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Abstract

Immune checkpoint therapy has revolutionized cancer treatment by blocking inhibitory pathways 

in T cells that limits the an effective anti-tumor immune response. Therapeutics targeting CTLA-4 

and PD1/PDL1 have progressed to first line therapy in multiple tumor types with some patients 

exhibiting tumor regression or remission. However, the majority of patients do not benefit from 

checkpoint therapy emphasizing the need for alternative therapeutic options. Lymphocyte 

Activation Gene 3 (LAG3) or CD223 is expressed on multiple cell types including CD4+ and 

CD8+ T cells, and Tregs, and is required for optimal T cell regulation and homeostasis. Persistent 

antigen-stimulation in cancer or chronic infection leads to chronic LAG3 expression, promoting T 

cell exhaustion. Targeting LAG3 along with PD1 facilitates T cell reinvigoration. A substantial 

amount of pre-clinical data and mechanistic analysis has led to LAG3 being the third checkpoint to 

be targeted in the clinic with nearly a dozen therapeutics under investigation. In this review, we 

will discuss the structure, function and role of LAG3 in murine and human models of disease, 

including autoimmune and inflammatory diseases, chronic viral and parasitic infections, and 

cancer, emphasizing new advances in the development of LAG3-targeting immunotherapies for 

cancer that are currently in clinical trials.
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1: Introduction

Inhibitory receptors (IRs) play a pivotal role in modulating the immune response and are 

mediators of T cell dysfunction in autoimmunity and chronic disease [1, 2]. In fact, targeting 

IRs such as Programmed Cell Death Protein 1 (PD1) and Cytotoxic T-Lymphocyte Antigen 

4 (CTLA-4) in cancer patients is able to re-invigorate the anti-tumor immune response, 

which has been reported in several landmark clinical trials [3–5]. Despite tumor regression 

and remission in some patients, response to these treatments is still limited with >80% of 

patients not responding [6, 7]. In addition, some immune quiescent tumors, such as 

pancreatic and prostate cancer, are still resistant to these approaches [8], ultimately offering 

further incentive for new immunotherapeutic interventions. One of the most promising new 

IR targets currently in the clinic is Lymphocyte Activation Gene 3 (LAG3) or CD223, an 

immune checkpoint receptor expressed by both activated and exhausted CD4+ and CD8+ T 

cells as well as regulatory T cells (Tregs) [2, 9, 10]. LAG3 functions by delivering inhibitory 

signals that regulate immune cell homeostasis, T cell activation, proliferation, cytokine 

production, cytolytic activity and other functions [2]. When LAG3 regulated homeostasis is 

perturbed, such as in the setting of chronic autoimmunity, there is rapid, immune-mediated 

tissue damage [9, 11]. Further, persistent antigen-stimulation, such as in cancer and chronic 

viral infection, results in elevated levels of chronic LAG3 expression, which leads to T cell 

exhaustion and subsequent impairment of T cell function [12]. Numerous immunotherapies 

targeting LAG3 are in clinical trials in combination with antibodies against other IRs, such 

as PD1/PDL1, to treat cancer [13].

2: LAG3 structure, function and ligands

LAG3 was discovered in 1990 [14] as a transmembrane molecule that is expressed on CD4+ 

and CD8+ T cells, natural killer T (NKT) cells, natural killer (NK) cells, plasmacytoid 

dendritic cells (pDCs), and regulatory T cells (Tregs) [15, 16]. In most cell types, LAG3 

expression is regulated via activation with the exception of pDCs and Tregs in which 

expression appears to be constitutive [17, 18]. The majority of studies on LAG3 outlined 

below have been described in murine models. However, there has been some analysis of 

LAG3 expression and function in humans with many more studies likely underway given the 

number of LAG3-targeting immunotherapies that are currently in clinic.

2.1: Structure and Ligands

LAG3 resides on chromosome 12 (12p13.32) in humans and chromosome 6 in mice, 

encoding a 498-amino acid protein [19]. The LAG3 locus is adjacent to the gene encoding 

the CD4 co-receptor and has a similar intron/exon organization. Like CD4, LAG3 binds to 

MHC class II but with a much higher affinity (Fig 1). Combined, these observations 

suggesting that LAG3 may have evolved from a gene duplication event of the CD4 locus. 
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Both CD4 and LAG3 consist of four extracellular immunoglobulin superfamily-like domains 

(D1-D4), although structure of LAG3 has yet to be solved. However, LAG3 does appear to 

possess two unique structural features. First, unlike CD4 the interaction between LAG3 and 

MHC class II is mediated through a unique, proline-rich, thirty amino acid loop within D1 

[20]. Second, LAG3 has a longer connecting peptide between the fourth Ig domain and the 

transmembrane region rendering it more susceptible to cell surface shedding by a disintegrin 

and metalloproteinase domain-containing protein (ADAM) [20, 21].

The cytoplasmic tail of LAG3 consists of three conserved motifs (Fig.1). However, the 

function and downstream signaling events remain unknown. The first motif contains a 

putative serine phosphorylation site, which contains two serine residues in humans and one 

in mice [Ser454]). Thus far, no function has been ascribed to this motif. The second motif is 

a highly unique and conserved six amino acid sequence (KIEELE) that has been shown to be 

required for LAG3 to downregulate T cell function [9, 22]. The third motif is a glutamic acid 

and proline dipeptide repeat (EP) that is phynologically conserved. It has been suggested 

that this motif binds LAG3-associated protein (LAP) which permits LAG3 co-localization 

with CD3, CD4, and/or CD8 molecules within lipid rafts [23]. However, mutations in the EP 

motifs maintain LAG3 activity and function, suggesting that it may not be essential [9] and 

no follow-up studies have been reported to date.

The primary, canonical ligand for LAG3 is MHC class II, which as noted above binds to a 

conserved, extended loop in the LAG3 D1 domain [24]. Once LAG3 is bound to MHC class 

II, it transmits inhibitory signals via its cytoplasmic domain, although the mechanism of 

signal transduction remains obscure [9]. Human melanoma cancer cells exhibit elevated 

expression of MHC class II which has been linked to poor patient prognosis [25]. 

LAG3:MHC class II binding contributes to tumor escape from apoptosis [26], and 

recruitment of tumor-specific CD4+ T cells, which subsequently leads to a reduction of the 

CD8+ T cell response [27].

However, over the past five years, other potential ligands have emerged. Galectin-3 (Gal-3), 

a 31 kDa galactose-binding lectin that regulates T cell activation, has been shown to bind to 

LAG3, which appears to be required for optimal inhibition of CD8+T cell cytotoxic function 

[28] (Fig 1). Gal-3 can be expressed on different cell types thus exerting its regulatory 

function on CD8+ T cells via multiple mechanisms [29]. LSECtin has also been proposed as 

LAG3 ligand. It binds to the four glycosylated sites on LAG3 and is a member of the DC-

SIGN family of molecules. LSECtin is expressed in the liver and melanoma tumor cells, 

suggesting a mechanism by which LAG3 can regulate CD8+ T cells and NK cell function in 

these environments [30].

Fibrinogen-like protein 1 (FGL1) was recently described as a new ligand for LAG3 [31] (Fig 

1). FGL1 is a member of the fibrinogen family, sharing a similar structure with fibrinogen 

beta and gamma, with no known role on platelets or in clot formation [32]. FGL1 is 

normally secreted by hepatocytes in the liver, however tumor cells can also express high 

levels of FGL1, which correlates with poor patient prognosis and resistance to 

immunotherapy [31]. Strikingly, blocking the interaction between LAG3 and FGL1 with a 

monoclonal antibody increases intratumoral T cell responses, which leads to decreased 
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tumor size in murine models of melanoma, presenting a new mechanism for targeted 

immunotherapy. In summary, LAG3 appears to have multiple ligands but it remains to be 

determined if all are valid ligands, and when and where each are critical for LAG3 function.

2.2: Regulation of LAG3 expression

Cell surface expression of LAG3 is regulated by two mechanisms. First, LAG3 is stored in 

lysosomal compartments to facilitate rapid translocation to the cell surface following TCR 

stimulation to control T cell responses [33, 34]. In resting T cells, LAG3 is degraded in the 

lysosomal compartments. This degradation is the limiting step for the surface expression of 

LAG3, and inhibition of lysosomal activity increases its surface expression. Moreover, its 

translocation to the cell surface is mediated by protein kinase C signaling through the 

cytoplasmic domain [34].

Second, LAG3 cell surface expression is regulated by proteolytic cleavage, resulting in the 

shedding of a soluble form of LAG3 (sLAG3) [20]. LAG3 cleavage is mediated by a 

disintegrin and metalloproteinase domain-containing protein 10 and 17 (ADAM10 and 

ADAM17), whose activity can also induce the cleavage of other immune receptors such as 

TNFα, CD62L, TIM3 and VEGFR2 [35]. Cell surface expression of ADAM10 results in 

constitutive LAG3 cleavage while the activity of ADAM17 is controlled by serine 

phosphorylation in a TCR- and PKCθ-dependent manner [21]. Shedding occurs at the 

connecting peptide between the D4 domain and the transmembrane region. There does not 

appear to be a function for sLAG3 activity as it does not compete with surface LAG3 for 

binding to bind MHC II and it is rapidly degraded in vivo [20]. However, its cleavage is 

necessary for optimal T cell function as prevention of LAG3 shedding by non-cleavable 

LAG3 mutants reduced T cell function, as exhibited by decreased proliferation and 

attenuated IL-2 and IFN-γ production [21]. Overall, expression of LAG3 is tightly regulated 

through two separate mechanisms highlighting the importance of tightly controlling LAG3 

expression and function to ensure optimal immune homeostasis.

3: Role of LAG3 in murine models and human disease

LAG3 is an IR expressed on activated and dysfunctional T cells. When engaged, it 

negatively regulates T cell function. Thus, LAG3 is an emerging target for modulating T cell 

responses in disease. Below, we will discuss studies that support the role of LAG3 as an 

important IR that impacts autoimmunity, chronic infection (viral and parasitic) and cancer. 

While LAG3 has been studied in multiple disease models, given the emergence and 

prominence of immunotherapy for cancer, the majority of studies to date in mice and 

humans have examined the role of LAG3 in cancer (Fig 2).

3.1: Autoimmune and Inflammatory Diseases

IRs play a pivotal role in regulating autoimmune and inflammatory diseases [36]. In fact, 

symptoms of autoimmunity are often a side effect of checkpoint blockade for solid tumors 

due to loss of self-tolerance [37, 38]. Loss of LAG3 does not induce autoimmunity unless 

the mice are on a permissive genetic background [39, 40]. However, deletion of both LAG3 

and PD1 leads to substantive, lethal autoimmunity [41]. On a non-obese diabetic (NOD) 
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background, LAG3 is required for controlling T cell expansion in the islet. Antigen-specific 

Lag3−/− CD4+ and CD8+ T cells infiltrate the pancreas faster in younger mice, showing 

accelerated development of autoimmune diabetes compared to age-matched wild-type mice. 

Moreover, in wild-type NOD mice, administration of an anti-LAG3 blocking antibody also 

accelerates type 1 diabetes [39]. In contrast, Treg-specific deletion of LAG3 in NOD mice 

leads to a significant delay in the development of autoimmune diabetes [18]. This is due to 

an increase in Treg proliferation and survival via enhanced IL-2/STAT5 signaling and Eos 

(Ikzf4)-driven transcription, which ultimately improves Treg suppressive function. This 

suggests that the immunologic effect of LAG3 deletion or blockade on all T cells is more 

pronounced on enhancing the function of diabetogenic CD4+ effector T cells over Tregs. 

However, in autoimmune environments where chronic inflammation dominates, LAG3 may 

be constitutively expressed on Tregs, ultimately limiting their capacity to suppress auto-

reactive effector T cells.

Targeting LAG3 has also generated interest in clinical applications for autoimmune disease 

in humans. An anti-LAG3 mAb (GSK2831781; GlaxoSmithKline [GSK]) has been 

developed, which is a humanized Antibody Dependent Cell Cytotoxicity (ADCC) enhanced 

monoclonal afucosylated antibody, that depletes LAG3-expressing immune cells in patients 

with autoimmune disease. This agent has completed a phase 1, first-in-human study in 

patients with plaque psoriasis () and will soon proceed to a phase 2 study. Another agonistic 

monoclonal antibody (mAb) targeting LAG3 (IMP761; Immutep) is currently in pre-clinical 

development for the treatment of autoimmune disease. These novel agents highlight that 

modulation of the immune response via enhanced LAG3 activity may have therapeutic 

potential in treating autoimmune and inflammatory diseases.

3.2: Chronic Viral and Parasitic Infections

IRs are highly expressed on dysfunctional and exhausted T cells in chronic viral and 

parasitic infections. The role of LAG3 in acute and chronic infections in vivo has been 

highlighted by multiple groups [16, 42, 43]. We initially demonstrated that LAG3 deficient 

CD4+ and CD8+ T cells displayed increased proliferation and IFN-γ production in acute 

(Sendai) and chronic (γ-herpervirus) viral infections, further underlining the role of LAG3 

as a negative regulator of the immune system [10]. T cell exhaustion and chronic viral 

infection has also been robustly studied in the LCMV clone 13 model. In this model, the 

severity of the infection was directly proportional to LAG3 expression. Although LAG3 

blockade alone only reduced viral load slightly [16, 42], co-blockade of LAG3 and PDL1 

synergistically enhanced CD8+ T cell responses and significantly reduced viral load [16].

In a nonhuman primate model (rhesus macaques) of mycobacterium tuberculosis (MTB) 

infection, LAG3 is highly induced on CD4+ T cells and NK cells in the lungs and 

particularly in the granulomatous lesions of macaques. This coincided with high bacterial 

burden and changes in the host Th1 response [44]. Similarly, in malaria (Plasmodium 
falciparum) infection in mice, LAG3 is expressed by exhausted, parasite-specific CD4+ T 

cells [45]. In vivo LAG3 blockade in murine models has demonstrated synergy with PDL1 

blockade to restore CD4+ T cell function, amplify the number of follicular helper T cells, 

germinal-center B cells, and plasmablasts, and enhance protective antibodies that led to 
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rapid clearance of blood-stage malaria. Correlative studies done in humans have shown that 

infection with Plasmodium falciparum resulted in higher expression of LAG3 and PD1 

associated with T cell dysfunction [45].

In summary, although there is limited efficacy in targeting LAG3 alone in treating chronic 

infections, targeting LAG3 for a synergistic effect with anti-PD1/PDL1 holds significant 

promise as an immuno-therapeutic approach for the treatment of chronic viral, bacterial or 

parasitic infections in humans. Further clinical studies in patients will be needed to define 

the feasibility, safety and efficacy of this approach.

3.3: Cancer

In cancer, T cells are constantly exposed to antigen, leading to a progressive loss of cytokine 

production and the capacity of CD8+ T cells to specifically kill tumor cells [46]. LAG3 

expression is elevated on tumor-infiltrating lymphocytes (TILs) in many types of cancer [13, 

43, 47]. In the context of vaccination, LAG3 blockade is specifically required for antigen-

specific CD8+ T cell responses. Mice vaccinated with vaccinia virus–HA (VV-HA) in a 

tolerance model in combination with anti-LAG3 blocking antibody demonstrate 

accumulation of CD8+ T cells in areas of high antigen expression [48]. In several pre-

clinical murine models of melanoma, colon adenocarcinoma and ovarian cancer, co-

blockade of LAG3 and PD1, expressed on both CD4+ and CD8+ TILs, induced an increased 

anti-tumor response [41, 49]. LAG3 is also expressed on intratumoral Tregs, which can 

contribute to tumor immune escape. LAG3 expression on Tregs induces production of IL-10 

and TGF-β1 [50]. Thus, blockade of LAG3 on Tregs may reduce their suppressive function, 

leading to reinvigoration of CD8+ TIL activity.

LAG3 reduces T cell proliferation and cytokine secretion, as demonstrated by enhanced T 

cell activation following addition of a blocking LAG3 antibody [22]. Chronic tumor antigen 

stimulation leads to persistent up-regulation of LAG3 and PD1 on CD8+ tumor antigen-

specific T cells, which leads to their functional exhaustion [13, 46]. Expression of LAG3 on 

CD8+ T cells defines a more exhausted state of CD8+ T cells than PD1 expression alone. For 

example, tumor-specific (Melan-A/MART-1) CD8+ TIL isolated from melanoma metastases 

expressed higher levels of LAG3 and CTLA-4 when compared to the tumor-specific CD8+ T 

cells in the patient peripheral blood lymphocytes (PBL) [51]. They also failed to produce 

IFN-γ after peptide stimulation, compared to the tumor-specific CD8+ T cells in the PBL, 

which retained competent effector function. In ovarian cancer patients, the tumor antigen 

(NY-ESO-1)-specific CD8+TIL expressed higher levels of PD1, with some populations co-

expressing PD1 and LAG3, as compared to the same NY-ESO-1-specific CD8+ T cells in the 

matched patient PBL [49]. Functionally, CD8+PD1+LAG3+ ovarian cancer TIL have 

significantly decreased production of IFN-γ, TNF-α and IL-2, compared to PD1+LAG3– or 

LAG3–PD1– subsets. Interestingly, the co-expression of LAG3 and PD1 on the CD8+ 

ovarian cancer TIL was driven by IL-6/IL-10 and tumor-derived APCs, known 

immunosuppressive components of the TME found in malignant ascites. Blockade of LAG3 

in addition to PD1 was found to synergistically enhance proliferation and cytokine 

production of NY-ESO-1-specific CD8+ TIL when compared to PD1 blockade alone [49].
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LAG3 expression in the TME is also correlated with increased tumor mutational burden. For 

instance, cancers with high microsatellite instability (MSIhi), such as a subset of colorectal 

cancer patients, exhibit higher somatic mutations and higher levels of immunogenic 

neoantigens. The tumor microenvironment of these MSIhi tumors are characterized by 

increased expression of multiple IRs including LAG3, PD1, PDL1, CTLA4 and IDO, as 

compared with microsatellite stabile (MSS) tumors [52]. These data may suggest a 

correlation between tumor mutational burden, anti-tumor immune response, and the co-

expression of LAG3 and other IRs. In fact, the presence of LAG3 and other co-expressed 

IRs in the TME may explain why MSIhi tumors are not naturally eliminated despite a hostile 

immune microenvironment [52].

Studies to evaluate the predictive potential of LAG3 in the context of immunotherapy-treated 

patients is an area of active research. Currently, short-term expression of LAG3 after 

immunotherapy treatment can serve as a marker of T cell infiltration and general immune 

activation, and thus, better responsiveness to immune checkpoint blockade. In a study of 

longitudinal tissue biopsies from 46 metastatic melanoma patients initially treated with 

CTLA4 blockade followed by PD1 blockade at progression, the early on-treatment biopsies 

of responders displayed significantly increased expression of LAG3, as well as other 

immune biomarkers (PD1, PDL1, CD3, CD8, CD4), as compared to the same patients’ pre-

treatment biopsies [53]. In contrast, significant expression of these immune biomarkers on 

pre-treatment or early post-treatment biopsies was not observed in non-responders. In a 

more recent study comparing global gene expression profiles of melanoma patient tumors 

pre- and post-anti-PD1 (nivolumab) therapy, it was found that many immune checkpoint 

genes, with LAG3 in particular, exhibited increased expression (LAG3, PD1, PDL1, 

CTLA-4, CD80, ICOS, 4–1BB) regardless of response to therapy [54]. Further analysis of 

responders vs. non-responder tumors identified a broader spectrum of differentially-

expressed immune-related genes, including additional immune checkpoint molecules, as 

well as genes involved in lymphocyte activation, chemotaxis, cytokine signaling and 

immune cytolytic activities [54]. More in depth analyses must be performed to evaluate the 

role of LAG3 in the context of immunotherapy at the protein level, as all current studies 

focus on gene expression. Ultimately, the expression of LAG3, in concert with other IRs 

such as PD1, could serve as a prognostic immune biomarker for multiple solid tumors.

4: Clinical development of therapeutic agents to target LAG3 in the tumor 

microenvironment

There are currently ten experimental therapeutic agents targeting LAG3 that are being tested 

in clinical trials for various human cancers (Table 1). The initial first-in-class agent was 

IMP321 (Immutep), which is a 200 kDa soluble chimeric recombinant fusion protein of the 

extracellular portion of LAG3 and antibody Fc domain, which is proposed to activate 

antigen-presenting cells (APCs) via interaction with its canonical ligand, MHC class II. In 

pre-clinical studies, IMP321 has been found to activate APCs to promote the proliferation of 

dendritic cells (DCs), ameliorate Treg immunosuppression, and improve antigen cross-

presentation to CD8+ T cells [55]. IMP321 has completed three clinical trials in renal cell 

carcinoma, metastatic breast carcinoma and melanoma, but has only exhibited limited 
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success with small patient cohorts. However, in a completed phase 1 trial for metastatic 

breast cancer (), preliminary efficacy of an IMP321 plus chemotherapy (paclitaxel) 

combination exhibited a 50% overall response rate (ORR) compared to 25% with paclitaxel 

alone [56]. The efficacy of IMP321 was correlated with increased activation of multiple 

immune cell types in patients. There are ongoing clinical trials in other cancer types to 

further evaluate its therapeutic potential (Table 1).

LAG3-specific blocking mAbs have dominated the therapeutic modalities currently under 

investigation. There are now seven mAbs in development: Relatilimab (BMS-986016, 

Bristol-Myers Squibb; fully human IgG4 mAb), LAG525 (Novartis; humanized IgG4), 

MK-4280 (Merck; humanized IgG4), REGN3767 (Regeneron; human IgG4), TSR-033 

(Tesaro; humanized IgG4), Sym022 (Symphogen; Fc-inert human mAb), and 

INCAGN02385 (InCyte; Fc-engineered IgG1κ) (Table 1). There is considerable interest in 

the development of mAbs targeting LAG3 for human cancer, particularly in combination 

with anti-PD1. This is based on preclinical findings that systemic PD1 and LAG3 expression 

is generally limited in mice and humans but is highly upregulated on intratumoral, 

dysfunctional TILs [41, 49, 57–59]. Therefore, co-blockade of both IRs may have a more 

restricted effect within the tumor microenvironment, limiting adverse events [2, 5, 13, 41, 

60–62].

Two bispecific antibodies have also recently entered the clinic that target LAG3 and PD1 

(MGD013; MacroGenics) or PDL1 (FS118; F-star) (Table 1). MGD013 consists of 

humanized high-affinity anti-PD1 and anti-LAG3 mAbs that are assembled into an Fc-

bearing DART (Dual-affinity Re-targeting) protein. It targets PD1/PDL1, PD1/PDL2 and 

LAG3/MHC class II interactions. Further in vitro functional characterization has 

demonstrated enhanced cytokine secretion (i.e. in response to antigenic re-challenge of prior 

superantigen-stimulated T cells), as compared to the same T cells with either anti-PD1 or 

anti-LAG3 blocking alone. This agent also demonstrated a prolonged circulating half-life in 

cynomolgus macaques. FS118 was generated by incorporating an an engineered Fc region 

with anti-LAG3 antigen binding capability (Fcab) onto a PDL1-specific antibody. Upon 

administration, FS118 simultaneously targets LAG3 expressed on T cells in the TME and 

PDL1 on tumor cells or APCs. In vitro functional assays demonstrated increased activation 

of human CD8+ T cells in response to MHC class I restricted peptides. In vivo studies of this 

agent in MC38 tumor-bearing mice demonstrated significant anti-tumor activity equivalent 

to a combination of antibodies targeting LAG3 and PDL1. This correlated with loss of 

LAG3 surface expression on CD4+ and CD8+ T cells, and an increase in the CD8:Treg ratio. 

These novel bispecific agents are currently being tested in phase I clinical trials.

4.1: Clinical trials with anti-LAG3 blocking antibodies in cancer

Relatlimab (BMS-986016) is a fully human LAG3-specific antibody that was isolated 

following immunization of transgenic mice expressing human immunoglobulin (Ig) genes. It 

is expressed as an immunoglobulin G4 (IgG4) isotype antibody and includes a stabilizing 

hinge mutation (S228P). It is the first anti-LAG3 humanized mAb to be developed and, of 

all the anti-LAG3 mAbs, is the furthest along in clinical development. The initial phase I/IIa 

trial launched in 2013 was designed to evaluate the safety and efficacy of LAG3 blockade as 
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a monotherapy or in combination with Nivolumab for patients with advanced solid 

malignancies (cervical, ovarian, bladder, colorectal, HPV-positive HNSCC, gastric, 

hepatocellular, RCC), who were not previously exposed to immunotherapy (). It is now 

being evaluated in 18 phase I and II/III trials in a variety of solid and hematological 

malignancies.

The combination of Relatlimab and Nivolumab (anti-PD1) demonstrated exciting 

preliminary efficacy in melanoma patients who were refractory to previous immunotherapy 

() [63]. In this phase I/IIa dose escalation and cohort expansion study, these pre-treated 

patients, all of whom had progressed on immunotherapy, and 47% of whom had failed 3 or 

more prior therapies, were treated with the combination of Nivolumab and Relatlimab. 

Among 48 evaluable patients, the objective response rate (ORR) was 12.5%. Of note, 

patients with LAG3 expression >1% on tumor-infiltrating lymphocytes (TIL) had a response 

rate of 20%, compared to 7.1% among patients with <1% LAG3 expression. Interestingly, 

the combination of Nivolumab and Relatlimab was well tolerated, with grade 3 or 4 

treatment related immune adverse events seen in 9% of patients, which is similar to the 

frequency seen with Nivolumab alone. This suggest that an Nivolumab/Relatlimab 

combination may be safer that a Nivolumab/Ipilimumab (anti-CTLA4) combination. Among 

those patients with evaluable tumor specimens, the rate of LAG3 positivity, defined as the 

percentage of LAG3+ immune cells ≥ 1% of tissue, was approximately 60%. It is not known 

whether LAG3 positivity correlates with poorer response to Nivolumab or whether LAG3 

expression increases at disease progression, as these were not tested in this trial. Based on 

these promising findings, there is now an ongoing phase II/III trial of Nivolumab + 

Relatlimab versus Nivolumab alone in the front-line setting against previously untreated 

unresectable/metastatic melanoma ().

Preliminary results were recently reported for the first-in-human phase I dose-finding study 

for the MK-4280 anti-LAG3 mAb (Merck) as monotherapy or in combination with 

Pembrolizumab for patients with advanced solid tumors ( [64]). MK-4280 monotherapy 

demonstrated 6% ORR, with 17% Disease Control Rate (DCR) in 18 patients, whereas 

MK-4280 + Pembrolizumab demonstrated 27% ORR, with 40% DCR in 15 patients. The 

majority of patients in both groups had received two or more lines of prior therapy. The 

MK-4280 monotherapy or in combination with Pembrolizumab were well-tolerated, with no 

dose-limiting toxicities.

Taken together, these early clinical trial findings are congruent with the findings in the 

murine studies and although anti-LAG3 blockade by itself does not currently demonstrate 

significant anti-tumor efficacy, there may be a synergistic anti-tumor immune response when 

combined with anti-PD1 blockade. In murine tumor models, as well as in some cancer 

patients who are refractory to anti-PD1 therapy, a combination of anti-LAG3 with anti-PD1 

may help to overcome resistance to anti-PD1 immunotherapy. These are of significant 

interest for the ongoing exploration of LAG3 as an alternative immune checkpoint target, as 

well as a potential predictive biomarker of clinical response [65]. Randomized phase III 

clinical trials in the near future with rigorous comparison between the anti-LAG3 + anti-PD1 

versus anti-PD1-treated groups, will be required to determine if there is clinical efficacy in 

multiple cancer types.
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5: Conclusions and Future Directions

LAG3 is an IR that helps to maintain homeostasis in the immune system. We are just 

beginning to understand the complex biology of LAG3. Vital questions remain regarding 

how to apply and optimize the efficacy of LAG3-targeted immunotherapy, alone or in 

combination with anti-PD1/L1 and other immunotherapies, for autoimmune and 

inflammatory diseases, chronic infections, and cancer.

First, how LAG3 negatively regulates TCR signaling is essentially unknown. The unique 

intracellular cytoplasmic domain of LAG3 with the conserved ‘EP’ and ‘KEELE’ motifs, 

and absence of a tyrosine-based motif, distinguishes it from all other immune inhibitory 

receptors. We need to have a better understanding of how LAG3 works, as this will serve as 

an important conceptual advance and provide vital information for future immuno-

therapeutic development.

Second, the discovery of fibrinogen-like protein (FGL1) as a novel ligand for LAG3 [31] 

also offers an exciting possibility of dual blockade of FGL1 and LAG3 to enhance cancer 

immunotherapy. It also remains to be determined how important LAG3:FGL1 interaction is 

in human cancer and if the current LAG3-targeting therapeutics block LAG3:FGL1 

interaction.

Third, given that LAG3 is expressed on multiple immune cell types, understanding the 

difference and similarities in the function of LAG3 in these cell types and how they are 

impacted by anti-LAG3 blockade in the setting of autoimmunity, chronic infections and 

cancer is imperative. Of particular importance is understanding how anti-LAG3 would affect 

the function of CD4+ and CD8+ Teff versus Treg sub-populations, and the role of LAG3 on 

pDCs, NK cells and other cells types remains obscure.

Fourth, there are still important basic and translational questions that remain unanswered: (a) 

Can anti-LAG3 agonistic antibodies be generated and can they suppress autoimmune and 

inflammatory diseases, and if so, which immune cell population or subset mediates this 

effect? (b) What signaling pathway(s) underlie the complex synergistic interactions between 

LAG-3 and other immune checkpoints such as PD1? (c) How does anti-LAG3 alone or in 

combination with anti-PD1 alter the transcriptional program of exhausted T cells in the 

setting of chronic infections and cancer? (d) Can LAG3 expression and/or sLAG3 in plasma 

serve as a prognostic or predictive biomarker to inform combinatorial immunotherapy and 

would this be more important in certain tumor types or disease settings?

Elucidating these questions is critical for designing efficacious immunotherapeutic strategies 

that target LAG3. Based on the promising pre-clinical human and murine studies with 

LAG3-targeted therapies in combination with anti-PD1/PDL1, numerous clinical studies are 

ongoing to fully evaluate their safety and efficacy. It will also be intriguing to evaluate the 

results from ongoing clinical trials using LAG3 depleting or agonistic mAb for autoimmune 

and inflammatory disorders. Lastly, identifying approaches that combine anti-LAG3 with 

other therapeutic modalities, such as chemotherapy, radiation therapy and targeted therapy, 

may unleash further potential therapeutic approaches. As the third inhibitory receptor to be 

targeted in the clinic, behind CTLA4 and PD1, LAG3 remains an exciting target for 
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immunotherapy in numerous diseases including chronic infection, autoimmunity, 

inflammatory disease, and of course cancer.
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Figure 1: LAG3 Structure and Ligands
LAG3 is composed of four Ig-like domains and contains three highly conserved regions in 

the cytoplasmic tail. LAG3 binds MHC class II through a thirty amino acid loop in the D1 

domain. Galectin-3, LSECtin and FGL1 have also be reported to bind to LAG3.
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Figure 2: 
Role of LAG3 on Different Cell Types in Multiple Diseases
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