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Summary

T cell dysfunction is a characteristic feature of chronic viral infection and cancer. Recent studies in 

chronic lymphocytic choriomeningitis virus (LCMV) infection have defined a PD-1+ Tcf-1+ CD8+ 

T cell subset capable of self-renewal and differentiation into more terminally-differentiated cells 

that downregulate Tcf-1 and express additional inhibitory molecules such as Tim3. Here, we 

demonstrated that expression of the glycoprotein CD101 divides this terminally differentiated 

population into two subsets. Stem-like Tcf-1+ CD8+ T cells initially differentiated into a transitory 

population of CD101− Tim3+ cells that later converted into CD101+ Tim3+ cells. Recently-

generated CD101− Tim3+ cells proliferated in vivo, contributed to viral control, and were marked 

by an effector-like transcriptional signature including expression of the chemokine receptor 

CX3CR1, pro-inflammatory cytokines, and granzyme B. PD-1 pathway blockade increased the 
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numbers of CD101− Tim3+ CD8+ T cells, suggesting that these newly-generated, transitional cells 

play a critical role in PD-1 based immunotherapy.
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Introduction

CD8+ T cells are responsible for the recognition and killing of host cells expressing 

intracellular non-self or mutated-self antigens arising from infection or cell transformation. 

Upon recognition of its cognate antigen a naive CD8+ T cell will undergo differentiation into 

an effector state, which is marked by high proliferative and cytotoxic capacity. After 

clearance of an acute viral infection, memory precursor cells present in the heterogeneous 

pool of effector CD8+ T cells will differentiate into long-lived memory cells in the absence 

of antigen(Joshi et al., 2007; Kaech et al., 2003; Sarkar et al., 2008). These memory cells 

undergo a slow homeostatic proliferation to maintain their numbers and remain primed for 

rapid effector responses upon antigen re-exposure, providing protective immunity against re-

infection (Akondy et al., 2017; Kaech et al., 2002).

In conditions marked by antigen persistence such as chronic viral infection or cancer, CD8+ 

T cells enter an ‘exhausted’ state marked by the expression of regulatory surface proteins 

such as PD-1(Day et al., 2006) and progressive loss of effector functions such as cytokine 

production, proliferative capacity, and cytotoxicity(Barber et al., 2005; Gallimore et al., 

1998; Zajac et al., 1998). These findings have led to the development of immune checkpoint 

inhibitors, antibodies that target negative regulatory proteins that are expressed on the 

surface of exhausted CD8+ T cells(Callahan and Wolchok, 2013). These drugs have proven 

successful at treating multiple types of cancer, although not all tumor types are susceptible 

nor do all patients with susceptible tumor types show clinical responses(Brahmer et al., 

2012; Topalian et al., 2012). This has led to the search for additional inhibitory surface 

molecules expressed on CD8+ T cells for use as immunotherapy targets, often for use in 

combination with anti-PD-1 pathway blockade(Ott et al., 2017; Pardoll, 2012).

An additional factor complicating PD-1 therapy is the heterogeneity in exhausted CD8+ T 

cell populations. One key recent finding is the presence of a ‘stem-like’ population of 

PD-1+Tcf-1+ CD8+ T cells that sustain CD8+ T cell responses during chronic viral infection 

and give rise to PD-1+Tim3+ terminally differentiated cytotoxic cells(Im et al., 2016; 

Utzschneider et al., 2016; Wu et al., 2016). Stem-like CD8+ T cells have been found in 

numerous types of chronic infection and human cancers (Brummelman et al., 2018; 

Gettinger et al., 2018; He et al., 2016; Jiang et al., 2017; Leong et al., 2016), and it is these 

Tcf-1+ stem-like cells that mediate the proliferative response to PD-1 pathway blockade (Im 

et al., 2016). In contrast, PD-1+Tim3+ cells undergo minimal amounts of division after PD-1 

blockade(Im et al., 2016). This heterogeneity again highlights the need for identification of 

additional surface markers of PD-1 responsive cells and targets for combination therapy in 
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order to recruit additional antigen-specific CD8+ T cells into the immunotherapy-responsive 

pool.

Here, we performed a systematic approach to catalog the repertoire of surface molecules 

expressed by exhausted CD8+ T cells. This analysis confirmed well-known markers of 

exhaustion such as PD-1, Tim3, and CD244 (2B4), but also pinpointed other surface 

molecules with less-studied roles in T cell exhaustion such as CD7, Lax1, CD200R, and 

CD101. We demonstrated that this latter molecule, the type I transmembrane glycoprotein 

CD101, was induced specifically on CD8+ T cells in chronic viral infection and that its 

expression marked terminally differentiated and highly dysfunctional antigen-specific CD8+ 

T cells. We showed that stem-like CD8+ T cells differentiated into transitory CD101−Tim3+ 

cells that still retained proliferative and effector capacity and contributed to viral control 

before their eventual progression into an exhausted CD101+Tim3+ state. Finally, we have 

shown that PD-1 pathway blockade increased the proliferation and differentiation of stem-

like antigen-specific CD8+ T cells to the effector-like CD101−Tim3+ state, resulting in an 

enlarged pool of functional cells that contribute to improved viral control.

Results

Systematic identification of CD8+ T cell exhaustion markers

To identify markers of exhausted murine CD8+ T cells, we analyzed two RNA-sequencing 

datasets generated by our laboratory (Figure 1A). The first dataset consisted of RNA-

sequencing data from virus-specific CD8+ T cells isolated from spleens of mice infected 

with LCMV Armstrong, which causes an acute infection and results in a robust, functional 

effector and memory CD8+ T cell response(Hudson et al., 2019). At the peak of the CD8+ T 

cell response to LCMV Armstrong, a heterogeneous effector cell pool is present, including 

Klrg1hiCD127lo terminal effector cells (TEs) and Klrg1loCD127hi memory precursor cells 

(MPs)(Joshi et al., 2007; Kaech et al., 2003). Both of these populations are capable of 

cytotoxicity and cytokine production, but long-lived memory CD8+ T cells will differentiate 

from the CD127+ MPs within the initially heterogeneous response(Kaech et al., 2003; 

Sarkar et al., 2008). To generate this first dataset, LCMV-specific MPs and TEs were 

isolated by fluorescence-activated cell sorting (FACS) eight days after infection. Forty-eight 

days post-infection, CD127+CD62L+ central memory cells (CM) and CD127+CD62L− 

effector memory (EM) LCMV-specific cells were isolated by FACS(Sallusto et al., 1999; 

Wherry et al., 2003). RNA from the aforementioned subsets as well as naive cells was 

isolated from sorted cells and sequenced.

The second dataset consisted of RNA-sequencing data of PD-1+ CD8+ T cells present in 

chronic infection(Jadhav et al., 2019). Two cell populations, PD-1+CXCR5+Tim3− cells and 

PD-1+CXCR5−Tim3+ cells, were isolated from spleens of mice infected with LCMV clone 

13, which causes a chronic viral infection. The former subset is stem-like, expresses Tcf-1, 

and has the capability for self-renewal, whereas the latter subset (Tim3+) is a terminally-

differentiated CD8+ T cell population that does not proliferate in response to PD-1 

blockade(Im et al., 2016). In both studies, naive CD8+ T cells were sequenced, allowing a 

comparison with CD8+ T cells from uninfected mice and serving as a control population 

between the two studies.

Hudson et al. Page 3

Immunity. Author manuscript; available in PMC 2020 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To identify surface proteins upregulated in exhausted CD8+ T cells, we selected genes with 

high absolute expression and high relative expression (>3 fold) compared to naive, TE, and 

EM CD8+ T cells (Figure 1B). For genes with particularly high absolute expression, the 

relative expression threshold was relaxed to 2-fold. Genes encoding surface proteins were 

distinguished by the presence of a predicted transmembrane helix(Krogh et al., 2001) in 

their associated peptide sequences (Figure 1C). Immunoreceptor tyrosine-based motifs were 

determined in predicted intracellular regions and proteins with immunoglobulin-like 

domains were identified via the Protein Families (PFAM) annotations(Finn et al., 2016) 

(Figure 1C); such domains are often important for protein-protein interactions in 

immunological signaling pathways(Barclay, 2003). A complete and sortable list of genes, 

their expression, and properties of their encoded proteins are given in Table S1.

In total, we identified 49 transmembrane proteins markedly upregulated in PD-1+Tim3+ 

LCMV-specific CD8+ T cells from chronically infected mice (Figure 1D). This included a 

number of well-known inhibitory coregulatory molecules, such as PD-1 (Pdcd1), Lag3, and 

2B4 (Cd244). Additional genes of interest included several encoding proteins with described 

negative effects on T cell receptor (TCR) signaling but few described roles in CD8+ T cell 

exhaustion, such as Lax1, Cd101, and Pvrig, which encodes a recently-described inhibitory 

receptor for CD112 (Murter et al., 2019; Philip et al., 2017; Soares et al., 1998; Whelan et 

al., 2019; Zhu et al., 2002; Zhu et al., 2016). CD7, which delivers a pro-apoptotic signal to T 

cells in the presence of galectin-1, as well as Gcnt1, whose genetic ablation desensitizes T 

cells to galectin-1-mediated apoptosis were also highly expressed in Tim3+ cells(Nguyen et 

al., 2001; Pace et al., 2000). An additional 20 genes encoding transmembrane proteins were 

identified as highly and selectively expressed in the stem-like CD8+ T cells resulting from 

chronic LCMV infection(Im et al., 2016). These include Slamf6, a putative stimulatory 

molecule (Chatterjee et al., 2011), as well as several molecules typically expressed on B 

cells and/or CD4+ T cells, such as Cd22 and Cxcr5 (Figure 1E). We confirmed the presence 

of several of these markers on antigen-specific CD8+ T cells with flow cytometry, and in this 

study we focused on CD101, which has allowed us to define the CD8+ T cell differentiation 

pathway during chronic infection.

CD101 is specifically induced on CD8+ T cells in chronic viral infection

In antigen-specific CD8+ T cells from chronic LCMV infection (Figure 2A), CD101 

exhibited a distinctive staining pattern; stem-like CD8+ T cells showed no expression of 

CD101, whereas Tim3+ cells exhibited bimodal expression of CD101 (Figure 2B). At the 

late stages of chronic infection (day >45 post-infection), a majority of Tim3+ cells expressed 

CD101. To determine kinetics of CD101 induction, we infected C57BL/6J mice with LCMV 

clone 13 or LCMV Armstrong, which cause chronic and acute infections respectively, and 

analyzed CD101 expression on splenic LCMV-specific CD8+ T cells (Figure 2C,D).

Eight days after infection, expression of CD101 was not detected on LCMV-specific cells in 

mice with acute or chronic infection. By day 15 post-infection, CD101 was detectable on a 

small subset of Tim3+ LCMV-specific CD8+ T cells in chronically infected mice (Figure 

2C). At 3 and 4 weeks after induction of chronic infection, most Tim3+ cells also expressed 

CD101. In stark contrast, no significant expression of CD101 was observed on LCMV-
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specific CD8+ T cells at any time point following acute infection (Figure 2D). In other 

organs, CD101 was induced at similar time points in chronic infection, with low but 

detectable expression two weeks after infection and prominent CD101+Tim3+ populations 

3–4 weeks after infection (Figure 2E). As in spleen, CD101 was not detected on LCMV-

specific CD8+ T cells following acute infection in spleen or liver. Late in chronic infection 

(day >45 after infection), the prevalence of CD101+ LCMV-specific cells differed among 

tissues, with lung containing the lowest frequency of CD101+Tim3+ cells, and bone marrow 

and liver the highest (Figure 2F). The frequencies of these populations among organs did not 

substantially differ between gp33-specific and gp276-specific CD8+ T cells (Figure 2F), and 

CD101+Tim3− cells were rarely observed. The presence or absence of CD4+ T cell help did 

not affect the generation of the CD8+ CD101+ subset at initial stages of infection (Figure 

2E).

CD101 expression marks transcriptionally distinct antigen-specific CD8+ T cells

To identify transcriptional differences between stem-like (PD-1+CD101−Tim3−), 

PD-1+CD101−Tim3+, and PD-1+CD101+Tim3+ CD8+ T cells, we used flow cytometry to 

isolate these three subsets of PD-1+CD8+ T cells from spleens of chronically infected mice 

(>d45 post-infection; Figure S1) as well as naive CD8+ T cells from uninfected mice. 1,825 

genes were differentially expressed between CD101−Tim3+ and CD101+Tim3+ PD-1+CD8+ 

T cells (Figure 3A, Table S2), indicating that CD101 expression markeds two 

transcriptionally distinct populations of Tim3+ CD8+ T cells in chronic infection. Notably, 

Cd101 was the most differentially upregulated gene in CD101+Tim3+ cells as measured both 

by adjusted p-value and fold change (Figure 3A).

To broadly compare the transcriptional profile of naive, stem-like, and CD101−/+ Tim3+ 

CD8+ T cells, we performed principal component analysis (PCA) on these samples, which 

identified three principal components explaining 10% or more of variance in gene 

expression among samples. CD101− and CD101+ Tim3+ cells were similarly situated on the 

first principal component (PC1), which explained 46% of transcriptional variance among all 

cell types measured (Figure 3B). However, the two Tim3+ subsets differed on PC2 and PC3, 

which collectively explain a third of transcriptional variance. Specifically, CD101−Tim3+ 

cells were similar to naive cells on PC2 and stem-like cells on PC3, suggesting that 

CD101−Tim3+ cells may retain some transcriptional programs similar to these other cell 

types.

Examination of individual gene expression by affinity propagation clustering revealed 

multiple patterns of gene expression, including many genes preferentially expressed in one 

of the four sequenced subsets (Figure 3C). Expression of some genes, such as Tcf7 
(encoding Tcf-1) was shared by stem-like and naive cells, whereas others such as Cxcr5 
were expressed only in stem-like cells. Many effector genes such as Prf1 (encoding perforin) 

were expressed in both CD101− and CD101+Tim3+ cells, with much lower expression in 

stem-like cells. Notably, a number of genes were expressed preferentially in CD101−Tim3+ 

cells, such as Cx3cr1, Klrg1, and Tbx21, which encodes T-bet (Figure 3D, Figure S2). 

Eomes expression did not differ between Tim3+ subsets, but was reduced in Tim3+ cells 

compared to stem-like cells. Another noticeable pattern was the very high expression of 
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surface inhibitory molecules in CD101+ cells (Figure S2). Flow cytometric validation of 

selected differentially expressed proteins consistently corroborated RNA-sequencing results 

(Figure 3D,E).

To identify transcriptional pathways that differ between these three subsets, we performed 

gene set enrichment analysis (GSEA) on CD101−Tim3+cells versus CD101+Tim3+and stem-

like cells (Figure S3). GSEA analysis revealed that all three CD8+ T cell subsets present in 

chronic infection had drastically divergent transcriptional programs: 2,078 and 2,110 gene 

sets were significantly enriched in CD101−Tim3+ cells versus CD101+Tim3+ cells or stem-

like cells, respectively (Table S3). 1,318 of these gene sets were enriched in CD101−Tim3+ 

cells versus both subsets; these sets included those indicative of CD8+ T cell response to 

antigen and proliferation (Figure S3). Gene sets enriched in stem-like cells versus 

CD101−Tim3+ cells included those involved in translation, while gene sets enriched in 

CD101+Tim3+ cells versus CD101−Tim3+ cells were those characteristic of negative 

regulation of lymphocyte activation and proliferation. Only 9 gene sets were enriched in 

both stem-like cells and CD101+Tim3+ cells against CD101−Tim3+ cells, again illustrating 

that each of the three subsets express dramatically different transcriptional programs.

To compare gene expression of CD101−Tim3+ and CD101+Tim3+ cells to virus-specific 

CD8+ T cells following LCMV Armstrong infection, we identified genes predominately 

expressed in each subset (p < 0.05 and fold change ≥ 2 against all other subsets). The 

CD101−Tim3+ transcriptional profile resembled that of LCMV-specific Klrg1+ cells at day 8 

following Armstrong infection (Figure S4A). Genes expressed in both types of cells 

included Zeb2 and Tbx21 (T-bet), which are responsible for effector differentiation 

(Dominguez et al., 2015); Cx3cr1, which may promote surveillance of non-lymphoid tissues 

(Gerlach et al., 2016); and S1pr1, which is required for lymphocyte migration from 

peripheral lymphoid organs(Matloubian et al., 2004). GSEA also revealed many shared gene 

sets between CD101−Tim3+ cells from chronic infection and Klrg1+ cells from acute 

infection (Figure S4C).

As the stem-like, CD101−Tim3+ and CD101+Tim3+ cells were first present at approximately 

day 15 after infection with LCMV clone 13 (Figure 2C), we also performed RNA-

sequencing at this early time point to examine their transcriptional profiles and compare the 

subsets early and late in chronic infection. PD-1+ stem-like, CD101−Tim3+, and 

CD101+Tim3+ cells were sorted at day 15 post-infection as at day 45 (Figure S1). Many of 

the same genes identified the CD101−Tim3+ subset at day 15 and day 45 post-infection, 

such as Il18r1, Il18rap, Cx3cr1, Klf2, and S1pr1 (Figure S5A, Table S4). PCA analysis also 

showed that the three subsets were transcriptionally distinct, with little changes in their 

relative positions in principal component space between day 15 and 45 (Figure S5B,C). 

Differences in gene expression among the three subsets were highly similar at days 15 and 

45, with the notable exception of higher expression of cell cycle genes in all subsets at day 

15 (Figure S5D,E). However, the expression of stem-like CD8+ T cell defining genes such as 

Cxcr5, Tcf7 (encoding Tcf-1), and Bcl6 were fixed in the CD101−Tim3− subset at day 15 

(Figure S5D), as was the expression of CD101+Tim3+-defining genes such as Cd101, 

Cd200r2, Cd7, and Cd160 (Figure S5E). Thus, with the exception of residual division from 
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their initial activation, CD101+Tim3+ cells express an exhausted transcriptional signature 

from their earliest appearance.

Together, these results from RNA-sequencing show that stem-like, CD101−Tim3+, and 

CD101+Tim3+ CD8+T cells are three transcriptionally distinct populations of antigen-

specific cells present in chronic infection, and we sought to determine their lineage 

relationship and available differentiation pathways.

CD101−Tim3+ cells are a transitory CD8+ T cell population arising from Tcf-1+ stem-like 
cells

Based on the transcriptional signatures of cell division and effector function present in 

CD101−Tim3+ cells and the exhausted signature of CD101+ Tim3+ cells, we hypothesized 

that CD101−Tim3+ cells are a transitory population in the differentiation pathway between 

stem-like Tcf-1+ CD8+ T cells and fully exhausted CD101+Tim3+ CD8+ T cells. To test this 

hypothesis, we performed adoptive transfer of cells from the above subsets from chronically 

infected mice into congenically-distinct, infection-matched mice (Figure 4A). Splenocytes 

were isolated from (CD45.2+) C57BL/6J mice chronically infected with LCMV clone 13 

and labeled with CellTrace Violet (CTV), a proliferation tracking dye. Using flow 

cytometry, we separated three populations of PD-1+CD8+ T cells from donor mice: 

CD101−Tim3− stem-like cells, CD101−Tim3+ cells, and CD101+Tim3+ cells. These sorted 

cells were then transferred intravenously into separate infection-matched, congenically 

distinct (CD45.1) recipient mice (Figure 4A). Two weeks post-transfer, lymphocytes were 

isolated from spleen, liver, lungs, and bone marrow of recipient mice and donor cells 

analyzed by flow cytometry for expression of Tim3, CD101, and dilution of CTV (Figure 

4B,C).

Stem-like donor CD8+ T cells were capable of maintaining a CD101−Tim3− phenotype or 

differentiating into CD101−Tim3+ or CD101+Tim3+ cells (Figure 4B). In lymphoid organs 

(spleen and bone marrow) most stem-like donor cells retained their pre-transfer 

CD101−Tim3− phenotype, whereas the majority of those recovered in lung and liver 

expressed Tim3. Most donor stem-like cells recovered in lung and liver had also diluted 

CTV, often to the maximum detectable extent, which represents eight or more rounds of 

division (Figure 4C). In lymphoid organs most donor cells had not divided, but those that 

had entered the cell cycle fully diluted CTV.

Recovered CD101−Tim3+ donor cells either retained their CD101−Tim3+ phenotype or had 

converted into CD101+Tim3+ cells. In bone marrow and liver, the majority of donor 

CD101−Tim3+ recovered cells upregulated CD101, whereas only a very small fraction of 

cells found in the lung had expressed CD101 (Figure 4B). These results mirror the frequency 

of endogenous CD101−Tim3+ cells (Figure 2F), suggesting that tissue environment may 

play a major role on CD8+ T cell differentiation in chronic viral infection. CD101−Tim3+ 

cells were also capable of division in vivo, as approximately half of recovered cells had 

diluted CTV, with some variation by tissue (Figure 4C). Some donor CD101−Tim3+ cells 

had diluted CTV to the maximum detectable extent - particularly in the liver - although this 

fraction was far smaller than those seen after transfer of stem-like cells.
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Finally, transferred CD101+Tim3+ cells were exclusively recovered in the CD101+Tim3+ 

state, demonstrating that these cells were incapable of interconversion to the CD101−Tim3+ 

state (Figure 4B). Even 28 days after transfer, CD101+Tim3+ cells did not convert to any 

other state, illustrating their fixed state of terminal differentiation (Figure 4D). Additionally, 

the vast majority of CD101+Tim3+ donor cells had not diluted CTV (Figure 4C), nor were 

any of these cells capable of completely diluting CTV (again, representing eight or more 

divisions). Together, these results confirm previous experiments demonstrating the 

differentiation of PD-1+ stem-like cells to a PD-1+Tim3+ state(Im et al., 2016). The data 

here also extend these findings by demonstrating that stem-like cells initially differentiate 

into transitory CD101−Tim3+ cells with proliferative capacity and an effector-like 

transcriptional profile. These transitory cells then convert into fully exhausted 

CD101+Tim3+ cells with extremely limited potential for division and no ability to revert into 

CD101− cells for up to 28 days.

Newly-generated CD101−Tim3+ CD8+ T cells are more functional than CD101+Tim3+ CD8+ T 
cells

Given the findings from the above adoptive transfer experiments, our gene expression 

analysis provides insight into the transcriptional changes occurring during steady-state CD8+ 

T cell differentiation in chronic viral infection (Figure 5A). Upon division and 

differentiation of stem-like cells to transitory CD101−Tim3+ cells, the expression of 

migration-associated (Cx3cr1, Ccr2, Itgam, Itga6, S1pr1) and division-associated (Mki67, 
Mcm2–7, Aurkb) genes was upregulated. Expression of genes encoding exhaustion markers 

such as PD-1, CD112R, and TIGIT were also upregulated, concomitant with downregulation 

of Cd28. This transition also involved the upregulation of the transcription factor genes 

Tbx21 (encoding T-bet) and Klf2 and downregulation of Tcf7 (encoding Tcf-1). Upon 

differentiation of transitory CD101−Tim3+ cells to exhausted CD101+Tim3+ cells, 

migration- and division-associated genes were downregulated. Exhausted CD101+Tim3+ 

downregulated Klf2 and Tbx21 and highly expressed the genes encoding Runx3, Stat3, Irf1, 

and Hic1. Finally, the genes encoding PD-1, CD112R, and TIGIT are further upregulated in 

exhausted CD101+Tim3+ cells compared to transitory cells, and other inhibitory molecules 

such as CD160, Lag3, and CD200R1 are exclusively upregulated in exhausted cells 

compared to stem-like cells (Figure 5A).

Flow cytometry analysis confirmed the higher expression of many inhibitory molecules in 

CD101+ LCMV-specific cells, including 2B4 (CD244), CD160, and CD200R(1) (Figure 

5B). Ki-67 staining was most prominent in transitory cells (Figure 5C,D), as predicted by 

RNA-sequencing data from the spleen (Figure 5A). This is consistent with a differentiation 

pathway in which quiescent stem-like CD8+ T cells infrequently divide and convert into 

rapidly proliferating transitory CD101−Tim3+ cells. We found that Ki-67+ CD101+ CD8+ T 

cells expressed lower amounts of CD101 than Ki-67− CD101+ cells, suggesting that onset of 

dysfunction is paired with progressive upregulation of CD101, particularly in the spleen 

(Figure 5E).

To determine the ability of the different CD8+ T cell subsets to produce effector cytokines 

during chronic infection, we transferred P14 cells, which contain a transgenic TCR for the 
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LCMV gp33 epitope, to C57BL/6J mice and infected these recipients with LCMV clone 13. 

Twenty-two days post-infection, approximately 70% and 60% of stem-like and transitory 

P14 cells, respectively, produced IFN-γ after ex vivo stimulation with gp33 peptide. In 

contrast, only 20% of CD101+ exhausted P14 cells were IFN-γ+ (Figure 5F,G). In addition 

to lower frequencies of IFN-γ-producing cells among the exhausted subset, CD101+ IFN-γ+ 

cells produced significantly lower amounts of IFN-γ compared to IFN-γ+ transitory or 

stem-like cells (Figure 5H). CD101−Tim3+ cells also expressed higher amounts of granzyme 

B in vivo compared to either stem-like or terminally differentiated CD101+Tim3+ cells 

(Figure 5I). These experiments demonstrate that during chronic viral infection, stem-like 

cells differentiate into transitory CD101−Tim3+ cells that retain proliferative and effector 

capacity before irreversible conversion into fully exhausted CD101+ cells with extremely 

limited capability for division and cytokine production.

CD101−Tim3+ cells contribute to viral control and are increased by PD-1 pathway blockade

In murine LCMV infection, the CD8+ T cell response is critical for viral control, and PD-1 

pathway blockade rejuvenates cell-mediated immunity in chronically infected mice (Barber 

et al., 2005). Given the effector capacities of CD101−Tim3+ LCMV-specific cells, we 

hypothesized that these transitory cells are critical for both viral control and the response to 

PD-1 blockade. To test the effects of CD101−Tim3+ cells on viral control, we used a 

diphtheria toxin (DT) receptor with a floxed stop codon driven by the Cx3cr1 
promoter(Diehl et al., 2013) to deplete cells expressing CX3CR1. As very few CD4+ T cells 

express CX3CR1 following LCMV infection(Gerlach et al., 2016), when crossed with Lck 
cre mice, CX3CR1-expressing CD8+ T cells will be deleted after DT administration. 

CX3CR1 was exclusively expressed by CD101−Tim3+ cells (Figure 3D,E), thus DT 

treatment will selectively deplete the transitory CD8+ T cell subset. Fifteen days after 

infection with LCMV clone 13, we began DT administration (Figure 6A) and assessed 

LCMV-specific CD8+ T cell subsets and viral titers fifteen days later. After treatment, 

CX3CR1+ LCMV-specific CD8+ T cells were efficiently depleted (Figure 6B,C), resulting 

in a 70% decrease in splenic LCMV-specific CD101−Tim3+ CD8+ T cells (Figure 6D–F). 

With their CD101−Tim3+ cell population intact, LCMV titers in WT mice were 73% lower 

than in Lck cre Cx3cr1 DTRfl mice (Figure 6G).

Previous work has shown that PD-1 pathway blockade increases the proliferation of PD-1+ 

Tcf-1+ Tim3− cells(Im et al., 2016). Here, we have shown that these stem-like cells 

differentiate into functional CD101−Tim3+ cells after division. These findings suggest that 

PD-1 pathway blockade may function by stimulating stem-like CD101−Tim3− cells to 

generate higher numbers of transitory CD101−Tim3+ cells. To test this hypothesis, we 

treated chronically infected C57BL/6J mice with ɑPD-L1 or isotype control (Figure 7A) and 

analyzed the number and phenotype of antigen-specific CD8+ T cells present two weeks 

after treatment. PD-1 pathway blockade resulted in substantial expansion of LCMV-specific 

cells compared to control-treated mice (Figure 7B). After treatment, the frequency of 

CD101−Tim3+ cells within the splenic LCMV-specific CD8+ T cell pool doubled (Figure 

7C,D), driven by a 10-fold increase in the total number of these transitory cells (Figure 7E). 

A similar increase of transitory cell frequencies was observed in the liver after PD-1 

pathway blockade compared to isotype control (Figure 7F). Again, transitory cells were 
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present at 10-fold higher total numbers in liver, blood, and the lungs (Figure 7G–I) in ɑPD-

L1 treated mice compared to controls. These results show that by increasing the generation 

of CD101−Tim3+ cells from CD101−Tim3− cells, checkpoint blockade enlarges the number 

of functional, transitory cells that contribute to improved viral control.

Discussion

In this study, we have performed a systematic analysis to define the repertoire of surface 

molecules that are preferentially expressed on exhausted CD8+ T cells. This analysis 

confirmed the presence of known checkpoint molecules, such as PD-1 and Lag3, but also 

identified a multitude of other, less-studied molecules present on dysfunctional CD8+ T 

cells. Many of these molecules such as Lax1, CD7, CD200R, CD112R, and CD101 have 

been shown to inhibit TCR signaling or otherwise impair T cell function(Pace et al., 2000; 

Rosenblum et al., 2005; Rygiel et al., 2009; Soares et al., 1998; Zhu et al., 2002; Zhu et al., 

2016), but their in vivo role in exhaustion is unclear. A recent study using a liver tumor 

mouse model identified CD101 as a marker of antigen-specific CD8+ T cells with a 

dysfunctional chromatin state(Philip et al., 2017). It is unclear whether CD101 is merely a 

marker of dysfunctional cells or contributes to negative regulatory signaling itself, although 

evidence suggests an inhibitory function on T cells in vitro and in vivo (Mohammed et al., 

2011; Rainbow et al., 2011; Schey et al., 2016; Soares et al., 1998). Here, we demonstrated 

that CD101 expression defined the terminally differentiated state of CD8+ T cells in chronic 

viral infection.

Initially, stem-like Tcf-1+ CD8+ T cells present in chronic viral infection differentiate into 

transitory CD101−Tim3+ cells, a process accelerated by PD-1 pathway blockade. Our gene 

expression analyses showed that this process is accompanied by downregulation of Tcf-1 

and induction of transcriptional programs for cytotoxicity, cell proliferation, and migration 

as shown by GSEA and expression of genes encoding Ki-67, granzyme B, S1pr1, and 

CX3CR1. These cells also express effector- and migration-associated transcription factors, 

such as T-bet(Sullivan et al., 2003) and Klf2(Carlson et al., 2006). A recent report has 

identified increased numbers of circulating Gzmbhi CX3CR1+ CD8+ T cells in cancer 

patients who respond to PD-1 blockade therapy(Yan et al., 2018). We also show that 

transitory cells increase in numbers after PD-1 blockade and are capable of division and 

cytokine production in chronically infected mice, although it is unclear how analogous these 

transitory cells in mice are to human CX3CR1+ CD8+ T cells after PD-1 blockade. With 

continued persistence of antigen during chronic infection, transitory antigen-specific CD8+ 

T cells eventually convert into exhausted CD101+ cells. This transition involves 

downregulation of migratory molecules such as S1pr1 and Cx3cr1 and expression of an 

alternate, exhaustion-associated program. Transcription factors Klf2 and T-bet were 

downregulated with concomitant upregulation of Runx3, Hic1, and Nr4a2 which may 

program non-lymphoid residency and transcriptional repression of effector molecules (Chen 

et al., 2019; Liu et al., 2019; Milner et al., 2017; Seo et al., 2019; Ubaid et al., 2018).

Previous studies have postulated that T-bethi cells are precursors to Eomeshi cells in chronic 

viral infection (Paley et al., 2012), but we find here and previously(Im et al., 2016) that 

Eomes expression is highest in stem-like Tcf-1+ cells during chronic infection and is 
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downregulated after differentiation of stem-like cells into the CD101−Tim3+ effector-like 

state. Additionally, we found that T-bet was highest in transitional, effector-like 

CD101−Tim3+ cells compared to both terminally differentiated CD101+ cells and Tcf-1+ 

stem-like cells. As shown by our adoptive transfer experiments, the irreversibility of Tim3 

and CD101 expression on CD8+ T cells during antigen persistence made them excellent 

markers for the differentiation status of antigen-specific CD8+ T cells in murine models of 

chronic infection. In addition to the acquisition of CD101 expression, we also found that 

expression of well-known inhibitory receptors such as CD160, 2B4, and PD-1 as well as the 

dysfunction-associated markers described here (CD200Rs, CD7, Lax1, CD112R, etc.) were 

universally increased in exhausted terminally differentiated CD8+ T cells.

Simultaneously with our study, Zander et al. report three subsets of antigen-specific CD8+ T 

cells present in LCMV clone 13 infection: Slamf6+ (Ly108+), CX3CR1+, and 

Slamf6−CX3CR1− cells. These subsets appear largely analogous to the stem-like 

(CD101−Tim3−), transitory (CD101−Tim3+), and exhausted (CD101+Tim3+) populations we 

describe here. For example, Zander et al. find that CX3CR1+ (CD101−Tim3+) cells express 

higher amounts of T-bet and Zeb2 and that these cells have increased cytotoxic capacity and 

are crucial for viral control in LCMV clone 13 infection. Further, the Slamf6−CX3CR1− 

subset reported by Zander et al. express higher amounts of inhibitory molecules such as 

CD244, CD160, and Lag3, as do the CD101+Tim3+ cells we report in the present study. One 

key difference in our studies is in our conclusions regarding the differentiation pathways of 

the CD8+ T cell subsets. The recipient mice in our study were infection-matched, 

chronically infected mice whereas Zander et al. transferred the CD8+ T cell subsets into 

naive mice that were subsequently challenged with LCMV. These two conditions are notably 

different; in our experiments, the cells were transferred back into an environment of 

established chronic infection whereas transfer of cells into a naive mouse with subsequent 

infection more reflects the environment during the early stages of viral infection. 

Additionally, we performed transient CD4+ T cell depletion at infection, resulting in 

‘helpless’ LCMV-specific donor CD8+ T cells, higher viral titers, and lifelong infection 

compared to the clearing infection in Zander et al.

However, together our results suggest that, in addition to canonical exhaustion-associated 

proteins such as PD-1 and Tim3, a second module of exhaustion-associated genes, including 

CD101, is upregulated on antigen-specific CD8+ T cells weeks after initial antigen exposure. 

PD-1 expression is seen on antigen-specific T cells following acute infection and can be 

observed on memory CD8+ T cells hours after antigen exposure(Hosking et al., 2013). In 

contrast, CD101 was not induced until 2–4 weeks after induction of chronic viral infection 

and was not observed on LCMV-specific cells in acute infection. Thus, CD101 and its 

associated surface markers such as CD7 and the CD200 receptors may constitute a ‘second 

wave’ of inhibitory molecules induced on antigen-specific CD8+ T cells weeks after 

infection. This observation also demonstrates that T cell exhaustion is a measured process, 

with gradual emergence of highly dysfunctional CD8+ T cells. Steady-state frequencies of 

CD101+ CD8+ T cells were not evident until 3–4 weeks after infection; thus, immunological 

models that begin checkpoint blockade less than a month after viral or tumor inoculation 

may adequately recapitulate neither the full extent of CD8+ T cell exhaustion present in 
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chronic viral infection nor the presence of additional inhibitory molecules present in the 

CD101-associated transcriptional program.

Despite the gradual acquisition of this CD101-associated gene expression profile, we have 

shown through adoptive transfer experiments expression of CD101 is irreversible under 

conditions of chronic antigen exposure. Additionally, adoptive transfer of the subsets 

described here revealed differential migration patterns after intravenous transfer: stem-like 

cells were found in all tissues after transfer, with particularly high recovery in lymphoid 

tissues. CD101−Tim3+ CD8+ T cells were also capable of distribution to all tested tissues 

after transfer, with a bias to non-lymphoid tissues. CD101+Tim3+ cells, however, were 

nearly exclusively recovered in liver. These differences in migration could be explained by 

the heightened expression of chemokine receptors CCR2 and CX3CR1 in CD101−Tim3+ 

cells and/or the higher expression of sphingosine-1-phosphate receptors. Regardless, the 

unique properties and divergent transcriptional programs of each subset and their irreversible 

differentiation pathway demonstrates that the capabilities and immunotherapy 

responsiveness of the CD8+ T cell response changes with continued presence of antigen.

Finally, we have shown that PD-1 pathway blockade caused a substantial increase of 

antigen-specific transitory CD8+ T cells, and that these cells were critical for viral control in 

the LCMV model. This is consistent with recent findings that stem-like cells are responsible 

for the proliferative burst in response to PD-1 blockade(Im et al., 2016), as we show that 

these stem-like cells give rise to transitory effector cells with effector and proliferative 

capacity. Thus, an effective response to immunotherapy in vivo may depend not only on 

increased numbers of total antigen-specific cells, but also on the increased frequencies of 

highly functional, transitory cells within the antigen-specific CD8+ T cell population.

STAR Methods

Lead Contact and Materials Availability

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Rafi Ahmed (rahmed@emory.edu). This study did not 

generate new unique reagents.

Experimental Model and Subject Details

Mouse strains—C57BL/6J mice, Lck cre, and Cx3cr1 DTR flox mice were obtained from 

The Jackson Laboratory. P14 mice (on the C57BL/6J background) were bred in-house. Mice 

were infected at 6–8 weeks of age, and all mice in this study were females with the 

exception of Lck cre Cx3cr1 DTR stopfl mice and matched controls, which were of mixed 

sex. All mouse experiments were performed with approval of the Emory University 

Institutional Animal Care and Use Committee.

Method Details

Mouse infection experiments—LCMV infections were performed as previously 

described(Araki et al., 2017; Im et al., 2016). For chronic infections, 6–8 week old 

C57BL/6J mice were injected intraperitoneally (i.p.) with 300 μg of CD4+ T cell-depleting 
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antibody GK1.5 (Bio X Cell) one and two days before intravenous (i.v.) injection with 2 × 

106 pfu LCMV clone 13. CD4+ T cell depletion is required for constant viral titers in long-

term experiments(Matloubian et al., 1994) and was thus used to control for reduced antigen 

in clearing models (such as clone 13 without CD4+ T cell depletion). For Cx3cr1 DTR 

experiments and those in Figure S2 only, CD4+ T cell depletion was not used, in order to 

measure viral clearance.

For acute infection, C57BL/6J mice were injected i.p. with 2 × 105 pfu LCMV Armstrong. 

Unless otherwise indicated, LCMV Armstrong-infected mice were analyzed at day 8 post-

infection for the acute timepoint, and after day 45 for the memory timepoint. Unless 

otherwise indicated, LCMV clone 13-infected mice were analyzed after day 45 for the 

chronic timepoint.

C57BL/6J mice, Lck cre, and Cx3cr1 DTR flox mice were obtained from The Jackson 

Laboratory. P14 mice (on the C57BL/6J background) were bred in-house. All mouse 

experiments were performed with approval of the Emory University Institutional Animal 

Care and Use Committee.

RNA-sequencing and analysis of CD101 subsets from chronic LCMV infection
—CD101−Tim3−, CD101−Tim3+, and CD101+Tim3+ PD-1+CD8+ T cells were isolated by 

FACS from three pools of ten mice each infected with LCMV clone 13 15 or >45 days prior 

to the sort (Figure S1). In each case, naive CD8+ T cells from three age-matched uninfected 

mice were also isolated by FACS. RNA was isolated using the Qiagen AllPrep Micro kit 

according to the manufacturer’s protocols. RNA sequencing with poly(A) selection was 

performed at the Yerkes Nonhuman Primate Genomics Core.

Adoptive transfer experiments—Splenocytes were isolated from LCMV clone 13 

infected C57BL/6J mice >45 days after infection. CD8+ T Cells were separated with the 

EasySep Mouse CD8+ T Cell Isolation Kit (StemCell) and subsequently labeled with CTV 

(ThermoFisher) according to the manufacturer’s protocol. Using FACS, three populations of 

PD-1+CD8+ T cells were isolated (CD101−Tim3−, CD101−Tim3+, CD101+Tim3+). Cells 

were reconstituted in RPMI and 0.9–1.0 × 105 isolated cells from a single population were 

transferred i.v. to a single recipient CD45.1+ C57BL/6J mouse. Two (Figure 4) or four 

weeks (Figure S9) after transfer, cells were isolated from spleen, liver, lung, and bone 

marrow and stained as below.

Intracellular cytokine staining experiments—2 × 103 P14 cells (cells with a 

transgenic TCR for the Db-restricted gp33 LCMV epiptope) were transferred i.v. to recipient 

mice three days before infection with LCMV clone 13 as described above. Twenty-two days 

after infection, splenocytes were isolated and incubated in RPMI with 10% FBS with 0.2 

μg/ml of gp33 peptide for five hours at 37 °C in the presence of BD GolgiStop and BD 

GolgiPlug, according to manufacturer’s protocols. After incubation, cells were stained for 

flow cytometry as described below.

PD-L1 blockade experiments—Mice were infected as above with LCMV clone 13. >45 

days after infection, mice were injected with 200 μg of ɑPD-L1 (clone 10F.9G2) or isotype 
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control (rat IgG2b) in PBS. Injections were given i.p. every three days. Mice were analyzed 

for responses 12 to 14 days after initiation of treatment.

Flow cytometry experiments—Antibodies used in flow cytometry experiments are 

shown in in the Key Resources Table. MHC I tetramers were prepared and used as 

previously described(Murali-Krishna et al., 1998). Single cell suspensions were stained with 

antibodies and/or tetramer in PBS with 2% FBS and 2 mM EDTA for extracellular targets. 

For intranuclear staining, the eBioscience Foxp3 Transcription Factor Staining Buffer Set 

was used for fixation, permeabilization, and intracellular staining. BD Cytofix/Cytoperm and 

Perm/Wash buffers were used for fixation and staining of cytoplasmic targets. BD Cytofix/

Cytoperm was also used for fixation of non-intracellularly stained cells.

Samples were acquired using a BD LSR II and analyzed using FlowJo. Summary graphs and 

statistics were performed in GraphPad Prism v7.

Quantification and statistical analysis

Analysis to identify markers of murine CD8+ T cell exhaustion by gene 
expression patterns—RNA-sequencing data from acute and chronic LCMV infection 

were previously described (Hudson et al., 2019). For subsets from chronic infection, 

tetramer-positive CXCR5+Tim3− and CXCR5−Tim3+ LCMV-specific cells were isolated by 

FACS from spleens of mice infected with LCMV clone 13, infected as described below. For 

both datasets, reads were aligned to the mm10 genome (accessed through Ensembl(Zerbino 

et al., 2018)) with HISAT2 version 2.0.5 ((Kim et al., 2015)). featureCounts(Liao et al., 

2013) was used to assign aligned reads to genes using the Ensembl release 91 mouse 

genome annotation, with reads overlapping multiple features allowed assignment to more 

than one gene. To control for batch effects, counts were normalized with DESeq2 (ref. (Love 

et al., 2014)) with a design formula of ~type+batch, where ‘type’ indicates the cell type 

(Naive, Memory Precursor, CXCR5+, etc.) and ‘batch’ indicates the individual RNA-seq 

experiment (acute and chronic LCMV infection).

To identify transmembrane proteins, all peptide sequences (including splice variants) for all 

protein-coding genes in the Ensembl 91 genome annotation were accessed through the 

biomaRt R package(Durinck et al., 2005; Durinck et al., 2009) and transmembrane helices 

predicted by the TMHMM server version 2.0(Krogh et al., 2001). To identify ITAM, ITIM, 

and ITSM motifs, predicted intracellular regions were scanned for the motifs Yxx(I/

L)x6–8(Y)xx(I/L), (I/L/S/V)xYxx(I/L/V), and TxYxx(A/L/V), respectively, using a custom 

Python script. Genes were labeled as transmembrane if any of its annotated protein sequence 

contained a predicted transmembrane helix, and genes were labeled as containing an ITAM, 

ITIM, or ITSM if any of its annotated protein sequences had the appropriate motif within a 

predicted intracellular region. Genes were identified as containing an immunoglobulin-like 

domain if the gene was annotated as containing at least one of the following PFAM 

domains(Finn et al., 2016) as accessed through biomaRt(Durinck et al., 2005; Durinck et al., 

2009): PF00047, PF02124, PF02440, PF02480, PF03921, PF06697, PF07654, PF07679, 

PF07686, PF08204 PF08205, PF11465, PF13895, PF13927, PF15028, PF16680, PF16681, 

or PF16706.
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A gene was identified as a marker of Tim3+ CD8+ T cells from (chronic) LCMV clone 13 

infection if the gene met all of the following conditions:

1. Expression > 1000 normalized counts in Tim3+ CD8+ T cells

2. Expression in CXCR5−Tim3+ CD8+ T cells > expression in CXCR5+Tim3− 

CD8+ T cells

3. log2 fold change (CXCR5−Tim3+ CD8+ T cells / naive CD8+ T cells) > 1.6 (~ 3-

fold)

4. log2 fold change (CXCR5−Tim3+ CD8+ T cells / terminal effector CD8+ T cells) 

> 1.6

5. log2 fold change (CXCR5−Tim3+ CD8+ T cells / effector memory CD8+ T cells) 

> 1.6

A gene was identified as a marker of CXCR5+ CD8+ T cells from (chronic) LCMV clone 13 

infection if the gene met all of the following conditions:

1. Expression > 1000 normalized counts in CXCR5+ CD8+ T cells

2. Expression in CXCR5+Tim3− CD8+ T cells > expression in CXCR5−Tim3+ 

CD8+ T cells

3. log2 fold change (CXCR5+Tim3− CD8+ T cells / naive CD8+ T cells) > 1.6

4. log2 fold change (CXCR5+Tim3− CD8+ T cells / terminal effector CD8+ T cells) 

> 1.6

5. log2 fold change (CXCR5+Tim3− CD8+ T cells / effector memory CD8+ T cells) 

> 1.6

As gene expression changes can become dampened with higher expression, the required log2 

fold change in conditions 3–5 above were relaxed to 1.0 (2-fold) for genes with expression 

>7500 normalized counts.

Analyses described above are available in a sortable, customizable format in Table S1.

Analysis of RNA-sequencing from CD101 subsets during chronic infection—
As above, reads were aligned with HISAT2 version 2.0.5 (Kim et al., 2015) to the mm10 

genome (accessed through Ensembl (Zerbino et al., 2018)) and featureCounts(Liao et al., 

2013) was used to assign aligned reads to genes using the Ensembl release 91 mouse 

genome annotation. DESeq2 (Love et al., 2014) was used to normalize for library size and 

calculate differential expression across groups. A gene was considered differentially 

expressed between two groups with an adjusted p-value of <0.05 and an average expression 

of >20 normalized counts across all samples.

For gene set enrichment analysis, GSEA preranked(Subramanian et al., 2005) was used 

against the MSigDB(Liberzon et al., 2015; Liberzon et al., 2011), with −log10(p) * 

sign(log2(FC)) as the ranking statistic, where p is the adjusted p-value and FC the fold 

change of the differential expression analysis of interest. Enrichment was considered 

significant with an FDR < 0.05.
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Principal component analysis was performed with the FactoMineR R package(Lê et al., 

2008) on all detected genes using the regularized log transformation from DESeq2. One 

sample of CD101−Tim3− cells was excluded from dimensionality reduction due to its status 

as an outlier on PCA but included on all other analyses. RNA-sequencing data was 

visualized with the ggplot2 R package(Wickham, 2016) and GraphPad Prism (version 7.0c).

Data and code availability

RNA-sequencing reads are available from the NCBI Sequence Read Archive under 

BioProject PRJNA497086. Processed RNA-sequencing data, including normalized gene 

counts and differential expression analyses, are available in the Supplementary Information 

(Tables S1–S4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Chronic viral infection induces exhaustion of antigen-specific T cells. Hudson and 

colleagues define a transitory, effector-like population of CD8+ T cells that are recently 

generated from stem-like CD8+ T cells in chronic infection. These transitory cells 

contribute to viral control and are increased in number following PD-1 pathway 

blockade.

• CX3CR1+ CD8+ T cells are recent progeny of stem-like cells in chronic 

infection

• CX3CR1+ cells differentiate to a dysfunctional state marked by CD101 

expression

• Transitory CX3CR1+ cells express effector molecules and contribute to viral 

control

• PD-1 pathway blockade increases the number of antigen-specific transitory 

cells
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Figure 1: Systematic identification of CD8+ T cell exhaustion markers.
A) Naive and virus-specific CD8+ T cells resulting from acute and chronic LCMV infection 

were isolated and analyzed for gene expression by RNA-sequencing. These subsets included 

naive CD8+ T cells, Klrg1hi CD127lo terminal effector (TE) and Klrg1lo CD127hi memory 

precursor (MP) cells from acute (day 8 post-infection) LCMV Armstrong and CD62L+ 

central (CM) and CD62L− effector (EM) memory cells from day 48 post-infection with 

LCMV Armstrong(Hudson et al., 2019).

C) After analysis, genes with high absolute expression in CXCR5+Tim3− stem-like CD8+ T 

cells or CXCR5−Tim3+ terminally differentiated (TD) CD8+ T cells from chronic infection 

(expression threshold) and high relative expression compared to naive CD8+ T cells and 

cells resulting from acute infection (fold change threshold) were identified. Expression of 

Pdcd1, the gene encoding PD-1, is shown as an example. See Methods for details of gene 

identification.

D) A bioinformatics pipeline to identify transmembrane helices, putative intracellular 

signaling motifs, and immunoglobulin-like domains was performed on identified genes. 

Expression of Pdcd1, which encodes PD-1, is shown as an example of an identified gene.

E) Heatmap of expression and protein properties of the 49 transmembrane helix-containing 

genes identified as highly expressed in Tim3+ CD8+ T cells from chronic infection by this 

algorithm. At left, log2 of the fold change from naive cells is shown. At right, a filled box 

indicates the presence of the indicated domain or motif.

F) Heatmap of expression and protein properties of the 20 transmembrane helix-containing 

genes identified as highly expressed in stem-like CD8+ T cells from chronic infection. At 
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left, log2 of the fold change from naive cells is shown. At right, a filled box indicates the 

presence of the indicated domain or motif.

TD: terminally differentiated (Tcf-1−Tim3+)
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Figure 2: CD101 is induced on virus-specific CD8+ T cells during chronic infection and identifies 
two populations of Tim3+ cells.
A) Infection of mice with LCMV clone 13 infection with transient CD4+ T cell depletion 

results in high viral titers and no viral clearance for the life of the mouse. LCMV Armstrong 

results in an acute infection. Viral titer data from Armstrong is illustrated (Ahmed et al., 

1984; Matloubian et al., 1993).

B) Flow cytometry showing CD101 expression on the stem-like and Tim3+ terminally 

differentiated (TD) subsets of LCMV-specific (gp33+) CD8+ T cells in chronic infection.

C) Representative CD101 and Tim3 expression on endogenous gp276-specific cells eight, 

15, 22, and 29 days after induction of chronic viral infection with LCMV clone 13.

D) CD101 and Tim3 expression on endogenous Dbgp276-specific cells eight, 15, 22, and 29 

days after induction of acute infection with LCMV Armstrong.
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E) Percentage of gp276+ CD8+ T cells from indicated organs expressing CD101 after 

infection with clone 13 alone (black), clone 13 with CD4+ T cell depletion (red), or 

Armstrong (blue).

F) >45 days after infection with LCMV clone 13 and CD4 depletion, lymphocytes were 

isolated from multiple tissues. The percentage of CD101−Tim3+ and CD101+Tim3 cells 

among gp33-specific CD8 T cells and gp276-specific CD8 T cells were determined by flow 

cytometry. Cells shown in panels B-D were isolated from the spleen. Panels D and E show 

mean ± SEM. Panels C-D are representative flow plots from two independent experiments 

that both shown in panel E. Panel F is representative of three independent experiments.
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Figure 3: Distinctive transcriptional signatures define stem-like, CD101−Tim3+, and 
CD101+Tim3+ CD8+ T cells.
RNA was isolated and sequenced from PD-1+CD8+ T cells of LCMV clone 13-infected 

mice (day >45). See Figure S3 for gating strategy.

A) Volcano plot showing differential gene expression between CD101+ Tim3+ and 

CD101−Tim3+ cells; 1,825 genes were differentially expressed (p < 0.05) between these two 

subsets. P values are adjusted for multiple comparisons.

B) Principal component analysis (PCA) identified three principal components that explained 

large amounts of transcriptional variance; samples are plotted on these components.

C) Heatmap showing mean relative expression of all differentially expressed genes across 

the four sequenced groups.

D-E) Confirmation of selected differentially expressed protein-coding genes by flow 

cytometry. D normalized counts (RNA-sequencing) of each gene. E, flow cytometry staining 

of each marker, gated on gp33-specific CD8+ T cells from spleens of chronically infected 
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mice. P values shown in panel D are from Wald’s test, performed by DESeq2. Panel E are 

representative flow plots of at least five independent mice. Please see also Figures S1–S5.
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Figure 4: Stem-like CD8+ T cells differentiate into transitory CD101−Tim3+ cells, followed by 
irreversible conversion into exhausted CD101+Tim3+ cells.
A) PD-1+ CD8+ T cells were collected from spleens of mice chronically infected with 

LCMV clone 13 and labeled with CellTrace Violet (CTV). From these, three subsets 

(CD101−Tim3−, CD101−Tim3+, and CD101+Tim3+) were isolated via FACS and transferred 

intravenously to infection-matched, congenically distinct mice. Recipient mice were 

sacrificed two weeks after transfer to analyzed phenotype of donor cells.

B-C) Phenotype (B) and CTV staining (C) of adoptively transferred cells before and 14 after 

transfer. All populations shown are gated on PD-1+CD45.2+CD45.1− CD8+ T cells. Cells 

shown are pooled from all recipient mice from one independent experiment, and results are 

representative of three independent experiments.

D) In one replicate, phenotype of CD101+Tim3+ donor cells was analyzed 28 days after 

transfer. Plots in panels A-C are pooled donor cells from one representative experiment of 
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three independent adoptive transfer studies. Panel D shows pooled donor cell data from one 

independent experiment.
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Figure 5: Transitory CD8+ T cells in chronic infection retain proliferative capacity and are more 
functional than CD101+Tim3+ cells.
A) Plot showing changes in gene expression during CD8+ T cell differentiation from stem-

like cells to transitory CD101−Tim3+ cells and subsequent conversion to exhausted 

CD101+Tim3+ cells in the spleen. Selected differentially expressed genes are shown.

B) Expression of selected surface exhaustion markers in transitory (green) and exhausted 

CD101+Tim3+ cells (yellow). Populations are gated on gp33-specific CD8+ T cells from 

chronic infection.

C) Ki-67 expression in subsets of gp33-specific CD8+ T cells isolated from spleen and liver.

D) Summary data of Ki-67 staining of gp33+ CD8+ T cells from chronic infection.

E) MFI of CD101 expression on CD101+Tim3+Ki-67+ (solid circles) or 

CD101+Tim3+Ki-67− CD8+ T cells (open circles). Cells were gated on gp276+ CD8+ T 

cells.
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F) P14 cells were transferred to C57BL/6J mice. Twenty-two days after infection, 

splenocytes were isolated and stimulated with or without gp33 peptide, and subsets analyzed 

by flow cytometry for cytokine expression.

G) Percentage of P14 cells expressing IFNγ by subset.

H) MFI of IFNγ staining on IFNγ+ cells within each subset.

I) MFI of granzyme B of cells within each subset.

In panel E, statistics shown are two-way ANOVA with Sidak’s test for multiple 

comparisons. In panels G-I, statistics shown are one-way ANOVA with Tukey’s test for 

multiple comparisons. In both cases, *, **, ***, and **** indicate p values less than 0.05, 

0.01, 0.001, and 0.0001, respectively. Panels B-C are representative flow plots of at least five 

independent mice. Panels D-E are representative results from one of three independent 

experiments. Panels F-I are representative results from one of two independent experiments.

Hudson et al. Page 31

Immunity. Author manuscript; available in PMC 2020 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: CX3CR1+ CD101−Tim3+ cells are critical for viral control in chronic infection.
A) Lck cre+ Cx3cr1 DTR stop-floxed mice or WT controls were infected with LCMV clone 

13. Fifteen days later, 250 ng of diphtheria toxin (DT) were administered every other day by 

intraperitoneal injection. Mice were sacrificed at day 30 post-infection to examine CD8+ T 

cell responses and viral titer.

B) Representative tetramer staining from WT and Lck cre+ Cx3cr1 DTR stop flox+ mice at 

30 days after infection.

C-D) CD101and Tim3 and CX3CR1 and CD101 expression on tetramer positive cells at day 

30 in WT and Lck cre+ Cx3cr1 DTR stop flox+ mice.

E) Total number of gp276+ CD8+ T cells in spleen at day 30.

F) Numbers of CD101−Tim3+ gp276+ CD8+ T cells in spleen at day 30.

G) Spleen viral titer day 30 after infection.

In panels E-G, p values from Mann-Whitney tests are shown. Neither viral titers nor cell 

counts were log transformed for statistical analysis.

Hudson et al. Page 32

Immunity. Author manuscript; available in PMC 2020 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: PD-1 pathway blockade increases the number of transitory antigen-specific CD8+ T 
cells.
A) Mice infected with LCMV clone 13 were treated with ɑPD-L1 or isotype control >45 

days after infection.

B) Representative tetramer staining of splenic CD8+ T cells in isotype or ɑPD-L1-treated 

mice.

C) Representative staining of CD101 and Tim3 on splenic gp276+ CD8+ T cells.

D) Frequency of transitory (CD101−Tim3+) cells among CD8+ gp276+ cells in spleen.

E) Total number of transitory gp276+ CD8+ T cells in spleen.

F) Frequency of transitory (CD101−Tim3+) cells among CD8+ gp276+ cells in liver.

G) Total number of transitory gp276+ CD8+ T cells in liver.

H) Frequency of transitory gp276+ CD8+ T cells in peripheral blood.

I) Total number of transitory gp276+ CD8+ T cells in lungs.

* and ** indicate p < 0.05 and p < 0.01 by 0.01 by t-test. Data shown is representative of 

three independent experiments.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies (clone is given as identifier)

anti-CD101 antibody eBioScience/ThermoFisher Moushi101

anti-CD160 antibody Biolegend 7H1

anti-CD19 antibody Biolegend 6D5

anti-CD200 antibody Biolegend OX-90

anti-CD200R antibody Biolegend OX-110

anti-CD22 antibody Biolegend OX-97

anti-CD244/2B4 antibody BD 2B4

anti-CD31 antibody Biolegend 390

anti-CD38 antibody Biolegend 90

anti-CD4 antibody Biolegend GK1.5

anti-CD44 antibody Biolegend IM7

anti-CD62L antibody eBioScience/ThermoFisher MEL-14

anti-CD8 antibody Biolegend 53–6.7

anti-CD9 antibody Biolegend MZ3

anti-CX3CR1 antibody Biolegend SA011F11

anti-CXCR5 antibody Biolegend L138D7

anti-Eomes antibody eBioScience/ThermoFisher Dan11mag

anti-gp49 antibody Biolegend H1.1

anti-Granzyme A antibody eBioScience/ThermoFisher GzA-3G8.5

anti-IFNg antibody Biolegend XMG1.2

anti-Ki-67 antibody BD B56

anti-Klrg1 antibody Southern Biotech 2F1

LIVE/DEAD Fixable Dead Cell Stain ThermoFisher n/a

anti-PD-1 antibody Biolegend 29F.1A12

anti-T-bet antibody Biolegend 4B10

anti-Tim3 antibody Biolegend RMT3–23

anti-TNFa antibody Biolegend MP6-XT22

Bacterial and Virus Strains

LCMV clone 13 in-house

LCMV Armstrong in-house

Chemicals, Peptides, and Recombinant Proteins

anti-PD-L1 antibody 10F.9G2

isotype control BioXCell rat IgG2b

Experimental Models: Organisms/Strains

C57BL/6J mice Jackson Laboratories JAX stock #000664

Lck cre mice Jackson Laboratories JAX stock #003802

DTR flox/stop mice Jackson Laboratories JAX stock #025629
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