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SUMMARY

Much of survival analysis is concerned with absorbing events, i.e., subjects can only experience a single
event such as mortality. This article is focused on non-absorbing or recurrent events, i.e., subjects are
capable of experiencing multiple events. Recurrent events have been studied by many; however, most rely
on the restrictive assumptions of linearity and proportionality. We propose a new method for analyzing
recurrent events with Bayesian Additive Regression Trees (BART) avoiding such restrictive assumptions.
We explore this new method via a motivating example of hospital admissions for diabetes patients and
simulated data sets.
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1. INTRODUCTION

Survival analysis is typically concerned with absorbing events, i.e., subjects can only experience a single
event such as mortality. This article is focused on non-absorbing or recurrent events, i.e., subjects are
capable of experiencing multiple events such as hospital admissions. We advocate using all of the events
rather than restricting to the first event, if any; the first event will produce a valid inference, but only at
the cost of lost power and estimation inefficiency.

In this article, we follow the precedent of the recurrent events literature by using the term intensity
instead of hazard, but note that the terms are generally interchangeable. Recurrent events have been
studied by many; however, most rely on the Cox proportional intensity model with its precarious restrictive
assumptions of linearity and proportionality (Andersen and Gill, 1982; Wei and others, 1989; Kalbfleisch
and Prentice, 2002; Hosmer and others, 2008); i.e., the intensity is λ0(t) exp(x′β), where λ0(t) is the non-
parametric baseline intensity multiplied by the term exp(x′β) stipulating both linearity in the covariates
and multiplicative proportionality of the baseline intensity. We propose a new method for recurrent events
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that does not rely on such restrictive assumptions. We explore this new method via a motivating example
of hospital admissions for diabetes patients.

Excess health care utilization is a cause of concern in the United States. For example, the World Bank
estimates that health care expenditures in the United States were approximately 17% of Gross Domestic
Product in 2014 while no other developed country was above 12% (World Bank, 2015). Even so, the US
health care system is prone to extremes: some patients receive too much care while others, not enough
(Fisher and others, 2009; Smith and others, 2013). Concerns such as these triggered the Affordable Care
Act of 2010 (ACA) with provisions such as the Medicare Hospital Readmissions Reduction Program
(Singh and others, 2014; Zuckerman and others, 2016).

Our purpose in studying health care utilization is to determine if there are ways to reduce unneeded
services via preventive measures. In this undertaking, we look at the entire record of health care utilization
with all hospital admissions (including readmissions) to distinguish prudent and excessive health care
utilization. In this investigation, we are not disputing whether a given patient should have been admitted
or not, i.e., admission practices are not assumed to have been inappropriate or unnecessary. Rather, we want
to identify risk factors that foreshadow preventable or avoidable hospital admissions; these factors could
be prudently managed via outpatient clinical care. Not taking advantage of these mitigation opportunities
will most likely lead to excessive utilization such as future admissions.

We focus on the collected electronic health records (EHR) for a cohort of diabetes patients in a unified
health care system including a network of hospitals and affiliated outpatient clinics. EHR databank sys-
tems have been used by hospitals for decades. More recently, the American Recovery and Reinvestment
Act of 2009 (ARRA) incentivized the usage of EHR systems in outpatient clinics and physician offices
(Blumenthal and Tavenner, 2010) transforming the EHR into a near-complete health ledger for patients
cared for by a single health care system.

The modern EHR is an omnibus of current and historical digital health information. EHR data are
often paired with digital billing information; therefore, we use the term EHR in the widest possible
sense. We intend to estimate the relative intensity, or relative risk, of a hospital admission based on data
routinely available in the EHR such as demographics (age, gender, and race), body size (height, weight, and
body mass index), primary insurance provider (if any), billing, vital signs, comorbidities/complications,
procedures/surgeries, and pharmaceutical prescriptions; note that some of these covariates are static like
race while most are longitudinally dynamic.

In Section 2, we discuss our new Bayesian Additive Regression Trees (BART) methodology for recur-
rent events and our motivating example. Section 3 displays the results of our application. Section 4
discusses our findings and conclusions. The last section summarizes the supplementary materials to this
article.

2. METHODS

Hospital admissions can be handled by survival analysis, specifically via recurrent events. Recurrent
events have traits of time-to-event data such as right censoring; the main difference being that rather than
potentially experiencing a single absorbing event, each patient is free to experience multiple events during
their observation period. For this application, we considered extending random survival forests (Ishwaran
and others, 2008) to recurrent events. Although, random survival forests do not suffer from restrictive
assumptions, they do not naturally provide uncertainty estimates for quantities of interest such as the
cumulative intensity. Conversely, informed by earlier research with BART on survival analysis (Sparapani
and others, 2016), we concluded that extending BART to recurrent events is a more natural choice.

The observation period can be terminated by an absorbing event like death or with right censoring at
the end of follow-up. With respect to the recurrent event of interest, a death may be either independent
or dependent: independent deaths can be considered independent censoring while dependence is more



Non-parametric recurrent events analysis with BART 71

challenging (Cook and Lawless, 1997; Ghosh and Lin, 2000; Wang and others, 2001; Ghosh and Lin,
2003). When likely dependent deaths are relatively rare, we make the simplifying assumption that deaths
are independent of the event: often a reasonable approximation since their impact will likely be small.
When dependent deaths are more common, then it will be more appropriate to base the analysis on the
competing risks paradigm; for a brief discussion of recurrent events and competing risks with BART, see
Appendix F of the of the Supplementary material available at Biostatistics online.

2.1. Bayesian Additive Regression Trees (BART)

In this article, we propose to model hospital admissions with a new non-parametric recurrent events
framework based on BART extending earlier work on survival analysis of absorbing events with BART
(Sparapani and others, 2016). BART is a Bayesian non-parametric, ensemble sum of trees predictive
model for continuous, dichotomous, categorical, and time-to-event outcomes. Furthermore, BART is a
machine learning black-box model of the outcome via an arbitrary random function, f , of the covariates.
So-called black-box models generate functions of the covariates so complex that interpreting the internal
details of the fitted model is generally abandoned in favor of assessing it by evaluations of the fitted
function, f , at chosen values of the covariates.

Evaluating predictive modeling often entails comparisons of predictive performance for in-sample vs.
out-of-sample data elements; in-sample refers to elements that are members of the training data used to fit
the model while out-of-sample are not. The term over-fitting is used when the model fits the training data too
well at the expense of generalizability to unseen out-of-sample data, e.g., over-fitting can be accomplished
by over-parameterizing the model. BART’s out-of-sample predictive performance is generally equivalent
to, or exceeds that, of alternatives like lasso or other black-box models such as gradient boosting, neural
nets with one hidden layer and random forests (Chipman and others, 2010). BART is in the class of
ensemble predictive models that typically do not over-fit to the training data (Kuhn and Johnson, 2013);
more details of the BART prior are provided in Section 2.1.1 below.

Essentially, BART is a Bayesian non-linear model with all the advantages of the Bayesian paradigm
such as posterior inference including point and interval estimation. Conveniently, BART is scalable to a
large number of covariates and naturally incorporates variable selection (Linero, 2016); it does not require
the covariates to be re-scaled; neither does it require pre-specifying the functional relationship of the
covariates nor their interactions.

The BART prior specifies a flexible unknown function, f , which is a randomly generated fit to the
data via the posterior. BART relies on Markov chain Monte Carlo (MCMC) to sample f . As with other
Bayesian methods employing MCMC, posterior convergence diagnostics are recommended for BART
especially with large data sets; see Appendix E of the Supplementary material available at Biostatistics
online for a primer on convergence diagnostics with BART.

2.1.1. Introduction to trees and the BART prior A binary tree is a type of directed acyclic graph consisting
of nodes and the edges connecting nodes. We describe binary trees, which we simply call trees hereafter,
by allusion to leafy trees. The direction of tree growth is up as indicated by the numerical progression of
node numbering, n, and tier height, t. Each node is either a terminal leaf node, or it is a parent branch
node that bifurcates into two child nodes connected by limb edges. All trees have a root node, n = 1, at
tier t = 0; the root is either a degenerate tree consisting only of a leaf or a branch leading up to the next
tier, t = 1, with a left node, n = 2, and a right node, n = 3. The nodes are uniquely numbered at tier t as
n = 2t , . . . , 2t+1− 1. At tier t, a branch at n = 2t + k leads upward to tier t + 1 to the left, 2n, and to the
right, 2n + 1. We can completely describe a tree as (T , M ) where the set of branches is denoted by T and
the set of leaves by M . See the diagram below where we have a tree with two branches at nodes n = 1, 3
and three leaf nodes: μn where n = 2, 6, 7.
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Fig. 1. This is a diagram of a binary regression tree. On the vertical axis, we have the tier, t, i.e., in each tier, we may
have nodes n = 2t , . . . , 2t+1− 1. This tree has branch decisions (diamonds) at nodes n = 1, 3 and terminal leaf nodes
(circles) at n = 2, 6, 7 with corresponding output values of μ2,μ6,μ7. At branches n = 1, 3, the splitting variable is
xjn and the cutpoint is cjnkn , i.e., if xjn ≤ cjnkn , then go to node 2n, otherwise, 2n + 1. Note that nodes n = 4, 5 (in
gray) do not appear since node n = 2 is a leaf. This tree is denoted by (T , M ) and a corresponding regression function
g(x; T , M ) where x is a vector of covariates, [x1, . . . , xP]. T represent the branch decision rules of the form xj ≤ cjk
and is composed of ordered triples, (n, j, k): n for the node, j for covariate xj and k for the cutpoint cjk . So, here we
have T = [(1, j1, k1), (3, j3, k3)]. M represents leaves and is composed of ordered pairs, (n,μn): n for the node and μn
for the outcome value. So, M = [(2,μ2), (6,μ6), (7,μ7)]. The regression function, g, climbs the tree. For example,
suppose j1 = 1 and x1 = c1k1 , then g([x1, . . . , xP]; T , M ) = μ2.

To turn a tree into a regression function, each branch is associated with a decision rule and each leaf
with an outcome value, e.g., in Figure 1, xj1 ≤ cj1k1 , is a branch decision at node n = 1: if true go up to
the left; otherwise, go up to the right. The decision rules partition the covariate space such that for each
set of covariates a corresponding outcome value is defined. Let the function g assign an outcome value
such that ŷ = μ+ g(x; T , M ) based on a vector of covariates, x, and the tree, (T , M ), where μ = E [y].
T represents a branch decision rule of the form xj ≤ cjk ; if true take the left branch up to the next tier,
otherwise the right. So, T is composed of ordered triples, (n, j, k): n for the node, j for covariate xj, and k
for the cutpoint cjk . M represents leaves and is composed of ordered pairs, (n,μn): n for the node and μn

for the outcome value.
BART is an ensemble sum of regression trees: f (x) = ∑ψ

h=1 g(x; Th, Mh) where ψ is a prior parameter
that is often chosen to be either 50, 100, or 200; to avoid over-fitting, 50 is recommended (Bleich and others,
2014). For a continuous outcome, we have the following BART regression on the covariates: y = μ+f (x)+
ε where ε

iid∼ N
(
0, σ 2

)
; μ is a prior parameter centering y usually set to ȳ; the unknown random function

and the error variance follow the BART prior expressed as ( f , σ 2)
prior∼ BART(ψ ,μ, κ ,α,β; ν, λ, q) (N.B.

the BART prior parameters are discussed below except (ν, λ, q) for σ 2; for these, see Chipman and others,
2010). For a binary outcome, the BART regression model is:

y
iid∼B(
(μ+ f (x))) , where f

prior∼ BART(ψ ,μ, κ ,α,β),

B(.) is the Bernoulli distribution,


(.) is the standard Normal cumulative distribution function, and

z|(y, f ) ∼ N(μ+ f (x), 1)

{
I (z ∈ (−∞, 0)) if I (y = 0)

I (z ∈ (0, ∞)) if I (y = 1)
, where z are auxiliary Normal latents.
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We employ an efficient Normal latent sampling technique (Albert and Chib, 1993; Robert, 1995); or an
alternative Logistic latent formulation (Holmes and Held, 2006; Gramacy and Polson, 2012) as discussed
in Appendix E of the Supplementary material available at Biostatistics online. The parameterμ = 
−1(p)
is used to center the latents, z, around the probability of an event p = Pr[y = 1], e.g., p = ȳ.

To describe the BART prior, we employ generic bracket notation (Gelfand and Smith, 1990) for densi-

ties/mass functions, e.g., suppose that θ
prior∼ U(0, 1), then [θ ] represents the prior density that is standard

uniform, I (θ ∈ (0, 1)); similarly, [y|θ ] is the likelihood function and [θ |y] is the posterior density/mass
function. We decompose the BART prior into the tree prior, [Th], the leaf prior, [Mh|Th] , and the error
variance prior,

[
σ 2

]
(but σ 2 is for continuous outcomes only and not considered further). We assume that

the joint tree/leaf priors are i.i.d., i.e.,
[
(T1, M1), . . . , (Tψ , Mψ)

] = ∏
h [(Th, Mh)] = ∏

h [Th] [Mh|Th].
There are three components for [Th]. The first is a regularity component for the probability that any node

n is a branch, denoted by Bn = 1, rather than a leaf, Bn = 0, given tier, t; the prior is: [Bn = 1|t = τ ] = α(1+
τ)−β where the default parameter settings are α = 0.95 and β = 2 (for a discussion of these parameters,
see Chipman and others, 1998). Due to the regularity tree-branching penalty, in prior probability, the
branch total for a single tree is likely just 1 or 2, i.e., each tree has few parameters (branches and leaves)
playing a small part in the overall fit as desired. Next there is a component for the choice of a splitting
variable, [s|Bn]; this prior is discrete uniform given a branch, otherwise no splitting variable is necessary
(denoted s = 0): [s = j|Bn = b] = I (b = 0, s = 0)+P−1I (b = 1, s ∈ {1, . . . , P}), where P is the number
of covariates (note that a Dirichlet prior is worth considering especially when P is large; see Linero,
2016). The last tree component, [c|Bn, s], selects a cutpoint, cjk ; this prior is discrete uniform given a
branch, otherwise no cutpoint is necessary (denoted c = 0): [c = k|Bn = b, s = j] = I (b = 0, c = 0)+
C−1

j I
(
b = 1, c ∈ {1, . . . , Cj}

)
, where Cj is the number of cutpoints for variable xj. To summarize, the tree

prior is [Th] = [Bn|t] [s|Bn] [c|Bn, s].
Given a tree, Th, there is a prior on its leaf values, [Mh|Th]. We assume a priori the leaves are i.i.d. given

Th, i.e., [Mh|Th] = ∏
n∈Mh

[μn|Th]. Let μn|Th
prior∼ N

(
0, σ 2

μ

)
, where σμ = 3

κ
√
ψ

and κ is recommended to
be between 1 and 3 with 2 being the default (this setting can chosen by cross-validation; for more, see
Chipman and others, 2010). That finalizes the description of the BART prior. Based on this prior, posterior
sampling of f given the data are performed via MCMC, however, those details are beyond the scope of
this discussion (see Chipman and others, 1998, 2010).

2.2. Recurrent events and BART

Consider recurrent events data in the form: δi, si, t i, ui, xi(t) where i = 1, . . . , m indexes subjects; si is the
end of the observation period (due to death, δi = 1, or censoring, δi = 0) for subject i; Ni is the number
of events experienced by subject i; t i = [

ti1, . . . , tiNi

]′
, and tik is the event start time of the kth event (let

ti0 = 0); ui = [
ui1, . . . , uiNi

]′
and uik is the event end time of the kth event (let ui0 = 0); and xi(t) is a

vector of time-dependent covariates. Both start and end times of events are necessary to define risk set
eligibility for non-absorbing events like readmissions since, by definition, patients currently hospitalized
cannot be readmitted. Events that are instantaneous (or nearly so) are a special case where the end times
are simply ignored.

We denote the J collectively distinct event start and end times for all subjects by

0 < t(1) < · · · < t(J ) < ∞ where t(j) is the jth order statistic among start/end times.

For convenience, t(j′) = 0 where j′ ≤ 0. Note that t(j) are constructed from all event start/end times for all
subjects, but for some subjects they may be censoring times.

Now consider binary event indicators yij for each subject i at each distinct time t(j) up to the subject’s
last observation time t(mi) ≤ si with mi = arg maxj

[
t(j) ≤ si

]
, i.e., yi1, . . . , yimi ∈ {0, 1}. At time t(j), we
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intend to model the probability of an event, pij, by the covariates, xi(t(j)), the number of previous events
experienced for subject i, denoted by Ni(t−), and the time since the last event, if any, or sojourn time,
for subject i, vi(t). Let Ni(t−) ≡ lim

s↑t
Ni(s) be the number of events for subject i just prior to time t and

note that Ni = Ni(si). Let vi(t) = t − uNi(t−) be the sojourn time. Notice that we can replace Ni(t(j)−)
with Ni(t(j−1)) since, by design, the state of information available at time t(j)− is the same as that available
at t(j−1). We then denote x̃i(t(j)) = (

Ni(t(j−1)), vi(t(j)), xi(t(j))
)
. Assuming constant values for covariates,

x̃i(t(j)), and constant intensity in the interval (t(j−1), t(j)], we define the cumulative intensity process as:

�(t(j), x̃i(t(j))) =
∫ t(j)

0
d�(t, x̃i(t)) =

j∑
j′=1

Pr
[
Ni(t(j′))− Ni(t(j′−1)) = 1 | t(j′), x̃i(t(j′))

] =
j∑

j′=1

pij′ (2.1)

where pij is modeled in (2.5).
With absorbing events, we need not consider the conditional independence of future events since

there won’t be any; but, with recurrent events, we need to address it. Conditional independence holds by
conditioning on the entire event history, Ni(s)where 0 ≤ s < t. However, conditioning on the entire event
history can be problematic as it would be here. Instead, we condition on the most recent prior event, if
any, via Ni(t−) and vi(t), giving a reasonable expectation of conditional independence.

Consider a non-parametric probit regression model for yij on
(
t(j), x̃i(t(j))

)
that is analogous to parametric

models of the discrete-time intensity (Thompson, 1977;Arjas and Haara, 1987; Fahrmeir, 1998). We define
a sequence of longitudinal binary events as follows:

yij = max
k=1,...,Ni

I
(
tik = t(j)

)
i = 1, . . . , m and j ∈ Ri, (2.2)

where Ri is the risk set of time points for subject i as defined in (2.4). The construction of binary indicators,
yij, and the risk set, Ri, is illustrated by a vignette (2.3) and a diagram (see Figure S22 of the Supplementary
material available at Biostatistics online). We have two subjects with the following values:

N1 = 2, s1 = 9, t11 = 3, u11 = 7, t12 = 8, u12 = 8 ⇒ y11 = 1, y12 = y13 = 0, y14 = 1, y15 = 0 (2.3)

N2 = 1, s2 = 12, t21 = 4, u21 = 7 ⇒ y21 = 0, y22 = 1, y23 = y24 = y25 = y26 = 0

creating the grid of time points: t(1) = 3, t(2) = 4, t(3) = 7, t(4) = 8, t(5) = 9, t(6) = 12. For subject 1 (2),
notice that y12 = y13 = 0 (y23 = 0) as it should be since no event occurred at time(s) 4 or 7 (7). However,
no event could occur because their first event had not ended yet, i.e., these time points do not contribute
to the likelihood (2.6) since these subjects are not chronologically at risk for an event.

Therefore, we define the risk set for subject i as

Ri =
{

j :
[
j ∈ {1, . . . , mi} and ∩Ni

k=1{t(j) ∈ (tik , uik)}
]}

(2.4)

i.e., the risk set contains j if t(j) is during the observation period for subject i, and t(j) is not contained
within an already ongoing event for this subject. Therefore, the only yij that contribute to the likelihood
(2.6) are those corresponding to j ∈ Ri.

Putting it all together, we arrive at the following recurrent events discrete-time model (N.B. although
we choose BART for its desirable properties, any Bayesian or frequentist method generating a sufficiently
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flexible f function could be substituted in its place below).

yij|pij ∼ B
(
pij

)
where i = 1, . . . , m and j ∈ Ri

pij|f = 
(μij), μij = μ+ f (t(j), x̃i(t(j)))

f
prior∼ BART(ψ ,μ, κ ,α,β)

⎫⎪⎬
⎪⎭ (2.5)

For computational efficiency, we carry out the probit regression via truncated Normal latent vari-
ables zij to recast it as a continuous outcome BART model (Albert and Chib, 1993). Thus

zij|(yij, f ) ∼ N
(
μij, 1

) {
I
(
zij ∈ (−∞, 0)

)
if I

(
yij = 0

)
I
(
zij ∈ (0, ∞)

)
if I

(
yij = 1

) . Therefore, our recurrent events model (2.5)

corresponds to the following likelihood.

m∏
i=1

∏
j∈Ri

[
yij|pij

] =
m∏

i=1

∏
j∈Ri

p
yij
ij (1 − pij)

1−yij (2.6)

Here, we center the latents, zij, by μ = 
−1(ȳ) , where ȳ =
∑

i
∑

j∈Ri
yij∑

i
∑mi

j=1 I(j∈Ri)
.

2.3. Targets for inference

With the data prepared as described in the above vignette (2.3), the BART model for binary data treats
the probability of an event as a non-parametric function of time, t, and covariates, x̃(t). Conditioned on
the data, BART provides samples from the posterior distribution of f . For any t and x̃(t), we obtain the
posterior distribution of p(t, x̃(t)) = 
(μ+ f (t, x̃(t))).

With survival analysis, survival is typically of interest. Conversely, many applications of recurrent
events have relatively few absorbing events like mortality. Therefore, recurrent events inference is typically
interested in other quantities like the cumulative intensity function [as presented in formula (2.1)] rather
than survival.With these estimates, one can accomplish inference from the posterior via means, quantiles or
other functions of p(t, x̃i(t)) or�(t, x̃(t)) as needed such as the relative intensity, i.e., RI(t, x̃n(t), x̃d(t)) =
p(t,x̃n(t))
p(t,x̃d (t))

, where x̃n(t) and x̃d(t) are two settings we wish to compare like two treatments.Also, the cumulative

intensity could be calculated for arbitrary intervals on the grid, i.e.,
∫ t(b)

t(a)
d�(t, x̃i(t)) = ∑b

j=a pij.

2.4. Marginal effects

Our model, (2.5), does not directly provide a summary of the marginal effect of a single covariate,
or a subset of covariates, on the outcome. Marginal effect summaries are generally a challenge for
non-parametric regression and/or black-box models. We use Friedman’s partial dependence function
(Friedman, 2001) with BART to summarize the marginal effect due to a subset of the covariates, xS ,
by aggregating over the complement covariates, xC , i.e., x = [xS , xC]. The marginal dependence func-
tion is defined by fixing xS while aggregating over the observed settings of the complement covariates
in the cohort: fS(xS) = m−1

∑m
i=1 f (xS , xiC). For example, consider the cumulative intensity function:

�S(t, xS) = m−1
∑m

i=1�(t, xS , xiC). Other marginal functions can be obtained in a similar fashion.
Marginal estimates can be derived via functions of the posterior samples such as means, quantiles, etc.

2.5. Variable selection

Various methods for variable selection have been proposed for BART (Chipman and others, 2010; Bleich
and others, 2014; McCulloch and others, 2015; Linero, 2016). We utilize the computationally friendly
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approach of Decoupling Shrinkage and Selection (DSS) as proposed by Hahn and Carvalho (2015) for
Bayesian linear models and extended to BART by McCulloch and others (2015). For continuous outcomes,
DSS attempts to find the best subset of variables, xS ⊂ x, which describe the mean function, f (x), i.e.,
identify the best subset, xS , by regressing f (x) on xS (rather than regressing y on xS). In our case, we
substitute f (t, x̃) for f (x) and (δ, s, t, u) for y; however, we stick with the continuous notation for brevity.
Step 1 consists of fitting y by x with BART as proposed resulting in f (x). Step 2 fits f (x) by x via a non-
linear method of choice. In Step 2, over-fitting is not an issue, i.e., we can’t over-fit to y since y itself does
not appear (McCulloch and others, 2015). Therefore, we select an undemanding computational method
since repeated fits may be necessary to find the best subset, xS . We choose the method of Classification
and Regression Trees (CART) and the criteria of R2 following the lead of McCulloch and others (2015).
Step 3 is optional: we may choose to re-fit y by xS with BART arriving at f (xS); otherwise, we simply
compute the marginal effect, fS(xS), as described in Section 2.4.

2.6. Handling missing data with BART

BART can handle missing data (Kapelner and Bleich, 2016; Xu and others, 2016). We utilize the missing
data framework developed by Xu and others (2016) that they call Sequential BART. Sequential BART
assumes that the missing covariates are missing at random, i.e., missingness only depends on what has
been observed and not the missing value itself. Missing at random is a deliberate assumption in our case;
the missingness of vital signs and laboratory values in this study is mainly driven by what is available
at a given time rather than what the value might have been (see the description of missing covariates
in Appendix G of the Supplementary material available at Biostatistics online). Specifically, sequential
BART assumes that a missing covariate can be imputed by BART from the rest of the covariates, and so
on, sequentially for all missing covariates. A brief description of this method can be found in Appendix C
of the Supplementary material available at Biostatistics online.

2.7. Motivating example

We explored the hospital admissions in a cohort of patients with diabetes in a unified health care network
comprised of 3 hospitals and 16 primary care sites. These patients were identified via their EHR. This
human subjects research was approved by the Medical College of Wisconsin and Froedtert Hospital joint
Institutional Review Board. To maintain patient privacy, roughly one-fourth of patients were randomly
sampled for inclusion.

We identified likely incident diabetes mellitus type 2 patients by diagnosis codes; see Table 1 for the
codes used. We tabulated their first coding of primary diabetes in 2006 or 2007, i.e., no such codes were
found prior to 2006 for as far back as each patient’s records go. Unfortunately, there are no type 2 specific
codes; based on the diabetes population at large, we assume that around 90% of our cohort are type 2. We
restricted the population to adults aged 21 to 90 by January 1, 2008. Among the patients treated in this
network, the vast majority were racially self-identified as either white or black so our inclusion criteria is
restricted to these groups. Finally, we restricted to a geographic area that we refrain from divulging in the
interest of patient privacy.

We want to identify those who are primarily cared for by this health care network (rather than those
who may have been admitted to a network hospital, but were clinically treated elsewhere) so that the
collected EHR are a near-census of their health care experience for a 5-year window from 2008 to 2012.
Therefore, we required that they have an Evaluation and Management (E&M) physician office visit as a
new or established patient in 2006 or 2007; as well as a later visit in 2012 or 2013; for those who passed
away before December 31, 2012, their second E&M visit had to be within 1 year prior to death. Since our
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Table 1. Cohort overview

Patients Comment

Inclusion and exclusion criteria
Primary diabetes diagnosis in 2006–2007 6000 Estimate
(ICD-9-CM diagnoses: 250.x0, 250.x2) 1495 Random sample
Age: 21 to 90 1471
Race: White or Black 1341
ZIP code in region 927
E&M visit in 2006–2007 791
E&M visit in 2012–2013 520
or deceased with E&M visit within 1 year of death
Excluding secondary diabetes (ICD-9-CM diagnosis: 249.xx) 488 Cohort total
and gestational diabetes (ICD-9-CM diagnoses: 648.8, V12.21)

Deceased Patients %
Yes 30 6.1
No 458 93.9

Hospital admissions Patients %
0 308 63.0
1 79 16.2
2–3 50 10.3
4–6 37 7.6
7–16 14 2.9

We identify a cohort of patients suffering diabetes via their collected electronic health records (EHR) to determine which covariates
are related to the risk of hospital admission. Herein, we provide the details of the inclusion and exclusion criteria for this study. In
addition, we summarize mortality and hospital admissions in this cohort.
E&M, Evaluation and Management; ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical Modification.

interest is in patients with primary diabetes, we excluded those patients who were diagnosed with either
secondary diabetes or gestational diabetes.

For this cohort, we identified every hospital admission between January 1, 2008 and December 31,
2012. For convenience, follow-up begins on January 1, 2008, rather than from each patient’s incident
diagnosis date that obviously varies. Following patients concurrently allows us to temporally adapt for
seasonal/epidemic hospital admissions such as the A/H1N1 swine influenza pandemic that inundated the
United States from April to June 2009 (Jain and Kamimoto, 2009); note that diabetes is a risk factor for
severe complications of the flu that often require a hospital admission.

We investigated the following risk factors: gender, race, age, insurance status (commercial, government,
or other), anti-diabetic therapy (insulin, metformin, and/or sulfonylurea), health care charges, relative value
units (RVU), vital signs, laboratory values, comorbidity/complication diagnoses, and procedures/surgeries
(we will refer to vital signs and laboratory values collectively as signs; and comorbidity/complication diag-
noses and procedures/surgeries collectively as conditions). In total, we considered 85 covariates; 82 are
external factors as described above and three are temporal factors: time, t, the number of previous events,
Ni(t−), and the sojourn time, vi(t). Among these potential predictors only gender, race, and age are time-
independent; age was calculated once at study start and truncated at a maximum of 85 years old so elderly
patients cannot be identified. The rest are defined as last value carried forward. More details on the motivat-
ing example can be found in Appendix G of the Supplementary material available at Biostatistics online.

3. RESULTS

Here, we summarize the results of our new BART method based on simulated data sets (the full details
are contained in Appendix D of the Supplementary material available at Biostatistics online). Then, we
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apply our method to the motivating example of hospital admissions among newly diagnosed diabetes
patients.

3.1. BART vs. Cox comparison

We use the term proportional setting to mean a simulated data scenario where the relative intensity is
constant with respect to time. For the proportional setting, in-sample comparisons were performed between
our new BART method and the counting process Cox (CPC) model (Kalbfleisch and Prentice, 2002;
Hosmer and others, 2008) based on simulated data sets (as described in Appendix D of the Supplementary
material available at Biostatistics online). We based this comparison on the following metrics: root mean
squared error, bias, and interval coverage (credible intervals for BART and confidence intervals for Cox).
These comparisons were done overall and within realms of the true cumulative intensity quantiles: [0.00,
0.10), [0.10, 0.25), [0.25, 0.50), [0.50, 0.75), [0.75, 0.90), [0.90, 1.00]. For Cox, the proportional setting
is advantageous since it assumes proportionality; however, there is an important caveat: discrete-time tied
events are incompletely controlled for diminishing the efficiency of the Cox model (given the sample sizes
considered, an adequate treatment is computationally infeasible). Generally, BART is very competitive
with Cox in the proportional setting for all metrics and in all realms; see Figures S3:S6 of the Supplementary
material available at Biostatistics online. Notably, BART uniformly achieves nominal or near nominal 95%
interval coverage while Cox does not. As shown in Table S3 of the Supplementary material available at
Biostatistics online, the overall in-sample 95% interval coverage for BART is 96.5% while for Cox it is
only 71.4%.

3.2. BART in-sample vs. out-of-sample comparison

We use the term proportional (non-proportional) setting to mean a simulated data scenario where the
relative intensity is constant (varies) with respect to time. For proportional and non-proportional settings,
comparisons were performed between our new BART method’s in-sample and out-of-sample predictions
based on simulated data sets (as described in Appendix D of the Supplementary material available at
Biostatistics online). We based this comparison on the same metrics and realms as above. Since BART is
in the class of ensemble predictive models, theoretically, BART’s performance on in-sample vs. out-of-
sample predictions should be quite similar. The results of the comparison show that BART’s out-of-sample
performance is only slightly worse than in-sample as expected; for the proportional (non-proportional)
setting, see Figures S8:S12 (15:18) of the Supplementary material available at Biostatistics online. As
shown in Table S3 of the Supplementary material available at Biostatistics online for the proportional
setting, the overall in-sample 95% interval coverage for BART is 96.5% while for out-of-sample it is 97.8%;
cross-validation improved out-of-sample coverage to 94.4%. A shown in Table S3 of the Supplementary
material available at Biostatistics online for the non-proportional setting, the overall in-sample 95% interval
coverage for BART is 88.6% while for out-of-sample it is 91.1%.

3.3. Motivating example results

Utilizing all 85 temporal and external covariates is a challenge for traditional methods but is rather routine
for BART. Nevertheless, it is difficult to tabulate information on all 82 external covariates in a convenient
manner for the readers of this article. Therefore, we mainly restrict our attention to the covariates that
were deemed to be the most important by variable selection with BART and DSS (see Section 3.3.2):
insulin therapy, peripheral vascular disease (PVD), and the number of prior hospitalizations (Ni(t−)). We
tabulate these important external covariates and a select few others in Table 2.
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Table 2. Patient characteristics and hospital admissions

Characteristics Beginning of End of Hospital Unadjusted
follow-up follow-up admissions relative intensity

Gender 488 488 525
M 216 (44.3) 216 (44.3) 228 (43.4) 0.98 (0.69, 1.40)
F 272 (55.7) 272 (55.7) 297 (56.6) 1.00 Reference

Race 488 488 525
Black 174 (35.7) 174 (35.7) 265 (50.5) 1.85 (1.30, 2.63)
White 314 (64.3) 314 (64.3) 260 (49.5) 1.00 Reference

Age 488 488 525
Mean, SD 56.0 15.1 60.9 15.0 60.3 15.7
Min, Max 21.0 89.0 26.0 94.0 24.0 92.0
21–44 104 (21.3) 66 (13.5) 87 (16.6) 1.00 Reference
45–54 127 (26.0) 94 (19.3) 99 (18.9) 0.90 (0.50, 1.62)
55—64 116 (23.8) 137 (28.1) 115 (21.9) 0.85 (0.48, 1.53)
65–74 78 (16.0) 92 (18.9) 100 (19.0) 1.21 (0.65, 2.28)
75+ 63 (12.9) 99 (20.3) 124 (23.6) 1.48 (0.83, 2.64)

ZIP area 488 488 525
Urban 378 (77.5) 378 (77.5) 454 (86.5) 1.90 (1.19, 3.05)
Suburb 110 (22.5) 110 (22.5) 71 (13.5) 1.00 Reference

Insurance 488 488 525
Government 65+ 141 (28.9) 191 (39.1) 224 (42.7) 1.00 Reference
Government <65 134 (27.5) 138 (28.3) 208 (39.6) 1.08 (0.73, 1.59)
Commercial <65 192 (39.3) 143 (29.3) 71 (13.5) 0.31 (0.20, 0.48)
Other <65 21 ( 4.3) 16 ( 3.3) 22 ( 4.2) 0.77 (0.45, 1.32)

Insulin 488 488 525
Yes 191 (39.1) 206 (42.2) 391 (74.5) 4.56 (3.35, 6.21)
No 297 (60.9) 282 (57.8) 134 (25.5) 1.00 Reference

Metformin 488 488 525
Yes 176 (36.1) 176 (36.1) 168 (32.0) 0.76 (0.53, 1.08)
No 312 (63.9) 312 (63.9) 357 (68.0) 1.00 Reference

A1c(%) 389 416 488
Mean, SD 7.1 1.7 7.1 1.6 6.9 1.7
Min, Max 4.4 18.5 4.5 15.6 4.1 16.4
<9 355 (91.3) 366 (88.0) 437 (89.5) 1.00 Reference
≥9 34 ( 8.7) 50 (12.0) 51 (10.5) 1.25 (0.83, 1.88)
Missing 99 72 37

Calcium(mg/dL) 415 435 520
Mean, SD 9.3 0.5 9.4 0.6 8.9 0.7
Min, Max 7.2 10.9 7.2 11.6 6.2 11.6
≤9.1 151 (36.4) 125 (28.7) 334 (64.2) 7.35 (5.67, 9.51)
>9.1 264 (64.6) 310 (71.3) 186 (35.8) 1.00 Reference
Missing 73 53 5

PVD 488 488 525
Yes 172 (35.2) 272 (55.7) 488 (93.0) 16.16 (11.19, 23.34)
No 316 (64.8) 216 (44.3) 37 ( 7.0) 1.00 Reference

PUD 488 488 525
Yes 239 (49.0) 333 (68.2) 480 (91.4) 7.49 (5.09, 11.01)
No 249 (51.0) 155 (31.8) 45 ( 8.6) 1.00 Reference

We identified a cohort of patients suffering diabetes via EHR to determine which covariates are related to the risk of hospital
admission. In the first column, we provide a selection of the covariates. In the second (third) column, we summarize these covariates
at the beginning (end) of follow-up where the unit of analysis is the subject. In the fourth column, we summarize these covariates
for hospital admissions where the unit of analysis is an admission. In the fifth column, we provide unadjusted relative intensities
(and 95% CI) computed via a counting process Cox model.
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3.3.1. Aggregate description and unadjusted relative intensity We describe the Table 2 summary as
follows: in the first (second) column of numbers, we have summarized the covariates as they appear
at the beginning (end) of follow-up; and in the third column, as they appear at the beginning of hospital
admissions. For the fourth column, we summarize via a simple unadjusted CPC model of time (we describe
this model in Appendix B of the Supplementary material available at Biostatistics online) by providing
relative intensity and its corresponding 95% confidence interval. As we have previously discussed, the
CPC model has the disadvantage of restricting to proportionality, and it is only one of several possible Cox
model choices. However, it is computationally convenient that we can calculate the CPC model on the
same grid that we employ for BART allowing us to use the same data including time-dependent covariates
like insulin therapy. And, we can easily incorporate our risk set definition.

The first thing to notice is the relatively high admission rate: 525 admissions for 488 patients in roughly
5 years of follow-up. In this cohort, there are more women than men, roughly a 56:44 split and a similar
hospital admission rate with an estimated relative intensity near 1. There are about twice as many whites as
blacks; however, the hospital admission rate is about 50:50 with whites under, and blacks over, represented
and a statistically significant relative intensity of 1.85.

Among the oldest members of the population, there is a non-significant trend towards more hospital
admissions. About 78% of this cohort resided in an urban area poorer than the surrounding suburbs where
about 22% resided. Urban residents had a higher hospital admission rate than the suburbs with a significant
relative intensity of 1.9.

Virtually everyone in the cohort aged 65 and older was enrolled in the Medicare insurance program
and that increased throughout the study from roughly 29% to 39%. About 28% of the cohort was under
65 and had public health insurance, mainly the Medicaid safety net for the low income and disabled. Over
the course of the study, commercial health insurance coverage of those under 65 dropped from roughly
39% to 29%. Public health insurance for those under 65 had the highest rate of hospital admissions, but
only commercial insurance for those under 65 had a statistically significant relative intensity of 0.31.

During the course of the study, insulin therapy increased slightly. Insulin recipients were much more
likely to have a hospital admission than those not taking insulin; a statistically significant relative intensity
of 4.56. Metformin therapy was constant: 50 patients added Metformin, and 50 patients dropped it resulting
in the same rate. Patients taking metformin had a non-statistically significant relative intensity of 0.76 as
opposed to those not taking metformin.

Glycohemoglobin A1c levels<9% vs. ≥9% did not produce a statistically significant relative intensity.
Serum calcium levels ≤9.1 mg/dL vs. >9.1 mg/dL produced a statistically significant relative intensity
of 7.35. PVD and peptic ulcer disease (PUD) both produced a statistically significant increase in hospital
admissions with estimated relative intensities of 16.2 and 7.5, respectively.

3.3.2. Model-based analysis with BART In order to minimize false positives, we randomly divided our
data set into two parts: a training cohort with 235 patients and a validation cohort with 253 patients. We
fit both cohorts independently and then performed variable selection on each via DSS. We started out
with 82 external covariates and 3 temporal variables. In the training cohort, the important covariates are
PVD, insulin treatment, the number of prior hospitalizations (Ni(t−)), PUD, and serum calcium. In the
validation cohort, the important covariates are PVD, insulin treatment, the number of prior hospitalizations,
and hypertension. Therefore, we conclude that the intersection of these two sets (in italics) are very likely
risk factors. However, we do not proceed to the optional Step 3 of DSS, i.e., re-fitting f (t, x̃S) where xS

consists of just the three important variables. Rather, we choose to perform marginal inference adjusting for
all covariates due to potential confounding. For example, since our patients were not randomized to insulin
therapy vs. no insulin, it may be that patients treated with insulin are more likely to possess other possible
risk factors such as low serum calcium, PUD, and/or hypertension. So, while we will restrict ourselves to
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assessing the effects of just the important covariates identified, we have the comforting reassurance that
the analysis is adjusted for the rest.

Having fit this full model to the data, we now use it to understand the data via the model’s consequences.
In order to evaluate the effects of the important covariates, we estimate our marginal function of interest
at chosen settings, xS , while marginally aggregating over the other covariates, xC via Friedman’s partial
dependence function (see Section 2.4 for a complete description). For a binary covariate like insulin, the
chosen settings are easy to enumerate: 1 for being present (treated) and 0 for absent (not treated). However,
for Ni(t−), it is not so simple.

First, we describe the relative intensities by Friedman’s partial dependence function for the important
binary variables; the relative intensities are for present vs. absent and are aggregated over all 60 months
since they did not appear to vary temporally. The relative intensity (and 95% credible interval) for PVD
is 2.90 (2.00, 3.89) and for insulin therapy, 2.39 (1.56, 3.25). Notice the dramatic difference between the
relative intensity estimate when adjusting for other covariates vs. the unadjusted relative intensity shown
in Table 2; from this, we conclude that patients who have PVD, and/or are taking insulin, likely have other
risk factors for hospital admission. Nevertheless, there is a clearly significant increase in risk due to these
two important factors.

Ni(t−) is more challenging since t, Ni(t−) and vi(t) are intimately related. To explore the relative risk
of Ni(t−), we create low, medium, and high risk profiles. The low risk profile consists of patients who
are not on insulin nor have PVD throughout; and, they do not have a hospital admission so Ni(t) = 0 and
vi(t) = t. Medium risk patients are on insulin without PVD throughout while being admitted to the hospital
once at 24 months with Ni(t−) and vi(t) set accordingly. High risk patients are on insulin with PVD and
hospital admissions at 12, 24, 36, and 48 months with Ni(t−) and vi(t) set accordingly. In Figure S21
of the Supplementary material available at Biostatistics online, Friedman’s partial dependence function
shows that �(t, x̃) fall in the predetermined order from low, to medium, to high risk. Furthermore, the
cumulative differential intensity, CDI(t, x̃), shows that the high (medium) risk patients will, on average,
have 2 (0.5) more hospital admissions than low risk patients over 5 years.

In Figure 2, Friedman’s partial dependence function shows that the previous hospital admissions
increase the risk of new hospital admissions; however, not to the same extent as insulin or PVD. Also
note the sawtooth pattern, i.e., the increased risk due to a recent hospital admission appears to dissipate
as the sojourn time, vi(t), increases; although, the credible intervals are wide the pattern is notable for its
consistency after each new hospital admission.

3.3.3. Cox model comparison Let’s compare the BART results to a CPC model. As noted, there are
several possible CPC choices: which model should we fit? The sawtooth of Figure 2 empirically suggest
the CPC model should be based on sojourn time, rather than study time, stratified by prior events. These
two models generate similar results for the relative intensity while the corresponding 95% confidence
(credible) intervals for CPC (BART) are wider for CPC. The relative intensity for PVD is: CPC 3.07
(1.61, 5.85) and BART 2.90 (2.00, 3.89). The relative intensity for insulin therapy: CPC 2.62 (1.74, 3.96)
and BART 2.39 (1.56, 3.25).

4. DISCUSSION

Here, we have outlined our new methodology for recurrent events, and we have applied it to a motivating
example of the hospital admissions experienced by diabetes patients. For investigations such as this, we
are advocates for using as much information as is practically available. For example, with recurrent events
we can employ all of the hospital admissions; if we had restricted to only the first admission in this cohort,
we would have been limited to only 182 (34.7%) admissions rather than the 525 total that we actually
analyzed. In the same vein, we brought in a variety of data from the EHR.
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Fig. 2. We studied a cohort of patients suffering diabetes to determine the covariates related to the risk of hospital
admissions. Based on a recurrent events analysis with BART, we determined that there are three important risk
agonists for a new hospital admission: peripheral vascular disease (PVD), receiving insulin treatment, and the number
of previous hospital admissions. The effect of binary covariates like PVD and insulin are relatively easily summarized.
However, the number of previous hospital admissions is more difficult because it is time-dependent. To explore these
risk factors, we present the estimated relative intensities, RI(t): medium vs. low (solid gray) and high vs. low (solid
black). In these profiles, PVD and insulin are set to either present or absent throughout the 5-year observation period.
For low risk subjects, PVD and insulin are absent and there are no hospital admissions. For medium risk subjects,
PVD is absent, insulin is present and there is one hospital admission at 24 months. For high risk subjects, PVD
and insulin are present and they are admitted to the hospital at 12, 24, 36, and 48 months. The estimated relative
intensities displayed are the effects of the risk profiles marginalizing over all other covariates with Friedman’s partial
dependence function. Dashed lines represent 95% credible intervals. Previous hospital admissions increase the risk
of new hospital admissions; however, not to the same extent as PVD or insulin. Also note the sawtooth pattern, i.e. the
increased risk due to a recent hospital admission appears to dissipate as the sojourn time, v(t), increases; although, the
credible intervals are wide the pattern is notable for its consistency after each new hospital admission. The horizontal
line at 1.0 (solid black), the lines of 2.5 and 2.8 (dotted black), and 7.0 to 9.9 (dotted gray), are plotted for reference.

Observational studies have limitations: for example, the patients in this study were not randomized to
insulin therapy vs. no insulin. However, our inferences are causal if we can assume that all confounders
are measured due to BART’s uncanny capability to account for treatment heterogeneity (Hill, 2011); an
assumption that we feel has some merit due to the omnibus of health care data enlisted from the EHR
in this study. But, the causal inference assertion must be tempered for several reasons. (i) Although we
went to great lengths to include a wide variety of EHR data (as described in Section 2.7), we employed
only a portion of the EHR data available in this study, e.g., we ignored imaging, notes written by physi-
cians/nurses/etc. (ii) We assumed the information available to us was complete and accurate. (iii) We
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assumed that the patients had equal access to, and received, high quality health care. Nevertheless, we
strongly recommend mitigating the likely causal elevated risk of hospital admission that we foresee for
the following groups of diabetes patients (by closely monitoring them in the outpatient clinic setting):
those suffering from PVD, treated with insulin, and/or previously admitted to the hospital especially a
recent admission.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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