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Abstract

Bone marrow aspirate (BMA) differential cell counts (DCCs) are critical for the classification of 

hematologic disorders. While manual counts are considered the gold standard, they are labor 

intensive, time consuming, and subject to bias. A reliable automated counter has yet to be 

developed, largely due to the inherent complexity of bone marrow specimens. Digital pathology 

imaging coupled with machine learning algorithms represents a highly promising emerging 

technology for this purpose. Yet, training datasets for BMA cellular constituents, critical for 

building and validating machine learning algorithms, are lacking. Herein, we report our experience 

creating and employing such datasets to develop a machine learning algorithm to detect and 

classify BMA cells. Utilizing a web-based system that we developed for annotating and managing 
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digital pathology images, over 10,000 cells from scanned whole slide images of BMA smears 

were manually annotated, including all classes that comprise the standard clinical DCC. We 

implemented a two-stage, detection and classification approach that allows design flexibility and 

improved classification accuracy. In a 6-fold cross-validation, our algorithms achieved high overall 

accuracy in detection (0.959 +/− 0.008 precision-recall AUC) and classification (0.982 +/− 0.03 

ROC AUC) using non-neoplastic samples. Testing on a small set of acute myeloid leukemia and 

multiple myeloma samples demonstrated similar detection and classification performance. In 

summary, our algorithms showed promising early results and represent an important initial step in 

the effort to devise a reliable, objective method to automate DCCs. With further development to 

include formal clinical validation, such a system has the potential to assist in disease diagnosis and 

prognosis, and significantly impact clinical practice.

Examination of the bone marrow is an essential part of the hematologic work-up for many 

blood and bone marrow diseases and a common laboratory procedure 1. As part of this 

examination, a nucleated differential cell count (DCC) is obtained by microscopy on Wright-

stained bone marrow aspirate (BMA) smears. This procedure entails quantification of cells 

of different lineages to determine the proportions of each, the findings of which aid in the 

classification of numerous benign and malignant hematologic disorders. In fact, disease 

defining criteria are based on cutoff percentages of myeloblasts for myeloid malignancies, 

such as acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), and the 

percentage of plasma cells for plasma cell neoplasms, such as monoclonal gammopathy of 

undetermined significance (MGUS) and smoldering myeloma 2.

Several factors render manual DCC analysis suboptimal, as currently performed in clinical 

laboratories 3. First, DCCs are labor intensive and time consuming. Second, inter- and intra-

observer variability in terms of cell identification and choice of cells for counting represent 

ongoing sources of error. Third, there is inherent statistical imprecision due to the relatively 

small number of cells generally counted. If successfully developed, automation of DCCs 

could obviate most of these concerns.

Traditional automated hematology analyzers that do not employ digital images have been 

explored for performing DCCs. Major problems with this approach included failure to count 

nucleated red blood cells and to differentiate stages of cell development, as well as 

interference by bone marrow lipid 4, 5. These issues are perhaps unsurprising given the 

complex nature of bone marrow compared to blood for which these instruments were 

designed. However, a computerized method using digital pathology images could potentially 

perform DCCs on all pertinent bone marrow cells on a smear. Aside from increasing 

throughput and reducing labor costs, such an approach could potentially improve accuracy, 

reproducibility, and objectivity and provide much needed standardization for DCCs.

Cell detection and classification are perhaps the most widely studied problems in 

computational pathology, with most efforts focused on the analysis of hematoxylin and eosin 

stained solid tumor sections. While commercial blood analyzers have begun utilizing 

automated image analysis of Wright stained smears 6, their accuracy largely depends on 

precise control of pre-analytical variables to minimize staining variations and cell crowding 

while maximizing preservation of cytologic details. Detection and classification in BMA 
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smears is significantly more challenging due to the high density of touching and overlapping 

cells, as well as the greater diversity and complexity of cell morphologies. Cell and nuclei 

detection algorithms often rely on circular or axial symmetry and may fail to detect cells 

with irregular or multi-lobed nuclei or may incorrectly interpret these as multiple cells. 

Classification is difficult without accurate detection of cells and localization of cell 

boundaries (using image segmentation algorithms), and is further compounded by the 

subtlety of differences in cytologic characteristics used to distinguish many cell types found 

in bone marrow.

Machine learning approaches have emerged as the dominant paradigm in analyzing 

histology images7–12. Whereas traditional image analysis methods are engineered using 

domain knowledge or mathematical models, machine learning algorithms that utilize neural 

networks are adaptive and can learn from data in an unbiased manner 13. While neural 

networks typically exhibit superior performance in tasks like detection and classification, 

realizing these benefits can require thousands of labeled examples for training algorithms to 

recognize variations in staining and morphology and to reach diagnostically-meaningful 

accuracy. This demand for labeled data places significant emphasis on the process of image 

annotation, with efficient protocols and software interfaces being key additional ingredients 

for developing highly accurate, deep learning algorithms. Current literature on image 

analysis of BMA smears has not adequately addressed the detection of cells, a particularly 

challenging problem in BMA smears, and has demonstrated success with only a few 

cytological classes, limiting potential clinical use 14, 15.

In this paper, we describe our initial steps toward the development of a machine learning 

digital pathology system to perform DCCs and describe promising initial results in detecting 

and classifying all non-neoplastic bone marrow cellular constituents of the DCC and 

neoplastic cells in a small set of AML and multiple myeloma (MM) test cases. Our software 

prototype achieves a high degree of accuracy in cell detection and classification tasks, using 

a two-stage system, based on convolutional neural networks. This system is, moreover, able 

to reliably localize closely packed cells and classify diverse cytomorphologies. A large-scale 

annotation effort to produce data for training and validation was critical in achieving these 

results. This study outlines a promising prototype system for automating bone marrow 

DCCs and provides a basis for further development and eventual clinical validation studies 

that will include a comprehensive array of bone marrow neoplasms. A glossary of technical 

terms used in this paper is presented in Table S1.

MATERIALS AND METHODS

Bone marrow aspirate smears.

Wright-stained BMA smears, made for routine patient care from 17 patients, were de-

identified and scanned at 0.25 μm/pixel (40X objective) using an Aperio AT2 scanner™ to 

generate whole-slide images. The smears were uniformly prepared in the bone marrow 

laboratory at Emory University Hospital from June to August 2015 using the same 

procedure and reagent vendors. Smears were selected at random from a set of cases, 

previously studied in manual DCC analyses 3, provided they included cellular particles with 

at least 500 bone marrow hematopoietic cells, displayed reference range DCCs, minimal 
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cellular degeneration, and a paucity of smearing artifacts. Moreover, complete pathologic 

investigation in all cases failed to disclose morphologic, immunophenotypic, or genetic 

abnormalities. In addition, whole-slide images of BMA smears were similarly prepared from 

materials from 3 AML and 2 MM patients. These disease cases were selected based on 

having high malignant cell content of 30–50% for AML and 20–30% for MM cases. The 17 

non-neoplastic cases were used to develop and validate software algorithms. The additional 

3 AML and 2 MM cases were used to measure the performance of these algorithms on an 

initial set of disease samples. This study was approved by the Institutional Review Board.

Cell annotation.

Whole-slide images were uploaded to a Digital Slide Archive (DSA) server for visualization 

and annotation. The DSA enables web-based viewing, allowing users to pan and zoom 

through large whole-slide images, and features a collection of annotation tools for marking 

and labeling regions and structures 16. The annotation interface is shown in Figure 1A. 

Regions-of-interest (ROIs) for annotation were first selected using the rectangle or polygon 

tool and included non-hemodilute areas of the smears adjacent to bone marrow spicules 

where the cells are mostly evenly distributed, cytologically intact, visually distinguishable, 

and best represent the spectrum of hematopoiesis. Within these ROIs, other regions were 

selected using the polygon tool to exclude erythrocytes and non-counted cells (macrophages, 

stromal cells, mast cells, etc.), that typically would not be included in DCCs (not shown). 

Individual cells for the DCC were annotated using the point annotation tool by placing a 

single point at the cell center-of-mass (including nucleus and cytoplasm) and assigning each 

cell to one of the 13 classes shown in Table 1. The cells within each region were 

exhaustively annotated to enable accurate assessment of cell detection algorithms. Cells of 

uncertain class, such as those with suboptimal cytologic preservation including smudged 

and/or naked nuclei, were assigned to an “unknown” class. Megakaryocytes were also 

annotated, but not included in the cell detection or classification analyses since they are 

relatively few and not typically included in DCCs.

Following point annotations, rectangular bounding boxes were drawn to demarcate the 

extent of each cell (RC, NK). These bounding boxes are required to train and validate the 

detection algorithm. Additional point annotations were generated outside ROIs to augment 

the number of examples of cell types that inherently occur less frequently in bone marrow, 

such as basophils (Table 1). These latter annotations were utilized only during classifier 

training and neither for classifier validation, nor for training and validation of the cell 

detection algorithm. Cell annotations were based on well-established cytomorphological 

criteria used for the microscopic identification of each cell type 17.

Subsequently, all annotated cells were examined for cytologic quality and appropriateness of 

classification through a consensus review by 3 pathologists (AAA, BRD, DLJ). To 

accomplish this review, the DSA application-programming interface was used to extract a 

96×96 pixel thumbnail image of each annotated cell. These thumbnail images were next 

organized into folders by assigned cell type. The few initially misclassified cells were 

identified, and corrections were made to the annotation database. Representative examples 

of the cytologic classes used in our analysis are displayed in Figure 1B.
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Cell detection algorithm.

Our cell detection algorithm is based on the Faster Region-Based Convolutional Network 

(Faster-RCNN) 18. This network combines bounding box regression for predicting bounding 

box locations, region pooling, and a residual convolutional network for extracting feature 

maps from the input images. Detection was approached by treating all cells as a single 

‘object’ class, without regard to actual cytomorphologic class. The residual network was 

trained using two equally weighted loss functions: 1. A cross entropy loss for object 

classification and 2. An L1 loss on the bounding box coordinates and sizes. Proposed 

regions were then pooled for computational efficiency, since many proposals are generated 

for each object. A pre-trained model was used to initialize the residual convolutional net 19, 

where the remaining network components were random normal initialized (zero mean, 

variance 1e-4). The entire network was trained for 500 epochs, where an epoch represents 

one training pass through all training instances. Training employed a momentum-based 

gradient optimization with momentum 0.9, learning rate 3e-4, weight decay 5e-4, and 

dropout fraction 0.2. Non-max suppression with a threshold of 0.5 was applied to reduce 

duplicate proposals.

Cell classification algorithm.

Cell classes were predicted using the VGG16 convolutional network 20. Cell images, sized at 

96×96 pixels, were cropped from the center of each manually-generated bounding box. 

These bounding boxes were mapped to the point annotations using the Hungarian algorithm 

applied to the pairwise distances between each box and each point. These images were unit 

normalized to the range [0, 1]. A cross entropy loss for the 12 classes (including “unknown” 

and excluding megakaryocytes) was used for network optimization. A pre-trained network 

was used for initialization and then trained using the gradient descent optimizer with 100 

cell batches and a learning rate of 1e-4 for 500 epochs. Dropout fraction 0.3 was applied to 

the fully connected layers.

Data augmentation.

Augmentation techniques were utilized in cell detection and classification to improve 

prediction accuracy. For cell detection, we generated randomly cropped 600 × 600 pixel 

regions from the ROIs and randomly flipped these horizontally and vertically. For cell 

classification, we applied standard augmentation techniques to manipulate the orientation, 

brightness, and contrast of the cropped cell images. Each cell image was randomly mirror-

flipped along the horizontal and vertical axes, rotated by an increment of 90 degrees, 

brightness adjusted (random_brightness, delta=0.25), and contrast adjusted 

(random_contrast, range [0.9, 1.4]). To simulate errors in the detection algorithm, we 

performed a random translation of up to 5 pixels horizontally and vertically. Testing time 

augmentation was also performed to improve classification performance. During inference, 

16 augmented instances of each cell were generated. The softmax values for these 

augmented versions were then aggregated to generate a single prediction for each cell.
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Detection and classification validation.

Non-neoplastic cases were used to perform a 6-fold cross-validation to measure the 

prediction accuracy of our cell detection and classification methods. Each training set was 

used to develop a cell detection and a cell classification model. These models were evaluated 

on the validation test slides, yielding six total measurements of detection accuracy and of 

classification accuracy in non-neoplastic samples. To test performance in the AML and MM 

samples, we combined data from all 17 non-neoplastic slides to generate a detection model 

and a classification model. These models were then applied to the AML and MM samples to 

assess their performance on a small set of neoplastic test cases.

Cells and ROIs from each training slide set were used to train the detection and classification 

models using the manual point and bounding box annotations. These models were applied to 

the validation test slides as follows: 1. The detection model was applied to the test slides to 

generate prediction bounding boxes and their probabilities and the detection accuracy was 

measured (see details next paragraph). 2. For detections regarded as true positives, cell 

images were cropped and centered at the predicted bounding box locations. These cells were 

then used to evaluate the accuracy of the cell classification model.

Detection accuracy was measured using precision-recall and intersection-over-union (IoU) 

analysis. IoU is defined for any pair of predicted and manually-annotated bounding boxes, 

the latter representing the ground truth (gold standard) bounding box, as the area of box 

intersection over the area of box union. This reaches 1 for perfect overlap and 0 for non-

overlapping boxes. The following definitions were used for precision-recall analysis: 1. True 

positive (TP) where a manually-annotated box has a corresponding predicted box meeting 

the IoU threshold. 2. False negative (FN) where a manually-annotated box has no predicted 

box meeting the IoU threshold. 3. False positive (FP) where a predicted box does not have a 

corresponding manually-annotated box meeting the IoU threshold. The Hungarian algorithm 

was used to generate a correspondence between manually-annotated and predicted boxes 

that maximizes the sum of IoUs to avoid double counting of manually-annotated boxes in 

accuracy calculations. Each predicted bounding box has an associated confidence score and 

so a precision-recall curve is generated using TP, FN, and FP for the range of detection 

confidence thresholds from 0 to 1. The area under this precision recall curve measures 

detection accuracy over a broad range of detection sensitivities 21. In addition, we measured 

error in the positioning of predicted bounding boxes as the difference in location between 

the predicted box centers and the matched manually-annotated box centers. Using the TP 

correspondence from above, we calculated the Euclidean distance between box centers and 

normalized by the manually-annotated bounding box size (using half the length of the 

annotated box diagonal).

Classification accuracy was measured using receiver-operating characteristic (ROC) 

analysis. For each classification model, we measured the sensitivity and specificity of a 

binary classifier for each cell type (this cell type versus all others) to generate an ROC curve. 

The area under the ROC curve (AUC) was measured for each cell type, along with the macro 

average (average performance over all classes, not weighted by class prevalence) to measure 

class specific and overall accuracy 22.
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Execution time analysis.

Analysis of execution times was accomplished using the python time module. Times were 

measured for loading the ROI file from disk, performing detection on the ROI, cropping 

images for detected cells from the ROI, and performing cell classification. Execution times 

were measured for each ROI in 10 trials. Regression analysis was performed to predict 

execution time from ROI size and number of detected cells using least squares. Variables in 

this analysis were 1, the number of detected cells, 2, the square root of the number of pixels 

in the ROI, and 3, a constant bias term. To extrapolate this model to an ROI with 500 

detected cells, we trained a second regression model to relate ROI size and the logarithm of 

the number of detected cells.

Software and hardware.

We employed the following software tools: Tensorflow 1.8 served as the basic framework 

for the entire system. Luminoth v0.2.0 is Tensorflow-based and provided the detection 

framework. The Hungarian algorithm was implemented in Scipy v1.1.0. The OpenCV 3.1.0 

library was used to handle png/jpeg images. All experiments were run on a dual-socket 

server equipped with Intel Xeon CPUs, 128GB RAM, and two NVIDIA Tesla P100 cards.

RESULTS

Study overview.

An overview of our approach is presented in Figure 2. Data for training and validating 

algorithms were generated using a web-based DSA annotation system (Figure 1A). Our cell 

detection and classification analyses included 11 cytological classes that constitute those of 

standard DCCs and an unknown class (Figure 1B). These annotations were used to train a 

two-stage pipeline consisting of cell detection (Figure 2A) and cell classification algorithms 

(Figure 2B), both based on convolutional networks. The accuracy of these algorithms was 

evaluated through a 6-fold cross-validation on non-neoplastic samples (Figure 2C). In 

addition, the cell detection and cell classification algorithms were then trained on all non-

neoplastic samples, and tested on a small set of AML and MM samples to assess their 

potential application to neoplastic cells.

Large-scale annotation.

Convolutional networks can deliver outstanding performance given large training datasets of 

thousands of examples that represent the morphological and staining variations observed in 

clinical practice 7. To generate annotations at sufficient scale, we developed a protocol using 

the DSA 16. A screenshot of the DSA annotation interface is presented in Figure 1A with 

example ROIs, cell annotations, and bounding boxes. We used the DSA and the annotation 

protocol to annotate 9269 non-neoplastic cells that are specified in Table 1, and included 

those within ROIs and a smaller subset outside ROIs. The latter subset increased the 

representation of less common cell classes. Annotation efficiency was improved using a 

tiered approach that took into account the expertise and availability of annotators, and the 

effort involved. Labeling cell types requires expertise in the cytomorphology of bone 

marrow cells. A simple and efficient point and click method utilizing a mouse was 
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developed for cell type labeling by pathologists. Since point annotations alone are not 

adequate for training detection algorithms, students performed the more laborious task of 

placing rectangular bounding boxes around the pre-identified cells. Although the bounding 

boxes alone could be utilized for both localization and cell type labeling, this tiered 

approach proved more efficient and allowed us to generate a much larger number of 

annotations.

Cell detection with region-proposal networks.

Detection results for one representative non-neoplastic ROI are presented in Figure 3A. 

Cells that were missed often had a corresponding detection bounding box that was close, but 

did not have adequate overlap, based on IoU analysis, to be called a match (Figure 3A, 

subpanels 1–4). A number of false positives correspond to cells that were mistakenly not 

annotated by our human observers (Figure 3A, subpanels 5 and 6). A precision-recall 

analysis was performed to evaluate detection performance from the most sensitive to the 

most specific tuning of the detection algorithm threshold. The detectors generated in cross-

validation simultaneously achieved high precision and recall with only minor variation in 

performance from fold to fold, as displayed in Figure 3B. The median area under precision-

recall curves, observed in cross-validation, was 0.959 +/− 0.008 (see Table S2). In addition 

to these discrete detection errors, we also measured the positional errors in the placement of 

predicted bounding boxes. Correct bounding box placement is critical for the classification 

stage, since the center of the predicted boxes is used to extract cell images for classification. 

Since the error tolerance for bounding box placement is higher when detecting larger cells, 

we developed a relative error measure that considers both cell size and predicted bounding 

box position (see Figure S1). The median relative placement error observed in cross-

validation was 6% (Figure 3C), indicating good coincidence between the centers of 

predicted and actual cell centers.

Cell classification and augmentation strategies.

Classification results for one representative non-neoplastic ROI are presented in Figure 4A. 

In this example, two unknowns were misclassified as erythroid precursors, as shown in 

subpanels 1 and 2. Classifier accuracy was evaluated using a one-versus-all classifier for 

each cytologic class. The classification threshold was varied from the most sensitive to the 

most specific, generating an ROC profile and AUC measurement for each class (see Figure 

4B). The median total AUC for non-neoplastic cells (all classes weighted equally) observed 

in cross-validation was 0.982 +/− 0.03, while the median AUC for each class ranged from 

0.960 (monocyte) to 1.00 (basophil). All AUCs from cross-validation cases are displayed in 

Tables S3A and B. A confusion matrix describing the cross-validation misclassifications is 

presented in Figure 4C. As shown, the most common specific classification errors were 

encountered for defined cell types, particularly monocytes (14%) and lymphocytes (21%), 

which were predicted to be unknown cell types. Other common errors included adjacent cell 

classes in the myeloid series: blasts being misclassified as promyelocytes (10%), myelocytes 

being predicted to be promyelocytes (8%), and promyelocytes being predicted to be blasts 

(7%). Lastly, lymphocytes were predicted to be erythroid cells (6%) and monocytes were 

misclassified as metamyelocytes (7%) or myelocytes (6%).
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We next estimated how these misclassifications might affect key cell types in the DCC, 

namely plasma cells and blasts. The misclassification rates from the confusion matrix were 

used to analyze manual DCCs from 5 patient samples that represent a clinically relevant 

spectrum of plasma cells (N=2) and blasts (N=3). We calculated upper and lower estimates 

for plasma cell and blast percentages, given the importance of these cell types in disease 

classification. The projected percentages with lower and upper error estimates, in 

parentheses, include 8.6% (7.7%, 8.8%) and 57.2% (50.9%, 57.3%) for plasma cells, and 

6.4% (5.4%, 7.4%), 9.6% (8.2%, 12.1%) and 26% (22.1%, 28.0%) for blasts (see Table S4 

for complete DCCs).

The aforementioned results are based on non-neoplastic cells. Since the cytomorphologies of 

neoplastic cells can differ, to varying degrees, from their non-neoplastic counterparts, we 

explored the feasibility of employing the algorithms, developed using non-neoplastic cells, 

for detecting and classifying neoplastic cells. We studied a small set of AML and MM test 

cases selected for neoplastic cell content of 20–50%. In aggregate, 1373 cells were 

annotated which included 223 AML blasts and 76 malignant plasma cells (see Table S5 for 

all annotated cells). The detection AUC for all cell classes was 0.970 for AML cases and 

0.979 for MM cases (see Table S2). For AML blasts, the classification AUC was 0.893 and 

that for MM plasma cells was 0.970 (see Table S3B). Confusion matrix analysis for the 

AML cases suggested an overall predication accuracy of 87.2% for blasts. Interestingly, a 

subset of blasts was classified by the algorithm as “unknown”, something that is often done 

clinically with neoplastic cells at the time of manual DCC, until the neoplastic cell lineage is 

determined by ancillary studies, then such cells are generally re-categorized into their 

correct class (e.g. blasts). If blasts that were counted as unknowns are included as true 

positives here, the prediction accuracy increases to 93.3% (see Table S6). Lastly, confusion 

matrix analysis for MM cases suggested a prediction accuracy for neoplastic plasma cells of 

96.5%. This improves to 98.8% if plasma cells that were classified as unknowns are likewise 

counted as true positives (See Table S6).

Handling detection and classification with two separate networks provided more flexibility 

in network design, and enabled us to employ advanced strategies for data augmentation that 

had a significant positive impact on classification accuracy. During class inference, each 

detected cell was augmented to generate 16 versions with different orientations and intensity 

transformations, as displayed in Figure 5A. The classification network was applied to these 

augmented versions, and the predicted class probabilities were aggregated. This procedure 

improved the total AUC an average of 5.0% over all cross-validation folds as displayed in 

Figure 5B (see also Tables S3A and B). This increase in classification accuracy was 

statistically significant (p=3.12e-2, Wilcoxon signed rank).

We also analyzed the execution time of our algorithms on a high-performance server 

equipped with graphical processing unit (GPU) accelerators (see Materials and Methods for 

configuration). Execution of the detection and classification models during inference 

consumed almost all computation time, with loading and preprocessing consuming only 

minimal time (Figure S2, Table S7). We modeled total execution time using a regression 

analysis based on the number of detected cells and ROI size (Figure S3). This model was 

highly accurate with R2=0.999. We extrapolated this model, as detailed in the Materials and 
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Methods, to predict an average execution time of 162 seconds for an ROI containing 500 

cells.

DISCUSSION

BMA DCC is routinely performed to assess hematopoietic activity, to compare the 

proportions of the different cell lineages with reference ranges, and to quantify abnormal 

cells when present. It is generally performed by pathologists and/or the laboratory technical 

staff depending on workflow and the laboratory case volume. While publications vary in the 

total number of cells recommended for performance of DCCs, they generally fall between 

300–500 cells, but can vary based on specific clinical circumstances 2, 23, 24. At the high 

end, counts of more than 500 cells have been recommended based on theoretical work that 

considered the odds of unacceptable error in classification when initial counts fall near 

diagnostic cutoffs for critical cells classes 1, 25. Yet, manual DCCs suffer from being labor 

intensive with inherent inter- and intra-observer variability in cell classification and choice 

of cells counted. Automation of the DCC could not only obviate these issues, including the 

ability to readily analyze the many hundreds to thousands of pertinent cells on a smear, but 

also could also afford standardization. If successfully developed, such a system could thus 

have a tremendous impact on the practice of pathology.

One promising method to create an automated DCC system, which we explored in this work, 

is digital image analysis with machine learning. Images of BMA smears present significant 

technical challenges for image analysis algorithms. BMA smears contain cells representing 

diverse cytomorphologies with some cell types exhibiting only subtle differences. A large 

number of cells in any given smear may be ambiguous and the boundaries between cells 

indistinguishable, particularly in areas with clumping. Traditional image analysis techniques 

that rely on models of cell appearance and morphology are difficult to apply in these 

scenarios, and may fail to accurately detect and distinguish closely packed cells from one 

another, a process called segmentation. Reliable segmentation is absolutely necessary to 

extract shape, texture, and color features that are used for classification. Importantly, 

difficulties in segmentation will often be reflected in poor classification performance. A 

data-driven approach, based on machine learning with convolutional networks, can perform 

classification without explicitly segmenting cells by relying on detection algorithms to 

localize cells. This approach also does not rely on a-priori definitions of cell features for 

classification, but does require extensive annotations of data for training and validation of 

the detection and classification networks.

To generate sufficient data for such convolutional network approaches, we developed an 

efficient tiered annotation protocol using the DSA. This web-based platform facilitated de-

centralized annotation and review, and helped to scale our labeled dataset. The tiered 

protocol utilized experts to classify cells using a simple point annotation tool, and students 

to do the more laborious work of placing bounding boxes, enabling us to annotate over 

10,000 cells from neoplastic and non-neoplastic cases. This large dataset allowed us to 

engineer an analysis pipeline based on convolutional networks for cell detection and 

classification. This pipeline achieved high detection accuracy on both non-neoplastic cases 

in cross-validation (0.959 +/− 0.008 AUC) as well as AML (0.970 AUC) and MM (0.979 
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AUC) test cases. Classification accuracy for all cell types was also high in non-neoplastic 

cases (0.982 +/− 0.03 ROC AUC) and largely in AML (0.912 AUC) and MM (0.906 AUC) 

test cases. Importantly, high classification accuracy of neoplastic cells will be crucial for 

developing a diagnostic tool for diseases such as AML and MM. In light of the fact that our 

classifiers were trained entirely on non-neoplastic cases, the classification accuracies 

achieved in this small test set of AML blasts (0.893 AUC) and MM plasma cells (0.970 

AUC) are promising and represent a good starting point for further progress. Of note, these 

levels approach the performance of a commercially available clinical image analysis system 

for blood 26, 27. In addition, the estimated effects on blast and plasma cell percentages from 

DCCs we calculated using the misclassification rates from confusion matrix analysis suggest 

that reasonable error ranges are likely to be encountered in future clinical validation studies. 

Decoupling the detection and classification steps provided definite benefits in our system. 

As we demonstrated, the ability to perform augmentation of detected cells significantly 

improved classification accuracy, increasing the accuracy from 0.917 +/− 0.027 to 0.982 +/

− 0.03 (p = 3.12e-2). Using separate networks for detection and classification also improved 

flexibility in design. Detection and classification tasks have very different design 

requirements and creating a single convolutional network to perform both tasks is difficult 

and will likely result in suboptimal overall performance. Importantly, these two networks 

will appear seamless to users of the software once fully optimized. Analysis of execution 

time shows that the expected runtime for an ROI containing 500 cells is less than three 

minutes. This performance could be significantly improved using additional hardware, and 

can be largely hidden from the end-user by processing slides offline prior to inspection.

Limited studies have evaluated image analysis in automating BMA DCCs. Choi et al 14 

published promising preliminary results using convolutional networks for cell classification 

in DCCs. Their dataset comprised 2174 cells of non-neoplastic erythroid and myeloid 

precursors, and did not include other cells types important in DCCs including eosinophils, 

basophils, monocytes, lymphocytes, and plasma cells. This study focused on classification 

and did not address detection, utilizing only manually cropped images of cells to develop 

and validate the classifier. Moreover, noise due to the detection process was not accounted 

for in their classification. Their reported classification performance was 0.971 precision at 

0.971 recall. This is comparable to the overall classification performance for our system that 

included analysis of all relevant cell types in the DCC. Reta et al 15 developed a cell 

detection and classification framework for classification of acute leukemia subtypes. Their 

dataset comprised 633 cells from acute lymphoblastic leukemias and acute myeloid 

leukemias. They developed an elaborate software pipeline to detect and segment leukocytes 

in digital images of Wright-stained BMA smears. Detected cells were characterized using a 

set of features that describe the shape, color, and texture of each cell. These cells were 

classified individually using basic machine learning algorithms, and the cell classifications 

were aggregated to provide a single diagnosis for the sample. While their application is 

narrow and focuses only on a few cell types, their reported segmentation accuracy has a high 

precision (95.75%) and their subtype classification accuracy ranged from 0.921 to 0.784 

ROC AUC. Our findings expand the work in these earlier publications and point to the 

promise of machine learning approaches towards automation of DCCs.
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In many circumstances, manual examination of BMA smears employs a 100x objective 

(1000x). In this work, we utilized whole slide images collected at a resolution of 0.25 μm/

pixel, which approximates a 40x objective (400x). Scanning at 400x offers useful advantages 

in digital pathology workflow. For example, whole slide scanning beyond 400x 

magnification is time consuming, and in contrast to scanning at 400x, leads to extremely 

large file sizes that are impractical to archive 28. And, while scanning beyond 400x could 

become feasible if limited to smaller ROIs, it requires that these are identified before 

scanning. Thus, capturing whole slide images will facilitate the automation process by 

avoiding the introduction of additional human workflow interactions. Moreover, objectives 

offering magnifications higher than 400x often require oil immersion which can introduce 

significant challenges, including difficulties in dispensation and containment of oil that can 

contaminate imaging systems and increase maintenance requirements. We are currently 

aware of only one slide scanning equipment vendor who is pursuing high-throughput 

scanning with oil immersion for clinical use. Importantly, our results show that images 

acquired at a resolution offered by a 40x objective can form the basis of compelling 

detection and classification algorithms for the specific purpose of cell-type identification for 

DCCs. The need for higher resolution images will, nonetheless, likely be required for 

applications aimed at detecting and differentiating more subtle cytomorphologic details such 

as dysplastic changes, Auer rods, iron particles, and specific intracellular microorganisms.

In this study, we present highly promising preliminary results in developing a computational 

system for DCC of BMAs. Our approach combines state-of-the-art detection and 

classification algorithms based on convolutional networks, and achieved excellent 

performance in detection and classification tasks. This success was enabled primarily by 

extensive annotation and curation of training and validation data using the DSA. While our 

results are quite encouraging, this study currently has some important limitations. First, 

while we evaluated our system on AML and MM cases, we did not include cells from these 

cases in training, and so the reported classification accuracies for disease cases are likely 

subject to improvement. Furthermore, the number of these disease cases was limited, and 

certainly did not represent the full spectrum of hematologic malignancies. Since neoplastic 

cells often exhibit cytomorphologic differences from benign counterparts, it will be 

important to include examples of these cells when training algorithms to realize optimal 

performance on disease cases. Future studies will greatly expand the number of disease 

cases, will include other diagnostic categories, and will grow the training set to cover the 

wide spectrum of abnormal cytomorphologies. Second, the small ROIs employed in this 

study were biased towards better cytologic preservation. The performance on random large 

ROIs encompassing marrow particles as would typically be analyzed by pathologists has not 

been assessed. These areas contain more highly dense overlapping marrow cells and stromal 

cells that will need to be addressed by detection and classification models. Third, 

exploration of the potential benefits of employing higher resolution scanned images will also 

be useful as the acquisition and storage of these large digitized images becomes more 

practical for clinical use. Fourth, we have not established performance criteria for clinical 

validation of this novel method that is still early in development, but this will certainly be 

required before deploying for clinical use, as it has for automated analysis of blood smear 

images 6, 27. Any automated approach will ultimately have to be shown to be at least as 
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reliable and accurate clinically as manual microscopic review of slides and faster than 

manual DCC performance, even after reclassification by pathologists/technologists of any 

cells wrongly categorized.

Future annotation efforts will include an inter-observer variability study to better understand 

the ranges for classification and detection performance of human observers. The final 

software application will also require a convenient graphical interface that allows users to 

identify errors and to manually override the algorithm. While our algorithms performed well 

on samples processed in our lab, variations in pre-analytic factors like smearing and staining 

quality will impact generalization to other sites, and additional data collection would be 

required to deploy the system in other labs. Nonetheless, the annotation system and 

protocols presented here establish a template to generate similar training and validation data, 

and results. Once the above limitations are addressed, the advances made in this study can be 

integrated into a practical computerized system with potential to have significant impact on 

clinical practice.
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Figure 1. The Digital Slide Archive (DSA) annotation interface.
(A) ROIs were defined using the rectangle draw tool, shown in red. Cells within these 

regions were then annotated exhaustively using the point tool to indicate cytologic class. 

Finally, bounding boxes, shown in green, were drawn around each annotated cell to 

delineate the cell boundary for detection algorithm training. The annotations are organized 

in layers in the Annotation menu, at right, where colors, transparency, and visibility of the 

annotation markers can be controlled. In addition to the layers for cytological classes, layers 

are also provided for the region-of-interest (“Other”), artifacts (“exclude”), and regions 

containing mostly red blood cells (“mostly_rbcs”). (B) Thumbnail images, representing 

examples of the 11 cell classes encountered in generating DCCs plus an unknown class, are 

presented.
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Figure 2. Computational detection and classification of cells in bone marrow aspirate smears.
(A) Cell detection was performed using a Faster R-CNN network built on the resnet101 fully 

convolutional network. (B) Following cell detection, a separate convolutional network was 

used to classify the detected cells into 12 cytological classes. (C) Detection and 

classification accuracy were evaluated through 6-fold cross-validation to measure detection 

and classification accuracy using human annotations of cytological class and bounding box 

location. Cross-validation was performed at the case level, so that annotated cells from each 

case were assigned entirely to either the training or testing set.
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Figure 3. Cell detection results.
(A) Sample detection result on cross-validation test ROI. Here, green boxes indicate true-

positive detections, red boxes false negatives missed by the detector, blue boxes false 

positives where a detection does not match ground truth, and orange boxes the ground-truth 

annotations that best correspond to false positives. In many cases (examples in panels 1–4), 

false positives were due to insufficient overlap with a ground truth annotation (intersection-

over-union at least 0.5). Some false positives correspond to cells correctly detected by the 

algorithm but that were missed during the annotation process (examples in panels 5 and 6). 

(B) Precision-recall of detection algorithm for cross-validation test sets. Shaded region 

indicates standard deviation of precision-recall over the six cross-validation sets. (C) 

Histogram of cross-validation bounding box placement error. This error measures the 

distance between predicted and actual bounding box centers relative to actual bounding box 

size.
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Figure 4. Cell classification results.
(A) Sample classification result on test ROI. Predicted class and location of detected cells is 

indicated with color-code dots. Classification errors are indicated with a bounding box in 

sub panels 1 and 2, colored to indicate the annotated cell class. (B) Classification area-

under-curve on cross-validation test sets. Each point represents the AUC of one class in one 

testing fold. Total AUC was calculated as the average AUC over all classes (unweighted by 

class proportions). (C) Cross-validation confusion matrix indicating the classification errors 

that were made for each class. Rows display the true cell class while columns indicate the 

cell type predicted by the classifier. Values are normalized as percentages across rows. The 

diagonal shows the proportion of TPs for each cell class. Values outside of the diagonal 

represent misclassification rates. Results presented are aggregated over all cross-validation 

folds.
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Figure 5. Impact of data augmentation on classification performance.
(A) Data augmentation procedure for inference. (A.1) At inference time, for each detected 

cell we extracted an image centered at the predicted bounding box location. (A.2) This 

image is transformed using rotations, translations, and pixel intensity transforms to generate 

an “augmented” set of 16 images for inference. These images are passed through the 

classification network to generate 16 total predictions of cytologic class. Each prediction 

describes the probabilities that the image belongs to each of the 12 cytologic classes. These 

predictions are aggregated to smooth out noise and to improve robustness. (A.3) The cell in 

question is assigned to the highest-probability cytologic class using the aggregated 

predictions. (B) This augmentation procedure significantly improved classification accuracy 

in cross-validation experiments (Wilcoxon signed rank test). Each dot represents the 

accuracy of one fold in the cross-validation.
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Table 1.
Counts of annotated cells by cytological class.

Annotations outside ROIs were performed to increase counts for rare classes.

Cytologic class Total annotated Inside ROI Outside ROI

Erythroid 1526 1396 130

Blast 571 288 283

Promyelocyte 295 112 183

Myelocyte 613 414 199

Metamyelocyte 547 443 104

Band/neutrophil 1036 1005 31

Eosinophil 412 156 256

Basophil 62 21 41

Monocyte 178 109 69

Lymphocyte 544 363 181

Plasma cell 283 86 197

Megakaryocyte* 39 14 25

Unknown 3163 3162 1

Total 9269 7569 1700

ROI: Region-of-interest.

*
Annotated but not used in the cell detection or classification analyses.
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