and weight in

maize. For each of the traits, there was a highly significantly

positive correlation of the phenotypic values between each of the

two environments in both populations (Tables S5 and S6). It

indicated that the investigated phenotypes were reliable for the

genetic architecture dissection of kernel size traits in maize.

Genetic loci and candidate genes identified in the
association panel

The results of analysis using STRUCTURE revealed that the 310

maize inbred lines could be divided into four subpopulations,

which agrees with the findings of a previous study (Zhang et al.,

2016). For the association panel, LD decay reached 220 kb

(r2 = 0.2), which is also consistent with results of the previous

study (Zhang et al., 2016). The GWAS used 39,354 SNPs to

perform the elucidation of the genetic architecture of kernel size

traits. We used three association analysis methods to balance

false positives and false negatives in the present study. To explore

the kernel size-related SNPs with the top significances, we set the

threshold as 2.25 9 10�6 based on the effective number of SNPs

and familywise error rate as a = 0.05. A total of 21 SNPs

significantly associated with the three traits were identified by

three association analysis methods, of which two SNPs were

detected by GAPIT, one by TASSEL and 20 by FarmCPU (Table 1,

and Figures 2; Figures S1 and S2). Two SNP markers on

chromosome 1, PZE-101129119 and PZE-101108339, were co-

detected by two models. Specifically, PZE-101129119 was

detected by GAPIT (E4a, P = 2.15 9 10�6) and TASSELL (E1a,

P = 1.26 9 10�6), which was significantly associated with KL,

whereas PZE-101108339 was co-identified by GAPIT (E3a,

P = 8.64 9 10�7) and FarmCPU (E3a, P = 3.74 9 10�7), which

ª 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 18, 207–221

Min Liu et al.208



was significantly related to KL. However, 19 SNPs were specif-

ically detected by the FarmCPU model, which were associated

with KL, KW and KT (Table 1). Then, we used these 21 unique

SNPs to identify candidate genes, of which four SNPs were

located in the intergenic regions, and 17 were situated in

intragenic regions. The 17 candidate genes involved nine for KL,

one for KW and seven for KT (Table 2), including the orthologs/

homologs of five genes controlling kernel development as

EMBRYO DEFECTIVE 2733 (Shen et al., 2013), pentatricopeptide

repeat-containing protein (Yang et al., 2017), E3 ubiquitin-

protein ligase HRD1A (Song et al., 2007), ubiquitin-activating

enzyme E12 (Du et al., 2014; Salceda and Caro, 1997) and

CLAVATA3/ESR-related protein 25 (Fiume and Fletcher, 2012).

To discover the stable SNPs co-detected in a multi-environ-

ment, we then lowered the threshold of P-value to 1.0 9 10�4,

according to the previous report (Liu et al., 2016a). A total of 13

SNPs were significantly correlated with these kernel size traits

across multiple environments (Figures 2; Table S7, Figures S1 and

S2). Among these, two KL-associated SNPs (PZE-101129119 and

PZE-101129122) were repetitively detected in all of the environ-

ments, which were co-identified by all the models. However,

SYN18170 (associated with KW) and PZE-101108339 (associated

with KL) were both detected in three environments (E1a, E2a and

E4a; E2a, E3a and E4a), which were found by each of the models.

Then, we identified nine candidate genes that harboured these

13 SNPs, which included five for KL, three for KW and one for KT

(Table S8). Of these, the orthologs/homologs of the candidate

genes ubiquitin receptor RAD23c (Peng et al., 2015) and ubiq-

uitin-activating enzyme E12 (Du et al., 2014; Salceda and Caro,

1997) have been previously shown to regulate kernel develop-

ment.

QTL detected by linkage population

Based on single-environment QTL analysis, a total of 50 QTL

distributed across 10 maize chromosomes were identified for the

three traits, including 15 QTL for KL, 21 QTL for KW, nine QTL for

KT and five QTL for multiple traits (Figure 3; Table S9). The

confidence intervals of these QTL spanned physical distances from

0.20 to 24.80 Mb, with an average of 3.82 Mb, by referring to

the B73 RefGen_v2 genome. The proportion of phenotypic

variations explained by these individual QTL ranged from 3.48%

to 10.11% for KL, from 3.44% to 8.43% for KW and from

3.38% to 15.04% for KT (Table S9). To analyse the overlaps

between different QTL identified in each of the environments, we

compared the confidence intervals of the mapped QTL. When

two QTL overlapped, these were considered to be a single unique

QTL. A total of 19 overlapping QTL were detected across different

environments or across different traits in this study. Furthermore,

there were 18 QTL were detected in at least two environments,

including six, eight and four QTL for KL, KW and KT, respectively

(Table S9). Among these environment-stable QTL, qKS5-2 was

detected in six of the seven environments, and qKW10-2 was

identified in four environments, whereas qKS1-1, qKS4-1, qKL3-

2, qKW7-1 and qKT4-2 were detected in three environments. The

two QTL, qKL3-5 (R2 = 10.11%) and qKT4-2 (R2 = 15.04%),

were identified as major QTL (R2 > 10%), which controlled KL

and KT, respectively (Table S9). When a QTL is mapped to

multiple traits, it was a called pleiotropic QTL (Liu et al., 2016c). In

this study, five pleiotropic QTL were identified, including qKS1-1,

qKS5-1 and qKS5-2 for KL and KW, qKS3-1 for KW and KT, and

qKS4-1 for KL and KT (Table S9), implicating that a close genetic

correlation existed among different kernel traits in maize.

Candidate genes co-localized by joint linkage mapping
and GWAS

Generally, genetic loci co-localized in different genetic back-

grounds were thought to have stable effects on phenotypes

(Vikram et al., 2011). Therefore, we also focused on these

genetic loci that were co-detected in the two populations.

According to the previous study (Lu et al., 2010), we lowered the

threshold of P-value to 1.0 9 10�3 to identify the stable loci

across the two populations. Based on the physical positions of the

identified QTL and SNPs, a total of 56 SNPs were found to fall in

18 of the kernel size-related QTL (Table S10). To provide

candidate genes of these co-localized SNPs, we scanned 220-

Kb regions upstream and downstream of the 56 co-localized SNPs

based on the LD value for obtaining the genes whose orthologs/

homologs in plants have been shown to regulate seed develop-

ment. A total of 50 candidate genes were gained, including

transcription factors, enzymes and transporters (Table S11).

Interestingly, we also identified seven maize miRNAs falling

within the scanned regions, including zma-miR164e, zma-

miR169a, zma-miR159c, zma-miR171 l, zma-miR319b, zma-

miR399c and zma-miR399f (Table S11). In Arabidopsis, miR319,

miR164, miR159, miR169 and miR171 have been demonstrated

to functionally regulate the development of leaf, inflorescence,

seed, root and chlorophyll biosynthesis, respectively (Koyama

et al., 2017; Ma et al., 2014; Mallory et al., 2004; Sorin et al.,

2014; Zhao et al., 2018). However, zma-miR399 was reported to

play an important role in low phosphate tolerance in maize by

interacting with Pi deficiency-induced long-noncoding RNA1 (Du

et al., 2018).

Response of candidate genes to maize seed
development

A previous study conducted a transcriptome analysis for the

whole seeds of B73 from 0~38 days after pollination (DAP) with

an interval of 2 days, which covered all 20 time points (Chen

et al., 2014). To refer to the published transcriptome data which

Figure 1 Phenotypes of kernel size traits and variations of kernel size

between two parental lines of the IBM Syn 10 DH population. Phenotypes

of KL, KW and KT illustrated with 10 kernels of the two parental lines in

IBM Syn 10 DH population. Bar = 1 cm.
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raw reads were aligned to the B73 reference genome

(RefGen_v2), a total of 17 and 35 candidate genes, respectively,

detected by GWAS and joint linkage mapping and GWAS were

successfully converted to the B73 reference genome v.2 using the

translation tool (https://www.maizegdb.org/gene_center/gene

#translate/). All of the 17 genes identified by GWAS were

expressed in maize seeds, with an average expression level of

0.26–95.66 reads per kilobase per million (RPKM; Table S12), of

which 100% of the genes were differentially expressed during

kernel development. Importantly, three candidate genes with the

top significances and stable effect (Tables 2; Table S8) showed

different dynamic expression patterns (Figure S6), reflecting their

diverse roles in the corresponding stages of seed development.

However, 29 (82.86%) genes detected by co-localized SNPs

showed an average expression of 0.05–28.29 RPKM in develop-

ing maize seeds, with 27 (93.10%) genes differentially expressed

(Table S12). The results above indicated that the majority of these

candidate genes responded to the development of maize seeds.

Overexpression of zma-miR164e in Arabidopsis thaliana
down-regulated target genes and affected grain yield

Among these candidate miRNAs involving in kernel size, zma-

miR164e and zma-miR159c had higher expression levels than the

other miRNAs, which were both differentially expressed during

the development of maize kernels (Li et al., 2016). Of them, ath-

miR159 has been previously proven to regulate the development

of endosperm in Arabidopsis (Zhao et al., 2018). To further verify

the function of zma-miR164e, we expressed zma-miR164e in

Arabidopsis thaliana and obtained three positive transgenic lines

(T1). The expression level of zma-miR164e was confirmed using

RT-PCR, which indicated the successful expression in the three

transgenic lines relative to the wild type (WT; Figure 4D). The

positive transgenic plants (Figure 4A) displayed an average

increase in 14 branches compared with WT, whereas no

significant difference in plant height was observed between the

transgenic lines and the WT. The flowers of the WT showed

normal petals; however, the flowers of the transgenic plants had

no petals (Figure 4Bde). More importantly, the pods of the

transgenic lines were thinner and shorter (Figure 4C, E) and did

not produce seeds (Figure 4Bf), indicating that the expressed

zma-miR164e affected Arabidopsis seed formation. Since the T1

transgenic plants failed to produce normal seeds, phenotypic

investigation using biological replicates could not be performed

on the T2 transgenic plants. Instead, we further conducted

another two transformation experiments, which indicated that

the phenotypes of the transgenic plants were similar to those in

the first experiment. As the sequence of zma-miR164e is different

from any member of miR164 family in Arabidopsis (Figure S3), we

first predicted the candidate target genes of zma-miR164e in

Arabidopsis using a plant small RNA target analysis site

psRNATarget. The results showed that CUC1, CUC2 and NAC6

had the lowest mismatch scores (Table S13), which were then

selected as the potential target genes of zma-miR164e and were

further verified by in vitro cleavage. Figure 5C and H shows that

the fluorescence intensity of CUC1:eGFP decreased with increas-

ing concentration (from OD600 nm = 0 to OD600 nm = 0.9) of

Num SNP ID

SNP_position_v2

(bp) Chr Trait P-value PVE Env. Model

1 PZE-101129119 164640160 1 KL 2.15E�06 0.3099 E4a GAPIT

1.26E�06 0.0944 E1a TASSEL

2 PZE-101108339 115012268 1 KL 8.64E�07 0.2768 E3a GAPIT

3.74E�07 0.0001 E3a FarmCPU

3 SYN26797 18426957 7 KT 3.77E�09 0.0151 E1a FarmCPU

4 SYN434 289546922 1 KL 1.15E�08 0.0039 E1a FarmCPU

5 PZE-110055291 106051168 10 KT 1.47E�08 0.0166 E1a FarmCPU

6 SYN28965 160819237 1 KT 2.33E�08 0.0166 E1a FarmCPU

7 PUT-163a-

29945603-1815

167062100 5 KL 4.65E�08 0.0241 E4a FarmCPU

8 SYN1412 15323770 5 KL 8.17E�08 0.0151 E4a FarmCPU

9 PZE-110034247 65089069 10 KT 9.78E�08 0.0002 E1a FarmCPU

10 PZE-105045953 33978605 5 KL 2.02E�07 0.0008 E3a FarmCPU

11 SYN32618 120118588 10 KT 2.17E�07 0.0047 E1a FarmCPU

12 PZE-107083070 137701592 7 KT 2.74E�07 0.0250 E1a FarmCPU

13 SYN19035 50343804 5 KW 4.27E�07 0.0024 E4a FarmCPU

14 PZE-109000187 479709 9 KL 5.54E�07 0.0027 E4a FarmCPU

15 PZE-104143542 232139827 4 KT 5.80E�07 0.0043 E1a FarmCPU

16 SYN11831 143268372 2 KL 7.66E�07 0.0016 E4a FarmCPU

17 PZE-104121926 198929997 4 KW 9.72E�07 0.0158 E4a FarmCPU

18 SYN3006 45780048 1 KL 1.05E�06 0.0151 E4a FarmCPU

19 SYN33300 54509254 4 KL 1.11E�06 0.0008 E1a FarmCPU

20 PZE-103059745 111867963 3 KL 1.52E�06 0.0009 E1a FarmCPU

21 PUT-163a-

71311544-3115

172351409 8 KT 1.94E�06 0.0181 E1a FarmCPU

Note: Num, number; Chr, chromosome; Env., environment: E1a is 2016 Jinghong; E2a is 2016 Hongya;

E3a is 2016 Ya’an; E4a is BLUP; PVE, phenotypic variation explained.

Table 1 Top-significance SNPs associated with

maize kernel size traits detected by GWAS

using three models (GAPIT, TASSEL and

FarmCPU)
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zma-miR164e in the cells of tobacco leaf co-transformed with

zma-miR164e and CUC1:eGFP, which was similar to the positive

control (Figure 5A, G). However, no change in fluorescence

intensity was observed in the tobacco leaf co-transformed with

zma-miR164e and mutated CUC1 (CUC1m):eGFP (Figure 5E, I),

with increasing zma-miR164e concentration (from OD600 nm = 0

to OD600 nm = 0.9). These findings indicated that zma-miR164e

specifically cleaved the predicted target sequence of the CUC1

mRNA and suppressed the accumulation of the CUC1 protein,

and the sequence change of the target region caused the failure

of zma-miR164e cleavage on the mutated CUC1 mRNA and led

to the accumulation of the CUC1 protein. Similarly, the mRNAs of

CUC2 and NAC6 were separately demonstrated to be cleaved by

zma-miR164e (Figures S4 and S5).

To validate the influence of the expressed zma-miR164e on the

expression of the three target genes above, qRT-PCR was

performed to determine the expression levels of these target

genes in the transgenic Arabidopsis. The results showed that the

expression levels of CUC1, CUC2 and NAC6 were all significantly

lower in the transgenic lines than those in the WT (Figure 4F) in

the mixed samples of inflorescence and buds. To determine

whether the overexpression of zma-miR164e triggered the up-

regulation of Arabidopsis miR164 family and consequently

resulted in the down-regulation of these target genes, we

performed qRT-PCR for each member (ath-miR164a/b and ath-

miR164c) of ath-miR164 family in the transgenic Arabidopsis. As

shown in Figure S7, the expression levels of ath-miR164a/b and

ath-miR164c in transgenic plants were not significantly different

from those in WT. It suggested that the observed phenotypes of

the transgenic Arabidopsis were caused by the expression of the

exogenous zma-miR164e rather than the endogenous ath-

miR164 in Arabidopsis. Taken together, these findings indicated

that the expressed zma-miR164e in Arabidopsis down-regulated

the expressions of CUC1, CUC2 and NAC6 by cleaving their

mRNAs, resulting in the failure of seed production.

Discussion

Joint linkage mapping and association analysis is an
effective method for analysing the genetic architecture
of maize kernel traits

Crop yield is a complex quantitative trait. Understanding the

genetic structure of maize yield contributes to high-yield breeding

in maize. QTL mapping and GWAS are both effective tools for

analysing the genetic structure of quantitative traits. QTL map-

ping is often used to efficiently identify the chromosomal regions

controlling crop agronomic traits. GWAS facilitates the identifi-

cation of quantitative trait nucleotides (QTNs) and candidate

genes associated with the target traits. However, QTL mapping is

based on linkage analysis with biparental populations, which

shows insufficient genetic diversity, and many genetic loci would

therefore be lost. The main limiting factor for GWAS is the

influence of the relationship of the association panel, which leads

to the identification of false associations (Yu and Buckler, 2006;

Yu et al., 2006). Furthermore, in many cases, alleles are rare from

diverse germplasm collections in association populations, which

severely limit the ability of GWAS to detect QTL (Lu et al., 2010).

Therefore, a combination of linkage and association mapping can

significantly improve mapping efficiency for quantitative traits.

In this study, we utilized linkage and association mapping to

detect QTL and candidate genes underlying grain yield in maize.

By performing GWAS using the association panels, including 310

inbred lines with 39,354 SNP markers, we obtained 21 top

significant SNPs (P < 2.25 9 10�6) that were significantly

Figure 2 Manhattan plots of the association

analysis for KL in four environments by FarmCPU.

Manhattan plot of KL on 10 chromosomes for the

association analysis across four environments by

FarmCPU. The dotted red line indicates the

significance threshold of P-value 1 9 10�4. The

significant SNPs are labelled with red dots. ⑤,

distribution of SNP markers on 10 chromosomes

in association pool, the colour represents the

density of the SNP markers; ①–④, represent

different environments: ①, 2016 Jinghong; ②,

2016 Hongya; ③, 2016 Ya’an; ④, BLUP. Stable-

effect SNPs co-detected in a multi-environment

are shown in orange rectangle-shaped boxes.
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associated with three kernel size traits in maize. For QTL mapping,

the IBM Syn10 DH population with a higher genetic resolution

than F2 and RIL populations and long genetic map length and

high-density linkage marker is more suitable for QTL fine mapping

of important traits (Holloway et al., 2011; Liu et al., 2015). In the

present study, we conducted QTL analysis using the IBM Syn10

DH population including 265 lines and 6,618 bin markers and

identified 50 QTL controlling the three kernel size traits of maize.

The physical intervals of 32 of the 50 identified QTL were within

2 Mb, which was equivalent to fine mapping. A total of 56

identified SNPs by GWAS were located in 18 of the QTL mapped

in the present study (Table S10). Therefore, these 18 QTL may be

utilized in the development of molecular markers for high-yield

breeding in maize.

Some QTL controlling maize kernel size were previously

detected by linkage mapping or association analysis using multiple

populations. For example, Liu et al. (2017a) identified 213 QTL for

maize kernel size traits using 10 RIL populations (Liu et al., 2017a).

Zhang et al. (2017) detected 24 QTL that were related to kernel

size traits using RILs with an ultra-high-density bin map (Zhang

et al., 2017a). Liu et al. (2014b) obtained 40 QTL controlling

kernel size traits by linkagemapping with an F2 population derived

from a cross between two maize elite inbred lines (Liu et al.,

2014b). To distinguish the novel QTL detected by this study from

the common QTL across different studies, we compared the

physical genome regions between these QTL identified in our

study and the previously reported QTL. If the confidence interval of

a QTL identified by the present study overlapped with the QTL

detected in previous studies, it was taken as a common QTL;

otherwise, it was considered a novel QTL. A total of 29 QTL found

in our study were common and the remaining 21 QTL are novel. It

suggested that the QTL for objective traits present population

common and specific characteristics (Liu et al., 2017a). Therefore,

combining multiple populations from diverse genetic backgrounds

is efficient to comprehensively analyse the genetic architecture of

kernel size traits.

Stable QTL provide important information for high-yield
maize breeding

Currently, yield stability is one of the breeding objectives in high-

yield breeding. Therefore, the identification of common QTL

controlling yield across multiple environments is especially signif-

icant. In previous studies, a set of QTL has been identified to

regulate yield-related traits, most of which were located in bins

Table 2 Candidate genes associated with the top significant SNPs involved in maize kernel size traits

Num

Candidate

gene_v4 Biotype Gene_start Gene_end Strand SNP

Position_v4

(bp) Chr Trait Annotation

1 Zm00001d030895 IN 166287332 166290184 � PZE-

101129119

166289395 1 KL Adenine phosphoribosyltransferase 1

chloroplastic

2 Zm00001d034507 IN 294961663 294963739 + SYN434 294962348 1 KL CLAVATA3/ESR-related protein25/

ZmCLE4A

3 Zm00001d016640 IN 170975264 170982646 � PUT-163a-

29945603-

1815

170975750 5 KL TUDOR-SN protein 1

4 Zm00001d013631 IN 15866934 15871877 � SYN1412 15867026 5 KL TATA-box-binding protein 2

5 Zm00001d014180 IN 35160223 35174053 � PZE-

105045953

35160866 5 KL Flowering locus K homology domain

6 Zm00001d004898 IN 147703036 147707778 � SYN11831 147703325 2 KL E3 ubiquitin-protein ligase HRD1A

7 Zm00001d028771 IN 46017582 46024037 � SYN3006 46019273 1 KL Ubiquitin-activating enzyme E1 2

8 Zm00001d049979 IN 56765844 56767670 + SYN33300 56766552 4 KL EMBRYO DEFECTIVE 2733/EMB2733

9 Zm00001d041108 30-UTR 97773979 97798160 + PZE-

103059745

97799302 3 KL Probable Ufm1-specific protease

10 Zm00001d014530 IN 51914095 51915783 + SYN19035 51915123 5 KW Phenolic glucoside malonyltransferase

1

11 Zm00001d019145 IN 19093571 19096947 � SYN26797 19095064 7 KT Leucine-rich repeat receptor-like

tyrosine-protein kinase PXC3

12 Zm00001d025152 IN 106764011 106766200 � PZE-

110055291

106766132 10 KT Pentatricopeptide repeat-containing

protein/PPR

13 Zm00001d030833 30-UTR 162240102 162241109 + SYN28965 162241249 1 KT Transcriptional regulator of RNA polII

SAGA subunit

14 Zm00001d025522 IN 121168118 121172140 + SYN32618 121171324 10 KT Putative FKBP-type peptidyl-prolyl cis-

trans isomerase family protein

15 Zm00001d021010 50-UTR 140312368 140312751 + PZE-

107083070

140312336 7 KT Vegetative cell wall protein gp1

16 Zm00001d053628 IN 237227892 237245986 � PZE-

104143542

237228035 4 KT Ribosomal RNA-processing protein 8

17 Zm00001d012640 IN 177653401 177663257 + PUT-163a-

71311544-

3115

177659431 8 KT Jacalin-related lectin 3

Note: Chr, chromosome; Num, number.
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4.08, 6.05, 6.06, 7.04 and 8.06 on genomic regions and

controlled kernel weight grain yield, kernel length, starch

content, ear diameter, kernel row number and ear length,

respectively (Portwood et al., 2018). These QTL were detected

under Hubei, Chongqing, Henan, Yunnan, Hainan, Wuhan and

Beijing. In this study, qKT4-3, qKL6-1, qKT6-1, qKW7-3 and

qKW8-1, which are located in bins 4.08, 6.05, 6.06, 7.04 and

8.06 genomic regions, were separately identified in Sichuan,

Yunnan and Xinjiang environments (Table S9). In addition, seven

other stable QTL (qKS5-2, qKW10-2, qKS1-1, qKS4-1, qKL3-2,

qKW7-1 and qKT4-2) were all identified in at least three of the

seven environments in the present study. Therefore, these QTL

denote the environmentally stable genetic loci underlying maize

high yield and should be utilized in further fine mapping and MAS

of high-yield breeding. Notably, among these the stable QTL,

qKT4-2, had the phenotypic effect greater than 10% in two

environments (10.29% in E4b and 15.04 in E5b), which was

considered as a stable major QTL and worth greater emphasis.

Candidate genes involved in kernel development

Based on the detected 21 top significant SNPs (P ≤ 2.25 9 10�6)

by GWAS, 17 candidate genes were identified as potential genes

regulating grain development in maize (Table 2). Interestingly,

the SNP markers PZE-101129119 and PZE-101108339 that were

detected by two models (GAPIT and TASSEL; GAPIT and

FarmCPU) were located in the gene Zm00001d030895 and an

intergenic region, respectively. Zm00001d030895 was annotated

as adenine phosphoribosyltransferase 1 chloroplastic, which was

previously reported to be first up-regulated and then down-

regulated in developing seeds, with the highest expression at 10

DAP (Figure S6A; Chen et al., 2014). In Arabidopsis, adenine

phosphoribosyltransferases (APTs) have been proven to con-

tribute to cytokinin metabolism (Allen et al., 2002). Interestingly,

cytokinins play an important role in the regulation of grain size,

possibly resulting from cytokinins influencing accumulation pro-

cesses and the duration of the filling period in barley (Michael and

Seiler-Kelbitsch, 1972). In rice, cytokinins participate in the

regulation of the grain-filling pattern during the early develop-

ment of grains and affect the filling percentage of grains (Yang

et al., 2000). Thus, Zm00001d030895 may be a novel functional

gene that regulates grain size by affecting the accumulation of

cytokinin in maize. In addition, the homologous genes of five

candidate genes (Zm00001d025152, Zm00001d049979,

Zm00001d004898, Zm00001d034507 and Zm00001d028771)

have been reported to participate in the regulation of grain

development (Du et al., 2014; Fiume and Fletcher, 2012; Li et al.,

2015; Song et al., 2007; Sun et al., 2015), Zm00001d025152

encodes the pentatricopeptide repeat-containing (PPR) protein.

Plant PPR proteins are a large RNA-binding protein family that

regulates RNA metabolism in chloroplasts and mitochondria in

plants. A number of PPR proteins (AC212684.3_FG012,

GRMZM2G070381, GRMZM2G041231, GRMZM2G110851,

GRMZM2G021319, GRMZM2G345128, GRMZM2G060516,

GRMZM2G078416 and GRMZM2G353301) have been shown

to be related to maize seed development (Cai et al., 2017; Dai

et al., 2018; Li et al., 2018b; Qi et al., 2017; Ren et al., 2017;

Sun et al., 2015; Xiu et al., 2016; Yang et al., 2017; Zhang et al.,

2017b). Zm00001d049979 was annotated as embryo defective

Figure 3 QTL on 10 chromosomes for three

kernel size traits across seven environments.

Circos graph displaying integrated QTL on 10

chromosomes for kernel size traits across seven

environments. The innermost ring black strip

represents bin markers on 10 chromosomes of

maize; the outermost ring scale indicates the

physical location on the 10 chromosomes. Seven

circles from the outside to the inside represent

seven environments, E1b–E7b, respectively. For

each environment, different colours represent

different traits: green, KL; blue, KW; red, KT. The

fan-shaped region between the two markers

(highlighted with the black line) represents each

pleiotropic QTL. The stable QTL co-detected in a

multi-environment are shown in orange rectangle-

shaped boxes.
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Figure 5 Zma-miR164e-directed cleavege in Arabidopsis CUC1 mRNA decreases the accumulation of the CUC1 protein. (a) eGFP:CUC1 (OD600 nm = 0.6)

was transiently expressed alone or co-expressed with ath-miR164e (OD600 nm = 0.3/0.6/0.9) in tobacco leaf cells. The eGFP:CUC1 protein accumulation

decreased with increasing ath-miR164a concentrations. The result served as positive control for this experiment. (b) Binding sites of ath-miR164a and

CUC1. (c) The eGFP:CUC1 (OD600 nm = 0.6) was transiently expressed alone or co-expressed with zma-miR164e (OD600 nm = 0.3/0.6/0.9) in tobacco leaf

cells. The eGFP:CUC1 protein accumulation decreased with increasing zma-miR164e concentrations. (d) Binding sites of zma-miR164e and CUC1. (e) That

zma-miR164e cannot suppress the protein accumulation of eGFP:CUC1m whose binding site sequence has synonymous mutations. (f) synonymously

mutated sequence of binding sites in CUC1. (h) and (i) eGFP intensity change of eGFP:CUC1 and eGFP:CUC1m with the increase in zma-miR164e

concentration. (g) eGFP intensity change of eGFP:CUC1 with increasing ath-miR164a concentrations. The data of each sample were the average of the

randomly detected 10 nuclei. Same results were obtained in three independent experiments. (Error bars indicate � SD, t-test; ***P < 0.001).

Figure 4 Expression of zma-miR164e results in the failure of seed formation in Arabidopsis. (a) Morphological characterization of expressing zma-miR164e

(OE) transgenic plants in Arabidopsis thaliana. Representative plants from T1-positive transgenic lines are shown: T-1, T-2 and T-3. Wild type (WT) as the

control. Bar = 2 cm. (b) The flowers and pods of the OE and WT of Arabidopsis. For OE, flower has no petals (d and e), pod has no seed (f); however, flower

(a and b) and pod (c) of WT were normal development. Bar = 400um. (c) The mature pod of OE was significantly smaller than that of WT. Bar = 400 lm.

(d) RT-PCR analysis of the expression levels of zma-miR164e in the mixed samples of inflorescence and buds of WT and the transgenic Arabidopsis plants.

zma-miR164e was no expression in WT, but expressed in the transgenic plants T-1, T-2 and T-3. U6 was used as loading control. (e) The phenotypic values

of pod length (mm). The pod length of the transgenic Arabidopsis plants was significantly shorter than WT (error bars indicate � SD. t-test; ***,

P < 0.001). (f) qRT-PCR analysis of CUC1, CUC2 and NAC6 in the mixed samples of inflorescence and buds of WT and the transgenic Arabidopsis plants. ß-

Tubulin was used as internal reference to calculate the relative expression of target genes using the formula log10[2�(Ct target gene � Ct ß-Tubulin)]. qRT-PCR

data represent the average of three biological replicates. (Error bars indicate � SD, t-test; ***P < 0.001; **P < 0.01).
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2733, and several homologous genes of Zm00001d049979 in

maize such as embryo defective 12 (GRMZM2G119691), embryo

defective 14 (GRMZM2G384293), embryo defective 16

(GRMZM2G155662) and embryo defective 8516

(GRMZM2G136559) have been demonstrated to participate in

the regulation of embryogenesis and seed formation (Li et al.,

2015; Magnard et al., 2004; Shen et al., 2013; Zhang et al.,

2013). GW2 encodes a RING-type protein with E3 ubiquitin ligase

activity and negatively regulates cell division, resulting in reduced

grain width, weight and yield (Song et al., 2007).

Zm00001d004898 was annotated as E3 ubiquitin-protein ligase

HRD1A, which is also a RING zinc finger domain superfamily

protein, and thus may have the similar function of regulating

grain development. Zm00001d034507 was annotated as CLA-

VATA3/ESR-related protein 25, the homologous gene of which

CLE8 regulates embryo and endosperm development in Ara-

bidopsis (Fiume and Fletcher, 2012). Zm00001d028771 was

annotated as ubiquitin-activating enzyme E12, which participates

in the ubiquitin–proteasome pathway (Salceda and Caro, 1997).

The ubiquitin–proteasome pathway has been reported to be

important in controlling plant seed development (Disch et al.,

2006; Du et al., 2014; Li et al., 2008; Peng et al., 2015; Xia

et al., 2013).

miRNAs provide an effective way to improve complex
yield traits in maize

Grain yield is a complex quantitative trait that is controlled by a

large number of genetic factors, including protein-coding genes

and regulatory factors (Fu et al., 2012; Yan et al., 2006). As a

class of small regulatory factors, plant miRNAs control growth

and development and stress responses in plants by manipulating

the expression of their target genes (Fu et al., 2012; Yan et al.,

2006). Mature miRNAs are processed from their longer precur-

sors, and the latter are generated from pri-miRNAs, which are

transcribed from MIR genes (Moro et al., 2019; Pegler et al.,

2019). The variations in miRNA and the promoter of MIR genes

have been shown to affect the phenotypes (Hommers et al.,

2018; Sadeghi et al., 2018). Therefore, the identification of

miRNAs regulating phenotypes is feasible through forward-

genetic approaches. In the present study, we first identified the

candidate miRNAs involved in maize grain yield using a combi-

nation of QTL mapping and GWAS. Among these, five (71.43%)

miRNAs have been reported to be correlated with growth and

development in plants. Notably, ath-miR159 has been previously

reported to regulate the development of endosperm in Ara-

bidopsis (Zhao et al., 2018). In addition, miR164 is a conservative

miRNA family in plants, which has five NAC domain target genes,

including NAC1, CUC1, CUC2, At5 g07680 and At5 g61430, and

mainly regulates lateral root development, meristem develop-

ment and flower organ development in Arabidopsis (Guo et al.,

2005; Sieber et al., 2007). Guo et al. (2005) reported that

miRNA164 directs mRNA cleavage of the transcription factor

NAC1 to down-regulate auxin signals for Arabidopsis lateral root

development (Guo et al., 2005). Mallory et al. (2004) and Laufs

et al. (2004) have independently revealed that miR164 cleaves

target genes CUC1 and CUC2 to regulate meristem development

and flower organ development (Laufs et al., 2004; Mallory et al.,

2004). The dynamic expression pattern of miRNAs during maize

kernel development showed that the miR164 family responds to

embryogenesis and seed development in maize (Li et al., 2016).

Liu et al. (2014) provided evidence that miR164 participates in

the development of maize ears (Liu et al., 2014a).

In this study, the overexpression of zma-miR164e in Arabidop-

sis down-regulated the expression levels of CUC1, CUC2 and

NAC6, resulting in the increased branch number and the failure of

generating normal seeds, thereby influencing kernel yield of

Arabidopsis. Moreover, we also used the sequence of zma-

miR164e to predict its target genes in maize, which indicated that

Zm00001d016950 (NAC30), Zm00001d041472 (NAC108) and

Zm00001d014405 (NAC113) have the highest expectations.

Interestingly, each of the above genes showed a high expression

level in maize flowers and seeds (Walley et al., 2016; Wang et al.,

2018), and two of their orthologs (Arabidopsis CUC1 and CUC2)

have been previously reported to participate in embryo formation

in Arabidopsis (Mallory et al., 2004). Combined these findings

suggested that zma-miR164e regulates grain yield in maize and

that miR164 has a conserved function on seed development

between maize and Arabidopsis.

Experimental procedures

Materials and phenotypic evaluation

The association panel consisted of 310 inbred lines, which were

collected from the breeding programme of Southwest China, as

described by Zhang et al. (2016). These lines were planted in a

randomized complete block design in two replicates. Each plot

contained a single row (14 plants) that was 3 m in length and

0.75 m from the next row, and the planting density was ~62,000
individuals per hectare. Each line was grown in a single row.

These field traits for GWAS were measured in three environments

in 2016, including Xishuangbanna (Jinghong, E100°460, N22°00),
Sichuan (Hongya, E103°220, N29°550) and Sichuan (Ya’an,

E103°00, N29°590), which were designated as E1a, E2a and

E3a, respectively. Best linear unbiased prediction (BLUP) values of

each trait in all of the above environments were used to represent

the phenotypic values for E4a. The three kernel size-related traits

included kernel length (KL, cm), kernel width (KW, cm) and kernel

thickness (KT, mm), among which KL and KW were examined in

each individual by randomly selecting 10 kernels from the centre

of each ear, whereas KT was examined using a total of five

kernels. Five maize ears with good self-pollination were selected

to evaluate the phenotypes of each line, two sets of data for each

trait were obtained for each ear, and each population was

planted with two replicates per environment. The KW and KL of

10 seeds were measured using a ruler with a precision of

0.05 mm, and KT of five seeds was measured using an electronic

digital calliper with a precision of 0.01 mm. The average value of

two replicates of each trait per line in a single environment was

calculated to represent trait performance in association analysis

(Table S1).

A total of 265 lines from the IBM Syn10 DH population were

used for QTL analysis of various kernel size traits. There were

highly significant differences on the investigated traits between

the two parents in the multiple environments (Figure 1). Mo17,

which had large seeds, had an average KL of 10.85 mm, an

average KW of 9.26 mm and an average KT of 4.87 mm across

multiple environments. In contrast, B73, which had smaller seeds,

had averages of 9.10, 5.35 and 3.81 mm for KL, KW and KT,

respectively. KL and KW of the IBM population were evaluated in

six environments in China, including Sichuan (Chongzhou,

E103°400, N30°400) in 2016 and 2017, Sichuan (Wenjiang,

E103°500, N30°420) in 2016 and 2017, Xishuangbanna (Jinghong,

E100°460, N22°00) in 2016 and Xinjiang (Changji, E87°180,
N44°010) in 2017. KT was evaluated in three of the above
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environments (Table S2). These location/year combinations were

designated as E1b (Chongzhou, 2016), E2b (Wenjiang, 2016),

E3b (Jinghong, 2016), E4b (Chongzhou, 2017), E5b (Wenjiang,

2017) and E6b (Changji, 2017). The way of investigating these

traits and the field experiment design for the IBM population

were the same as those for the association pool described above

except for KT, which was measured using a ruler with a precision

of 0.05 mm for 10 seeds (Table S2).

Phenotypic data analysis

Descriptive statistical analysis of the phenotypic data and corre-

lation analysis between the traits were performed with IBM SPSS

Statistics version 21.0 software (Kinnear, 2011). Broad-sense

heritability (H2) for each trait was estimated as described by

Knapp (Knapp et al., 1985) as: H2 = d2 g/(d2 g + d2 ge/n + d2/
nr), where d2g, d2ge and d2 are estimates of genetic variance,

interaction variance of genotype 9 environment and error

variance; and n and r are the number of environments and

replications per environment, respectively. The best linear unbi-

ased prediction (BLUP) values were computed using the R

package lme4 (version 3.4.2, https://www.r-project.org/), which

was fitted to each phenotype (Goldberger, 1962):

BLUP ¼ lmerðPhenotype� �
1jLinesð Þ þ 1jLocationð Þ

þ 1jYearð Þ þ 1jRepeat % in % Location : Yearð Þ
þ 1jLines : Locationð Þ þ 1jLines : Yearð Þ�:

Genome-wide association mapping

Using publicly available genotypic data from our previous study,

all 310 of the lines of the association panel contained 56,110 SNP

loci (Zhang et al., 2016). A total of 39,354 SNPs across 10

chromosomes remained after quality filtering using the following

standard: SNPs with a missing rate >5%, SNPs with heterozy-

gosity rate > 20% and SNPs with a minor allele frequency (MAF)

<0.05 were expurgated, and only biallelic sites were reserved. The

resulting 39,354 SNPs were subsequently used for LD calculation

and GWAS analysis. Population structure was estimated by using

STRUCTURE 2.3.4 software program with the 5,000 SNPs, which

were randomly selected from the above 39,354 SNPs and evenly

distributed across 10 chromosomes (Pritchard et al., 2000), and a

Bayesian Markov chain Monte Carlo programme was utilized for

assigning individuals to groups. The number of subgroups (K) was

set from 1 to 10, and five-time simulations with iterations and

burn-ins set to 10,000 were conducted using the mixture model

and correlated allele frequency for each K. Based on the output

log likelihood of data (LnP(D)) of STRUCTURE, the ad hoc statistic

DK was applied to determine the optimal number of subgroups

(Evanno et al., 2005). Principle component analysis (PCA) was

also performed in R software for calculating the population

structure and compared with the result of STRUCTURE. The best

number of subpopulations was selected to determine the Q

matrix. The software SpAGeDi (Hardy and Vekemans, 2002) was

used to calculate kinship coefficients (kinship matrix) between the

inbred lines of the associated panel. LD between genome-wide

SNP markers was calculated using TASSEL 5.0 software (Bradbury

et al., 2007).

GWAS analysis for the kernel size traits was conducted using

three association analysis methods to balance false positives and

false negatives in the present study: (i) the compressed mixed

linear model (CMLM) in GAPIT (Lipka et al., 2012; Zhang et al.,

2010) with the kinship matrix and population structure (Q matrix);

(ii) the mixed linear model (MLM) in TASSEL 5.0 (Bradbury et al.,

2007) with the kinship matrix and Q matrix; and (iii) Fixed and

random model Circulating Probability Unification (FarmCPU; Liu

et al., 2016b) with population structure (PCA) as covariates. The

statistical program simpleM implemented in R was used to explain

the multiple testing for SNPs, and the results showed that 22,223

SNPs were effective (Johnson et al., 2010). Therefore, the

threshold level for significant trait-marker associations was set

as 2.25 9 10�6 based on the effective number of SNPs and

familywise error rate as a = 0.05 (Hu et al., 2017). The pheno-

typic variation explained (PVE) for SNPs identified by the FarmCPU

was calculated as follows:

r2 ¼
Pn

i¼1 ŷi � ŷð Þ2
Pn

i¼1 yi � yð Þ2 ;

where yi is the observed phenotype value, and ŷi is the estimated

phenotype value from a multiple linear regression model that was

fitted to all significant SNPs as an independent variable with fixed

effect (Martinez et al., 2018).

Linkage mapping

In our previous study, a binmapwith 6,618 recombination binswas

constructed for the IBM population (Liu et al., 2015). The average

distance is 0.48 cM between adjacent markers. In this study, QTL

controlling the kernel size in seven (KL and KW) or four (KT) of the

environments (E1b, E2b, E3b, E4b, E5b, E6b and E7b) were

detected using a composition-interval mapping (CIM) method by

applying Windows QTL Cartographer software version 2.5 (Wang

et al., 2012a). The programme settings were as follows: CIM

model =Model 6: Standard model; control markers numbers = 5;

window size = 10 centimorgans; regression method = Backward

regression method; walk speed = 0.5 centimorgan. We used an

LOD = 2.5 as the threshold, and the 2-LOD interval was considered

as the QTL candidate region. When the confidence intervals of two

identified QTL for a single trait or multiple traits overlapped, these

were considered a single unique QTL. Among these, QTL detected

for multiple traits were defined as pleiotropic QTL.

Genetic transformation of zma-miR164e in Arabidopsis
thaliana

A 426-bp fragment of the zma-miR164e precursor was cloned

from the genomic DNA of B73 with the primer pair Pre-F and Pre-

R (Table S14). The DNA fragment was then ligated into the

multiple cloning sites between the CaMV 35S promoter and the

nos terminator in the plant binary expression vector pRI-101-AN

using the In-Fusion ligase enzyme (Clontech). The resultant 35S:

pre-miR164e plasmid was transformed to Agrobacterium tume-

faciens strain GV3101, which was then used to transform

Arabidopsis thaliana (Colombia) using the floral dip method

(Clough and Bent, 2010). The collected seeds were surface-

sterilized and plated on ½ MS media containing 50 lg/mL

kanamycin for selection of positive transformed plants. Then, the

viable transgenic plants were transplanted into nutritive soil and

grown under long-day conditions (16-h light/8-h dark) at 22°C in

a greenhouse.

Prediction and validation of target genes of zma-
miR164e in Arabidopsis

The target genes of zma-miR164e in Arabidopsis were predicted

using a plant small RNA target analysiswebsite (http://plantgrn.nob

le.org/psRNATarget/). The three genes with the lowest
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mismatching scores were CUC2, CUC1 and NAC6 (Table S13),

which were considered the candidate target genes of zma-

miR164e. To verify zma-miR164e-directed cleavage in Arabidopsis

CUC1, CUC2andNAC6mRNAs,we constructed six vectors, namely

pCAMBIA2300-35s:eGFP:CUC1 (V1), pCAMBIA2300-35s:eGFP:

CUC1m (V1m), pCAMBIA2300-35s:eGFP:CUC2 (V2), pCAM-

BIA2300-35s:eGFP:CUC2m (V2m), pCAMBIA2300-35s:eGFP:

NAC6 (V3) and pCAMBIA2300-35s:eGFP:NAC6m (V3m). Ara-

bidopsis (Colombia) total RNA was prepared from inflorescence

and converted to cDNA for gene cloning. The full-length

CUC1_CDS, CUC2_CDS and NAC6_CDS sequences lacking stop

codons were amplifiedwith primer pairs CUC1-F/CUC1-R, CUC2-F/

CUC2-R and NAC6-F/NAC6-R (Table S14) by PCR, respectively,

using the cDNA above as the templates. Then, the three amplifi-

cation productions (CUC1_CDS, CUC2_CDS andNAC6_CDS) were

separately ligated between the CaMV 35S promoter and the eGFP

in the fusion expression vector pCAMBIA2300-35S-eGFP, gener-

ating the final plasmids V1, V2 and V3, respectively. Furthermore,

we generated CUC1m-1, CUC2m-1 andNAC6m-1 through PCR by

applying the mutated primer pairs (CUC1-F/muCUC1-R, CUC2-F/

muCUC2-R andNAC6-F/muNAC6-R; Table S14) that encompassed

the predicted binding sites of zma-miR164e in CUC1, CUC2 and

NAC6, which resulted in synonymousmutations of the seven amino

acids in the predicted binding sites (Figures 5F; Tables S4F and S5F).

The 276, 333 and 204 bp downstream the bound sites of

CUC1_CDS, CUC2_CDS and NAC6_CDS (CUC1m-2, CUC2m-2

andNAC6m-2) were amplifiedwith primer pairsCUC1-F2/CUC1-R,

CUC2-F2/CUC2-R and NAC6-F2/NAC6-R (Table S14). The resulting

fragments were predicted to fail to be targeted by zma-miR164e

and therefore called zma-miR164e-resistant version CUC1_CDS

(CUC1m), CUC2_ CDS (CUC2m) and NAC6_CDS (NAC6m). These

amplification products (CUC1m-1 and CUC1m-2, CUC2m-1 and

CUC2m-2, and NAC6m-1 and NAC6m-2) were separately ligated

between the CaMV 35S promoter and the eGFP in the fusion

expression vector pCAMBIA2300-35S-eGFP, generating the final

plasmids V1m, V2m and V3m, respectively. The plasmid 35S:pre-

miR164e and V1 were co-transformed into tobacco leaves by

Agrobacterium injection, as well as 35S:pre-miR164e and V2, and

35S:pre-miR164e and V3 using co-transformation of 35S:pre-

miR164e and V1m, 35S:pre-miR164e and V2m, and of 35S: pre-

miR164e and V3m as negative controls, respectively. As ath-

miR164a has been previously proven to cleave the CUC1 in

Arabidopsis, we used the co-transformation of ath-miR164a and

V1 as positive control. At 48 h after Agrobacterium injection, the

fluorescence intensity was assessed in these transformed tobacco

leaves using a fluorescence confocal microscope (LSM 800, ZEISS,

Germany), with plan-Apochromat 40x/0.95 Korr M27, eGFP

excitation/emission wavelength of 488 nm/509 nm, laser intensity

of 1.00% and detector gain of 614V.

Expression analysis of zma-miR164e and its target genes
in transgenic Arabidopsis

The genomic DNA of the transgenic Arabidopsis lines was

extracted using the CTAB method, and primer pair pRI101-F

and pRI101-R (Table S14) from T-DNA sequence was used to

confirm the positive transgenic lines. Total RNA was isolated from

a mix of inflorescence and buds of the positively transgenic plants

or WT plants using HiPure Plant RNA Mini Kit (Magen,

Guangzhou, China). The Mir-X miRNA first-strand synthesis kit

(Clontech, Mountain View, CA) was used for the reverse

transcription of miRNAs to enable zma-miR164e to be quantified

by reverse transcription-polymerase chain reaction (RT-PCR). The

resulting miRNAs were appended with tag sequences. The entire

sequence of zma-miR164e was used as 50 primer, and the 30

primer was a part of the tag sequence supplied with the kit.

PrimeScriptTMRT reagent kit with a gDNA Eraser (Takara, Dalian,

China) was used for converting mRNAs into cDNA for quantitative

real-time PCR to determine the expression levels of CUC1, CUC2

and NAC6 in the transgenic lines, using ß-tubulin as internal

reference. All of the primers are listed in Table S14.
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