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Abstract: AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of
proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved
in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex
responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is
performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act
in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits
the formation of functional ribosomes and results in defects in proliferation and growth. Rix7,
Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation
steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal
of specific assembly factors from pre-60S particles after they have fulfilled their function in the
maturation cascade. Recent structural and functional insights have provided the first glimpse into
the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we
summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We
highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven
by advanced cryo-EM structures and the use of highly specific AAA inhibitors.

Keywords: AAA-ATPases; ribosome biogenesis; Rix7/NVL2; Rea1/Mdn1; Drg1/SPATA5; substrate
processing; cryo-EM; small molecular weight inhibitors

1. Introduction to Eukaryotic Ribosome Biogenesis

Ribosomes are uniquely crafted to translate the genetic information encoded in mRNA into a
polypeptide chain. To fulfil this fundamental cellular task, ribosomes have evolved to megadalton
ribonucleoprotein complexes that are composed of one large (60S) and one small (40S) subunit. To cope
with the demands for efficient translation, eukaryotic cells contain 200,000 to millions of ribosomes [1,2],
each consisting of ~80 ribosomal proteins (r-proteins) and 4 ribosomal RNAs (rRNAs). Ribosome
formation is therefore a high energy- and material-consuming process that is indispensable for cell
growth and division. The tremendous complexity of the eukaryotic ribosomal assembly cascade is
well illustrated by the number of involved components: around 250 additional factors are needed
to facilitate ribosome production (recently reviewed in [3–6]). Although many maturation steps are
highly conserved among eukaryotes, the formation of ribosomes in higher eukaryotes including
humans requires many additional uncharacterized assembly factors [1,7]. Due to its fundamental
importance, all stages of ribosome production are tightly regulated and linked to cell cycle progression
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and proliferation. Ribosome biogenesis is often upregulated in cancer cells, as it is a crucial determinant
for fast growth, and therefore provides a promising target for anti-tumor chemotherapy [8–15]. By
contrast, defects in ribosome biogenesis can lead to severe developmental diseases collectively termed
“ribosomopathies” (reviewed in [1,3,16–18]).

Eukaryotic ribosome biogenesis has been best characterized in the yeast Saccharomyces cerevisiae and
begins in the nucleolus (Figure 1) with the transcription of ribosomal DNA (rDNA) by RNA polymerases
I and III (recently reviewed in [3–6,19]). RNA polymerase III transcribes the precursor of the 5S rRNA
while RNA polymerase I produces a long 35S transcript. This 35S pre-rRNA includes all the other rRNAs
(25S, 18S, and 5.8S) separated by internal transcribed spacers (ITS) and flanked by external transcribed
spacers (ETS), as reviewed in [20]. Loading of the first assembly factors including small nucleolar
ribonucleoprotein particles (snoRNPs) onto this 35S pre-rRNA scaffold occurs co-transcriptionally
and forms the small subunit (SSU) processome, the earliest pre-ribosomal particle [21–23] (recently
reviewed in [24]). After two processing steps in the 3′ ETS of the 35S pre-rRNA, an endonucleolytic
cleavage at site A2 within ITS1 separates the maturation pathways of the two ribosomal subunits.
From this step on, the precursors of the small and the large subunits go through separated maturation
pathways. While the pre-40S particle is rapidly exported and finalized in the cytoplasm (recently
reviewed in [19]), pre-60S particles undergo a cascade of maturation steps during their journey from the
nucleolus through the nucleoplasm and into the cytoplasm (recently reviewed in [5,25]). Intriguingly,
the three yeast AAA-ATPases directly shaping pre-ribosomes, Ribosome export 7 (Rix7), named nuclear
VCP-like protein 2 (NVL2) in humans, ribosome export/assembly 1 (Rea1), designated Midasin 1
(Mdn1), and diazaborine resistance gene 1 (Drg1), termed spermatogenesis-associated 5 (SPATA5) are
all associated with the formation of the large 60S subunit [26]. This is likely explained by the fact that
the maturation cascade of the large subunit involves more individual steps and a larger number of
additional assembly factors compared to small subunit maturation.

Figure 1. Eukaryotic ribosome biogenesis—a sophisticated assembly line. Ribosome biogenesis begins
with the transcription of the ribosomal RNA (rRNA) in the nucleolus. At this stage, the first maturation
factors assemble and form the earliest pre-ribosomal particle (small subunit (SSU)-processome). After
endonucleolytic cleavage of the primary rRNA transcript, pre-40S and pre-60S particles go through
separated maturation pathways. Numerous (re)-assembly, rearrangement, and modification steps occur
in pre-ribosomal particles as they transit from the nucleolus to nucleoplasm and finally to the cytoplasm
where they obtain their mature form. Pre-ribosomes associate with different maturation factors that
define distinct maturation intermediates, indicated in the lowered box (Nsa1, Nug1, Rix1, and Arx1).
The yeast AAA-ATPases Rix7 (green), Rea1 (multi-colored) and Drg1 (red) associate at different stages
of assembly with pre-60S subunits and catalyze the release of specific maturation factors, which are
recycled and join freshly produced pre-ribosomes. Only selected particles as well as maturation factors
are displayed and the rRNA is omitted except for the SSU. The individual maturation events triggered
by these AAA-ATPases will be described in detail in later sections. NPCs: Nuclear pore complexes.
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2. AAA-ATPases in Ribosome Biogenesis

2.1. How to Sculpt a Eukaryotic Ribosome Step by Step

From the early nucleolar stage onwards, distinct maturation intermediates (pre-ribosomal particles)
are characterized and classified by their association with specific maturation factors. Pioneering work
from several laboratories has unveiled structural snapshots of several of these pre-60S precursor
particles from yeast (Figure 2) [27–37]. Defining the structure and composition of these particles has
uncovered the metamorphosis of the large ribosomal subunit during maturation; however, many gaps
still remain in the blueprints of ribosome assembly (recently reviewed in [3–6]).

Figure 2. Transformation of pre-60S particles. Selected cryo-EM structures of yeast pre-60S particles
highlight the structural and conformational transformation during the maturation cascade from the
nucleolus to the cytoplasm. The rRNA undergoes manifold rearrangements, maturation factors
(colored legend) temporarily associate with the pre-ribosomal particles, and the r-proteins are
stepwise-incorporated. The characteristic foot structure is removed in the nucleoplasm and hallmark
structures of the large subunit take on their final shape, including the central protuberance (CP), the
polypeptide exit tunnel (PET), the peptidyl transferase center (PTC) and the L1 stalk. a–c: PDB ID 6EM3,
6EM1, and 6ELZ [31]. d: PDB ID 3JCT [33]. e: PDB ID 5JCS [27]. f–g: PDB ID 6N8J and 6N8K [35]. h–i:
PDB ID 6RZZ and 6QT0 [30].

During the cascade of maturation events, immature pre-60S particles undergo stepwise re-shaping
of the pre-rRNA with its associated r-proteins from a flexible to a tightly packed and condensed globular
shape [31,34]. With the help of the accumulating structural data, we are now beginning to understand
how fundamental structural elements including the central protuberance (CP), the peptidyl transferase
center (PTC) and the polypeptide exit tunnel (PET) are formed to obtain a functional large subunit. The
rRNAs also serve as scaffolds to accommodate the sequentially incorporated r-proteins and transiently
associating assembly factors. These assembly factors fulfil various functions at the pre-ribosome
including post-transcriptional modifications, exo-nucleolytic trimming and endo-nucleolytic cleavage
of the pre-rRNA, and large-scale structural rearrangements. Accordingly, ribosome formation is
a progressive assembly process and the stepwise re-shaping is a strict prerequisite for the correct
hierarchical incorporation of all r-proteins [5]. Ribosome formation can therefore be understood as a
sophisticated sculpting process where the raw material is molded into shape by numerous consecutive
working steps.
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2.2. Order is Key: Molecular Machines Keep in Line

Many of the ribosomal maturation events are driven by energy-consuming enzymes including
ATPases, kinases, GTPases, RNA helicases (DExD/H-box family) and snoRNPs [6,26,38–40]. The tight
temporal and spatial coordination of all consecutive steps is crucial to ensure precise incorporation of
all components and to establish the correct conformation of the rRNA. Some of the maturation factors
bind only for a very short period, whereas others accompany the pre-ribosomes from the nucleolus
all the way to the cytoplasm. At many stages, dissociation or active removal of assembly factors
that are no longer needed is a strict requirement for the next step in the cascade (Figure 1). In fact,
the binding surface for many maturation factors is often only prepared by the preceding maturation
step and binding sites are initially occupied by other factors to prevent premature binding of late
joining factors. These mechanisms serve as “quality control check points”, where maturation cannot
proceed until the current step is correctly finished (reviewed in [25,41]). Indeed, with few exceptions,
improperly assembled pre-ribosomal particles cannot proceed in the maturation cascade and are
disassembled [25,42,43]. This strict hierarchical and cooperative assembly of each piece of the puzzle is
a fundamental principle of eukaryotic ribosome formation [44,45]. AAA-ATPases, predestined for
large-scale remodeling, have emerged as key players in this process by providing the mechanical force
to actively strip maturation factors off pre-ribosomes. AAA-ATPases are also involved in the formation
of snoRNPs (recently reviewed in [46]). However, this review will highlight the AAA-ATPases directly
involved in the remodeling of pre-ribosomal particles.

Phylogenetically, AAA-ATPases belong to the P-loop NTPase family and can be classified in
different clades and sub-families distributed over all kingdoms of life [47–51]. The well-characterized
basic feature is the energy-driven enzymatic engine, the AAA domain (Figure 3A), which allows
mechanical unfolding or degradation of proteins as well as remodeling of large multi-component
complexes including eukaryotic pre-ribosomes [26,52–55]. Each AAA module is composed of two
subdomains including the large αβ core domain (herein called AAA-L) comprised of alternating
α-helices and β-strands followed by a small α-helical lid domain (AAA-S). The strict structural
conservation of the catalytic core is contrasted by a huge variety of cellular functions achieved by
different members of the AAA-family. A prime example for versatility is the non-catalytic N-terminal
domain of the well-studied mammalian AAA-ATPase p97 which serves as a multifunctional interaction
platform for numerous adaptor and cofactor proteins that target the AAA-ATPase to its substrates (e.g.,
ER- or mitochondria-associated proteins, as reviewed in [56]). With this modular system, the same core
machinery formed by the AAA domains can be used to process a variety of different substrate proteins
or complexes. Essential residues for binding and correct positioning of the nucleotide (Figure 3A,B)
are provided by the Walker A motif (the P-loop), whereas the Walker B motif provides residues to
coordinate a catalytic water molecule and Mg2+ ion to initiate hydrolysis of ATP [53,57].

A second characteristic of the AAA family is the conserved and structurally well-characterized
oligomeric assembly. Most AAA-ATPases form doughnut-shaped hexamers (Figure 3C) with each
monomer containing either one (type I) or two (type II) conserved AAA nucleotide binding domains
(Figure 3D). Thus, one type II AAA hexamer can comprise up to twelve functional ATPase domains
that act in a concerted manner to provide energy for mechanical remodeling. The catalytic center of
the AAA nucleotide-binding pocket is formed at the interface between two adjacent monomers and is
therefore only complete in the oligomeric state [58]. Nucleotide sensing residues, e.g., sensor I and the
so-called arginine fingers (R-fingers), located in the second region of homology (SRH) of classical clade
AAA-ATPases, allow transmission of the nucleotide binding state (ATP/ADP) from one protomer to
the adjacent one which provides the basis for coordinated activity in all monomers of the ring [58]. The
individual domains are often connected by highly conserved linkers that allow transmission of motions
and inter-domain communication of the nucleotide binding state [59–64]. Aided by the flexibility of
these linkers, the individual domains can run through large-scale conformational alterations during the
ATPase cycle as well as positional changes relative to each other (movement of the N-terminal domain
(NTD) relative to the D1 domain) or movements of the whole hexameric ring, e.g., movement of the D1
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ring relative to the D2 ring (Figure 3D). The intricate choreography of these manifold conformational
changes and movements of AAA hexamers is now being reinterpreted in the light of high-resolution
cryo-EM structures depicting substrate-bound complexes which revealed asymmetric configurations
during substrate processing (e.g., [65–71]).

Figure 3. General architecture of type II AAA-ATPases. (A) D1 AAA module of the Chaetomium
thermophilum type II AAA-ATPase Rix7 (PDB ID 6MAT), composed of a largeαβ core and a smallα-helical
lid domain. Important structural elements (Walker A/B, R-finger, and sensor I) are colored as indicated.
Each type II AAA-ATPase protomer contains two AAA modules (D1 and D2). (B) Magnification of the
nucleotide binding pocket formed at the interface between two protomers. Nucleotide-sensing arginine
fingers in the second region of homology (SRH) are provided by the neighboring protomers and allow
communication of the nucleotide binding state. (C) D1 ring of Rix7 in top view. The monomers are
colored alternately in gray and cyan. The ring-shaped hexameric assembly allows the formation of
a central channel lined by conserved pore loops involved in substrate threading. The D2 ring is not
depicted. (D) Cross-section of the Rix7 hexamer in side view (cartoon and schematic), showing the
D1 and D2 ring. The flexible N-terminal domain (NTD) depicted in the scheme is not resolved in the
shown cryo-EM structure of Rix7. The individual domains are connected by flexible linker sequences
(only shown for protomer 3) that allow movements of the domains dependent on the ATPase cycle
(e.g., up/down movement of the N-terminal domain) as well as communication between the domains.

2.3. General Modes of Substrate Processing

Although based on a conserved structural core, the substrate processing mechanisms of individual
AAA-ATPases have evolved to perform different cellular tasks. Proteins including p97/Cdc48 [72,73],
Hsp104 [65], Rix7 [68], archaeal VAT [66], and bacterial Clp [74] have been shown to act as
translocases/unfoldases that can unfold a polypeptide chain by threading it through their central channel.
Unfolding can serve as preparation for subsequent degradation of the polypeptide chain by proteases
such as the proteasome [75,76]. By contrast, other AAA-ATPases act as segregases including mammalian
N-ethyl maleimide sensitive factor (NSF) [77–79]. Segregation is achieved by applying mechanical tension
to protein complexes (e.g., by a twist movement), resulting in the untangling of the individual components.
In this case, no full unfolding of the substrate occurs which allows direct recycling for a following round
of action. Therefore, whether the substrate handling mechanism of an AAA-ATPase involves partial
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or full unfolding of the polypeptide chain could be determined by the fate of the respective substrate
(degradation versus recycling).

3. From the Nucleolus to the Cytoplasm: Mechanistic Insights and Cellular Functions of Rix7,
Rea1, and Drg1

In the following sections we will discuss our current knowledge of the cellular function of the
AAA-ATPases Rix7, Rea1, and Drg1 combined with the latest structural insights. This recent progress
is largely based on high resolution cryo-EM structures, which have allowed a quantum leap in the
understanding of the substrate processing mechanisms of these fascinating molecular machines.

3.1. Rix7: Remodeling of Nucleolar Pre-60S Particles

3.1.1. Structural Insights into the Molecular Mechanism of Rix7

The first AAA-ATPase that steps in into the maturation cascade of the 60S subunit is the yeast
protein Rix7 [80,81] with its human orthologue NVL2 [82]. Together with Drg1, Rix7 is closely related
to the p97/Cdc48/NSF/Pex1 subfamily of AAA-ATPases [26]. As type II AAA-ATPase, each monomer
of Rix7 consists of two AAA-domains (D1 and D2) accompanied by an additional unique N-terminal
domain (Figure 4A). A comprehensive classification of all herein discussed AAA-ATPases including a
complete sequence alignment to assess the degree of conservation can be found in [26].

Figure 4. Domain organization and structure of the AAA-ATPase Rix7. (A) Rix7 contains two AAA
modules D1 and D2 and an N-terminal domain per monomer. Annotation of the amino acid positions
refers to the yeast proteins. The Rix7 NTD contains a nuclear localization sequence (NLS) that recruits
the protein to the nucleus. A more detailed depiction of the Rix7 domain organization can be found
in [68]. (B,C) Pore loops in each AAA module contain residues that form the inner lining of the central
channel and are involved in the translocation of a threaded substrate [67]. The NTD is proposed
to be dynamic and flexible and was not clearly localized in the structure of the substrate-bound C.
thermophilum Rix7 complex (PDB ID: 6MAT). WA: Walker A motif. WB: Walker B motif. PL-I: Pore loop
1. PL-II: Pore loop 2.

Interestingly, partial deletion of the S. cerevisiae Rix7 NTD is not lethal, although it results in a
severe growth defect [81,83]. Together with its unique fold, this raised the question of whether the
Rix7 NTD also serves as a classical interaction platform and is involved in regulation of the ATPase
activity as in other AAA-ATPases [84–88]. Yeast-two-hybrid experiments have shown that for binding
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of its proposed substrate protein Nsa1, Rix7 does not require the largest part of the NTD [81]. This
is corroborated by co-immunoprecipitation assays that have shown that human NVL2 contacts its
WD40 repeat containing substrate protein WDR74, the mammalian orthologue of Nsa1, via the D1
AAA domain [89]. Intriguingly, Rix7 contains an essential nuclear localization sequence (NLS) in the
NTD between amino acids 174 and 202 [80]. NVL2, the human orthologue of Rix7, carries in total
three proposed nuclear localization sequences in the NTD plus an additional nucleolar localization
sequence (NoLS, RRKR motif) in the so-called unique domain (UD)-domain (NVL2 UD, amino acids
1–93), which is an extension of the NTD [90]. This UD-domain can interact with the nucleolar protein
Nucleolin to mediate the interaction with (r)RNA and retention in the nucleolus [90,91]. Consistently,
the yeast Nucleolin Nsr1 has been reported to bind nuclear localization sequences and is required for
rRNA processing [92–95]. Thus, recruiting Rix7 to the nucleolus seems to be an important function of
its NTD. In addition, a region of the NVL2 NTD interacts with the ribosomal protein L5 (uL18) [91],
which might act as an adaptor on the pre-ribosome.

Except for an NMR structure of part of the NTD [90] and deposited coordinates of the isolated
NVL D2 AAA domain (PDB ID 2X8A), structural information for Rix7/NVL2 has been lacking until
recently. The cryo-EM reconstruction of the double Walker B mutant of Chaetomium thermophilum
Rix7 was recently determined at 4.5 Å resolution [68], revealing the architecture of the asymmetrically
stacked AAA rings depicted in Figure 4C. The cryo-EM scattering map of Rix7 lacks density for the
entire NTD (amino acids 1–192), suggesting that this domain is flexible and dynamic (Figure 4B,C).
A recent structure of Cdc48 in complex with its cofactor, the Ufd1-Npl4 heterodimer, suggests that
both ATP and cofactor binding causes conformational changes within the Cdc48 NTD. Although the
Cdc48 NTD is also stably folded in the absence of cofactors, it is plausible that Rix7 specific cofactors
are required to stabilize the intrinsically disordered region of the NTD.

Aside from harboring a distinct NTD, another feature that distinguishes Rix7 from other type II
ATPases is the presence of insertions following helix α7 in both the D1 and D2 domains [26]. Cryo-EM
reconstruction has revealed that the α7 insertions from the D1 and D2 domains are structurally different
from one another [68]. In the D1 insertion, helix α7 is extended and bends back towards the neighboring
AAA protomer, suggesting a putative role for the post α7 extension in stabilizing the hexameric ring.
By contrast, the α7 insertion in the D2 domain, which is only partially ordered, does not make extensive
contacts with the neighboring protomer.

Similarly to other type II AAA-ATPases, the D1 and D2 domains of Rix7 stack on top of one
another and form a central channel through the middle of the AAA domains. Surprisingly, in the
Rix7 reconstruction the central channel harbors an unknown polypeptide that is gripped by five of the
six Rix7 protomers. The presence of a polypeptide has been observed in several recent structures of
ATP-hydrolysis-deficient mutants of AAA-ATPases or with the slowly hydrolyzable ATP-analogue
ATPγS, suggesting that blocking ATP hydrolysis serves as a “substrate trap” [65,66,96]. There are
two pore loops, pore loop 1 (PL-I) and pore loop 2 (PL-II), that line the central channel within each
AAA domain of Rix7 (Figure 4B). A conserved aromatic-hydrophobic-glycine (most often Y/F-V-G)
motif is typically found within the PL-I of AAA unfoldases such as in the regulatory particle of
the proteasome or the ClpX component of the ClpXP proteases [97,98]. Even though Rix7 lacks the
signature aromatic-hydrophobic-glycine motif within D1, it can engage a substrate throughout the
entire central channel, suggesting that Rix7 functions as a molecular unfoldase. In the substrate-bound
state, these pore loops are arranged in a spiral configuration around the central peptide. Interestingly,
the D2 pore loops grip more of the peptide, which is likely to maximize the contact area within this
domain (Figure 5A). ATP is present in the nucleotide binding pockets of all six protomers within the
D1 AAA ring, whereas only four nucleotides have been observed in the nucleotide binding pockets of
P1–P4 from the D2 AAA domain. Differences in the nucleotide binding states suggest that ATP-binding
in D1 is necessary for substrate engagement while ATP hydrolysis in the D2 domain is important for
substrate translocation. The sequence and structural differences of PL-I between D1 and D2 support
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the model that the D2 domain is the main ATP hydrolysis motor of Rix7 which drives translocation of
the unfolding substrate [68].

Figure 5. Working model for substrate translocation by Rix7. (A) Positions of pore loops 1 (PL-I)
surrounding the bound substrate (threaded polypeptide, black cartoon). Individual protomers are
colored as follows. P1: green, P2: cyan, P3: orange, P4: purple, P5: yellow, and P6: red. PL-I
residues Thr276 and Ser277 in D1 domain and Tyr575 and Val576 in D2 domain, are shown as sticks.
(B) Processive translocation model: Step 1: P1 binds the substrate at the top of the spiral configuration,
followed by the next four protomers (P2–P5). The final protomer, P6 or seam, does not contact the
substrate and is set back from the central channel. Although P5 contacts the substrate, the nucleotide
binding site of the P5 D2 domain is empty, suggesting it has already hydrolyzed ATP and released
ADP. Step 2: As ATP binds to the P6 D2 domain, P6 is enabled to reengage with the substrate and
move to the location at the top of the spiral configuration. P5 then disengages from the substrate and
takes over the position as the new seam protomer. ATP hydrolysis in the P4 D2 domain provides the
energy to translocate the substrate. Steps 3–6: The process repeats sequentially on the D2 domains
within the Rix7 hexamer through successive rounds of ATP hydrolysis. This working model is based on
cryo-EM studies of the substrate bound C. thermophilum Rix7 (PDB ID: 6MAT). ATP-bound protomers
are illustrated as solid-filled cylinders, whereas protomers without nucleotides are illustrated as
pattern-filled cylinders.
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Based on the asymmetrical arrangement and the different nucleotide binding states, the cryo-EM
reconstruction supports the model that similarly to other type II AAA-ATPases, Rix7 remodels
substrates through processive translocation (Figure 5B). Five of the six protomers (P1–P5) grab the
substrate in the first step. The power stroke for substrate translocation is provided by ATP hydrolysis,
which occurs sequentially in the D2 domain around the Rix7 hexamer. Each protomer takes a
turn as the seam protomer, which is defined as the protomer detached from the substrate. By this
hand-over-hand gripping mechanism, the polypeptide chain is step by step threaded through the
channel and thereby unfolded. This model is further supported by point mutations of the D2 pore-loop
residues which result in a lethal phenotype in yeast, confirming the critical role of the pore loops for
Rix7 function in vivo [68]. Recent cryo-EM structures of substrate-engaged Cdc48 suggest a similar
substrate processing mechanism with the D2 domain serving as the major player in ATP hydrolysis and
substrate translocation [67,69]. Unlike the well-studied Cdc48/p97, which recognizes diverse ubiquitin
modified substrates, there are still a large number of unanswered questions about substrate selection
and processing by Rix7. For example, while Rix7 and Nsa1 are interaction partners it is unclear if Nsa1
is an authentic substrate of Rix7 or acts as an adaptor protein. Moreover, the mechanism of initial
engagement and selection of substrate by Rix7 awaits further study.

3.1.2. Remodeling of the Nucleolar Nsa1-Particle in Yeast

Consistent with its nucleolar localization, S. cerevisiae Rix7 is exclusively associated with
late-nucleolar pre-60S particles that co-purify with the essential assembly factor Nsa1, named WDR74
in humans [81]. This Nsa1-associated pre-60S particle, which carries the 27SB pre-rRNA, already
contains factors like Erb1, Nop7, Mak16, Rlp24, and Tif6 [31,81]. Corroborating a direct functional
linkage between Nsa1 and Rix7, partial deletion or mutations in the Rix7 NTD synthetically enhance
defects of mutations in Nsa1 and result in pre-rRNA processing and pre-ribosomal export defects [81].
Rix7 associates with the Nsa1-particle presumably rather transiently since it has been only found
in sub-stoichiometric amounts [81]. However, since Rix7 is not detected on very early nucleolar
Ssf1-particles or nucleoplasmic Rix1-particles, it proposedly fulfils its function before these particles
transit from the nucleolus to the nucleoplasm. Interestingly, in stationary phase cells without active
ribosome biogenesis, Rix7 is predominantly found in the nucleolus, whereas in exponentially growing
cells, Rix7 distributes over the whole nucleus [80], potentially shuttling between the compartments.

Rix7 has been proposed to act at this early stage of ribosome biogenesis to catalyze the timely
removal of Nsa1 from the pre-ribosome (Figure 6) [80,81]. Released Nsa1 can then be recycled to
associate with nascent pre-ribosomes. Inactivation of Rix7 blocks Nsa1 release and leads to the
mislocalization of Nsa1 to the cytoplasm [81]. However, it remains unclear if removal of Nsa1 is
the exclusive function of Rix7. On the pre-ribosome, Nsa1 is part of a protein sub-complex, termed
the Nsa1-module, formed by assembly factors Nsa1, Rrp1, Rpf1, and Mak16, which cluster at the
solvent-exposed surface of the pre-ribosome [3,31]. Nsa1 associates with pre-60S particles at a rather
early maturation stage, when many fundamental structural features of the 60S subunit including the
5S RNP, the central protuberance, the PTC, and the PET are still in an immature state [31]. In contrast,
the so-called “foot”-structure, which will be removed in the nucleoplasm, is already well developed in
Nsa1 particles [27,33,99]. In addition to changes in the protein composition and conformation, the
domain organization of the 25S rRNA is not fully established. As revealed by successive snapshots of
the subsequent maturation stages, the initially rather flexible individual domains of the 25S rRNA
will go through massive conformational rearrangements to be correctly incorporated into a compact
particle [31]. This incorporation resembles an origami-like folding procedure where intermediate states
presumably need the stabilization by varying modules of assembly factors.
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Figure 6. Remodeling of the nucleolar Nsa1-particle by Rix7. S. cerevisiae Rix7 joins late nucleolar
Nsa1-particles to trigger the release of the β-propeller protein Nsa1, which is part of assembly factor
sub-complex (“Nsa1-module”) [31]. Timely release of these factors is considered a prerequisite for
correct folding of the pre-rRNA as well as the formation of the PET, which at this early stage is occupied
by Rpf1. It is, however, not determined if these four proteins join the particle together and also if they
are released together at the exact same stage. As discussed in this section, Rix7 could potentially also
be connected to a ribosomal clearance pathway as part of the ribosomal quality control. Activity of
the mammalian Rix7-orthologue nuclear VCP-like protein 2 (NVL2) is needed for the assembly of the
nuclear exosome which also contributes to 60S maturation.

The whole Nsa1-module forms manifold interaction sites with protein and rRNA components
of the pre-ribosome [31,34,37]. This module might function to stabilize the premature conformation
of the pre-60S particle at this stage in preparation for further processing and rearrangement steps.
Mak16 for example, which is also conserved in human cells, has been suggested to stabilize the 27SB
pre-rRNA intermediate [100]. The Brix protein Rpf1 seems to function as a temporary placeholder
for the correct formation of the PET and has to be removed prior to finalization of this structure [31].
Since all four components of the Nsa1-module are found on the same particle intermediates, the
entire Nsa1-module could leave the pre-ribosome concertedly, although this has not yet been shown
experimentally [3,4,31,34]. Nevertheless, the ATP-dependent dissociation of Nsa1 managed by Rix7
initiates conformational rearrangements of the late nucleolar particle to allow its efficient progression
through the maturation cascade.

As a direct interaction partner, Nsa1 presumably recruits Rix7 to the pre-ribosome. At early
stages, a conserved loop of the Nsa1/WDR74 β-propeller, which is needed for the interaction with
Rix7/NVL2 [89], is not accessible, since it is shielded by interactions with the rRNA as well as Mak16 [31].
For Rix7 recruitment to the particle, a rearrangement of this area is necessary to make this interacting
loop of Nsa1 available. This might determine the maturation stage at which Nsa1 has to be removed
and therefore prevent premature release. Although the absence of Nsa1 is lethal for the cell, a failure to
remove Nsa1 from the particle does not completely prevent the further maturation of pre-ribosomes.
The majority of particles that still contain Nsa1 do not pass the quality control and are degraded.
A sub-fraction is found in polysomes showing that Nsa1 is still present on mature and translating
ribosomes [81]; however, it is unknown if these Nsa1-containing mature ribosomes are fully functional.
Kater and coworkers speculate that the progression of these aberrant pre-60S particles is possible due
to the exposed position of Nsa1 on the solvent-accessible side of the 60S subunit that does not interfere
with binding of the small subunit [31]. Nonetheless, the structural rearrangements that are associated
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with the release of the other components of the Nsa1-module (e.g., clearing the PET from Rpf1) strictly
have to occur to produce translation-competent 60S subunits. It has not yet been shown experimentally
if these aberrant particles contain other components of the Nsa1 module [81].

Intriguingly, Nsa1 is dispensable for growth in cells harboring mutations in Mak5, Nop1, Nop4,
and Ebp2 (∆nsa1 suppressor mutants), while Rix7 is still essential [101]. This suggests that Rix7
has additional cellular functions besides releasing Nsa1 or that Nsa1 primarily serves as an adapter
that is not required in these mutant strains. Remarkably, overexpression of both wildtype Rix7
and dominant-negative AAA mutant variants in the absence of Nsa1 affects 60S maturation [101].
Accordingly, Nsa1 cannot be the sole Rix7 binding site on the pre-ribosome; otherwise, overexpressed
Rix7 would not have a dominant-negative effect in cells lacking Nsa1. Interestingly, in the presence
of Nsa1, overexpression of wildtype Rix7 only has negative effects on cells carrying the suppressor
mutations, but not on wildtype cells [101]. Pratte and Coworkers have hypothesized that Rix7 can
bind to aberrant pre-60S particles that arise in these mutant strains and direct them into a clearance
pathway, since overexpression of Rix7 enhances the observed 60S deficiency in these strains. Binding
of Rix7 might therefore act as a quality control checkpoint to sort out incorrectly assembled particles.

3.1.3. Conservation of Rix7 Function in Eukaryotes

In mammalian cells, knowledge about the role of NVL2 is fragmented and the exact cellular
function is still unclear. The human NVL gene encodes two isoforms of different lengths which are
predominantly localized in different cellular compartments [82,91]. The shorter NVL1 isoform is
mainly found in the nucleoplasm, whereas full-length NVL2 with the additional UD-domain and the
NoLS localizes to the nucleolus [90,91]. WDR74, the mammalian orthologue of Nsa1, also exists in two
different isoforms, of which to date only the longer isoform 1 has been documented to interact with
NVL2 [102]. There is strong evidence that NVL2 also plays a crucial and specific role in 60S maturation
and pre-rRNA processing, but the exact step of intervention is under debate [91,102–105]. Consistent
with the situation in yeast, mutations of the human Nsa1 orthologue WDR74 cause pre-rRNA processing
defects which resemble those of the dominant negative NVL2 mutant and affect pre-60S maturation in
the nucleolus [103]. As described, the β-propeller domain of WDR74/Nsa1 interacts with the D1 AAA
domain of NVL2/Rix7 [89], pointing at a conserved function in mammalian cells. However, analogous
to yeast Nsa1, the exact role of WDR74 in pre-rRNA processing and 60S maturation is still not clear.
Single nucleotide polymorphisms (SNPs) in the NVL gene are associated with an increased risk for
mental disorders (schizophrenia and depression) and it has also been suggested as a prognostic outlier
gene to assess the metastatic risk of prostate cancer patients [106,107]. These medical implications
make it even more important to clarify the involvement of NVL2 in ribosome biogenesis.

NVL2 has also been linked to the activity of the nuclear exosome via co-immunoprecipitation
and yeast-two-hybrid interaction with the DExD/H-box RNA helicase DOB1/Mtr4 [102,104,105]. The
exosome catalyzes processing and degradation events of various RNA species, including pre-rRNAs,
snoRNAs, and mRNAs, and is recruited by specific adaptor proteins [108–112]. In yeast, the
Mtr4-associated exosome is recruited by Nop53 in the nucleoplasm and plays a role in the processing of
the 7S pre-rRNA, which corresponds to the 12S in human cells [111,113]. In addition, the Mtr4-containing
exosome is also targeted to an earlier ribosome biogenesis stage through an interaction with the SSU
protein Utp18 [111]. Nevertheless, there is no evidence that links yeast Rix7 to the Mtr4-associated
exosome for processing of 7S to mature 5.8S rRNA. However, as described earlier, Rix7 could be
involved in the clearance of faultily assembled pre-ribosomes [101], which also involves degradation
of the rRNA precursors by the exosome [42]. Recent work has identified a new Mtr4 binding motif
within the NTD of NVL2 from higher eukaryotic organisms. This motif is reminiscent of the motif
found in Utp18 and Nop53 [114]. Analogous to Nop53 and Utp18, this short motif in NVL2 binds to
the Arch domain of Mtr4 and competes for the same binding site [114]. Thus, vertebrate homologues
of NVL2 are nuclear adapters for the Mtr4-associated exosome.
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The connection to both the exosome and WDR74 has raised the question of at which stage(s) of
ribosome biogenesis the action of NVL2 is required. Mutations in the NVL2 AAA domains cause
decreased generation of the 32S pre-rRNA from the 45S/47S pre-rRNA, but also decreased processing
of 12S pre-rRNA to 5.8S rRNA, suggesting defects at two different stages in the processing cascade
which are potentially linked to the exosome [105]. It is not clear yet whether this mirrors a direct
involvement of NVL2 at two different stages in the maturation pathway or if the observed early defect
is the result of a feed-back mechanism based on failed recycling of WDR74 and therefore a secondary
effect [105]. Hiraishi and coworkers suggest that release of WDR74 by NVL2 might act as a regulatory
checkpoint to prevent premature processing of the pre-rRNA [103]. In this context WDR74 could also
act as an adaptor protein that helps to form and recruit the DOB1/Mtr4-associated exosome complex to
the pre-ribosome.

In summary, yeast Rix7 and human NVL2 are both involved in the maturation of the pre-60S
subunit, but it is not fully resolved as to whether they fulfil exactly the same task and how they are
linked to the activity of the exosome. Although the direct interaction with Nsa1/WDR74 seems to be
a conserved feature, both Rix7 and NVL2 might exert additional functions of unclear conservation.
Other eukaryotic Rix7/NVL2 orthologues in, for example, Drosophila melanogaster, Caenorhabditis elegans,
and Toxoplasma gondii have been linked to pre-rRNA processing but also to other cellular processes
including cell division, proliferation, and apoptosis [90,104,115,116]. It is unclear if the proposed
functions of these different orthologues are conserved across eukaryotes.

3.2. Rea1: A Colossus among Giants

3.2.1. Unique Structural Features of Rea1/Mdn1

At the transition between nucleolus and nucleoplasm, the AAA-ATPase Rea1 in S. cerevisiae
intervenes in the maturation cascade of the 60S subunit [26,83,117,118]. Rea1 is conserved from
yeast to plants and humans where it is designated Mdn1 due to its conserved substrate-interacting
metal-ion-dependent adhesion site (MIDAS) domain [119]. Depletion, knock-down, or mutation of
Rea1/Mdn1 in yeast [83,118] or higher eukaryotes [120–122] is either lethal or has strong effects on cell
growth and early development stages, demonstrating its essential function.

In contrast to Rix7 and Drg1, Rea1/Mdn1 belongs to the dynein-type family of
AAA-ATPases [119,123–125]. Although Rea1/Mdn1 contains six AAA modules (Figure 7), it is not an
assembly of six individual monomers but consists of one huge single polypeptide chain (scRea1: 4910
amino acids, ~560 kDa) that includes all six AAA domains plus an additional specialized C-terminal
tail [118]. A common architecture of six concatenated AAA domains is also found within the motor
protein dynein; however, Rea1 and dynein show little (~15%) sequence identity.

The six AAA modules of Rea1/Mdn1 show differences in length and conservation (a detailed
multiple sequence alignment of the individual Rea1/Mdn1 AAA domains is presented in [26]). These
differences suggest that in contrast to other AAA hexamers composed of identical monomers, the six
AAA modules of Rea1 have evolved individually to adopt different roles in the substrate-processing
mechanism. Although no functional data are available for all six AAA domains of S. cerevisiae Rea1,
the sequence of AAA6 does not contain a functional Walker B motif and therefore has to serve a
structural role (in Schizosaccharomyces pombe both AAA1 and AAA6 lack a functional Walker B). In
addition, in vitro release of the substrate Rsa4 from pre-ribosomal particles is prohibited by a Walker
A mutation in the AAA2 domain (K659A) that prevents ATP binding, showing the same effect as a
mutation in the substrate-binding domain [129]. A systematic mutational analysis of residues needed
for ATPase activity (Walker A/B, R-finger) of all individual AAA modules of S. pombe Mdn1 (spMdn1)
has confirmed that only AAA2, AAA3, AAA4, and AAA5 have to be able to bind and/or hydrolyze
ATP to support cell growth [130]. Moreover, AAA1 lacks the conserved R-finger residues which would
normally be responsible for the sensing of the nucleotide bound in the neighboring AAA domain in the
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ring (AAA6) and coordinate hydrolysis. It remains an open question as to which way the individual
domains exactly contribute to ATP-dependent substrate release.

Figure 7. Structure of Rea1/Midasin 1 (Mdn1). (A) Rea1/Mdn1 is composed of a short N-terminal
domain, followed by six adjacent AAA modules and the tail-like extension, all combined in one
polypeptide chain. The linker is composed of a structured stem followed by a flexible D/E-rich region
and connects the substrate-binding metal-ion-dependent adhesion site (MIDAS) domain to the AAA
ring. The MIDAS domain also contains a PY-NLS needed to import Rea1 to the nucleus [126]. The
six AAA modules that form the hexameric ring vary in size and partially contain additional helix
insertions that can be involved in the interaction with the pre-ribosome [27]. (B) The AAA-domains
and linker are taken from the cryo-EM reconstruction of S. cerevisiae Rea1 PDB ID: 6I26 [127] and the
MIDAS domain from the recent crystal structure of the C. thermophilum MIDAS PDB ID: 6QT8 [126].
(C) Magnified interface created by two adjacent Rea1 AAA domains (AAA3-S and AAA4-L). (D) Weak
density for MIDAS in contact with the ring detected in the cryo-EM reconstruction of S. pombe Mdn1 in
the presence of ATP + Rbin-1 (PDB ID 6ORB) [128].

The first structural views of Rea1 came from negative stain electron micrographs of S. cerevisiae
Rea1 bound to nascent 60S particles which identified a “tadpole-like structure” [117]. The head of
the tadpole was found to contain the pre-60S particle while antibody labeling confirmed that the
tail-like structure was Rea1. Subsequent 2D class averages derived from negative stain micrographs of
Rea1 on its own have revealed that Rea1 has two structural components including a hexagonal ring
structure made up of the AAA domains and an elongated tail [118]. 2D class averages of Rea1 have
also hinted at the flexibility of Rea1 as the orientation of the tail with respect to the ring has been seen
to vary amongst classes [118]. Moreover, additional negative stain micrographs of Rea1-bound pre-60S
particles have suggested that Rea1 makes two contact points with the ribosome, one through its AAA
ring and the other through the MIDAS domain at the tip of its tail [118]. Collectively, these early
structural snapshots led to the initial model that Rea1 couples ATP hydrolysis with conformational
changes within its elongated tail.

The first near-atomic resolution cryo-EM structures of Rea1/Mdn1 were published in 2018 and
include a series of reconstructions of Rea1 homologues from both S. cerevisiae [127] and S. pombe [128]
in different nucleotide bound states. These reconstructions allowed high resolution insight into the
overall architecture of Rea1′s N-terminal AAA ring and flexible C-terminal tail. The short NTD of
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Rea1 lies at the interface between AAA1, AAA6, and the base of the linker domain. The NTD acts as a
scaffold holding together the ring and linker at this “ring-linker junction” (Figure 7B). The six AAA
domains of Rea1 are arranged in an asymmetric configuration around the ring. With the exception
of AAA6, the first five AAA domains are structurally similar to one another. Comparable to other
hexameric AAA assemblies, the AAA-S domains form an interface with the AAA-L subdomains of the
neighboring AAA (for example, AAA3-S contacts AAA4-L (Figure 7C)). This pattern is only broken by
AAA6, which lacks a canonical AAA-S subdomain.

A distinguishing feature of Rea1/Mdn1 is the presence of β-sheet insertions following helix 2 (H2)
in each AAA-L subdomain. In AAA1-L, AAA3-L, and AAA5-L these insertions are small β-hairpins;
however, in AAA2-L, AAA4-L, and AAA6-L these insertions are quite large and in addition to the
β-hairpin they include α-helical extensions that protrude along the bottom of the AAA ring [127,128].
The H2 insertion in AAA6 forms a 4-helix bundle that is well-ordered and associates with the AAA1-L
subdomain. Intriguingly, the α-helical bundle of the AAA2 H2 insertion (H2α) partially occupies the
channel in the middle of the AAA ring, suggesting it may play an important auto-regulatory role by
inhibiting ATP hydrolysis [127,128].

The extended linker of the protein which follows the AAA domains can be broken down into
subdomains including the stem, middle, top, and D/E-rich components [127,128]. The α-helical stem
serves as the connection point with the AAA ring at the ring linker junction (Figure 7B). The end of the
stem forms the hinge point for the Rea1 tail. The following middle subdomain is primarily composed
of α-helices, with one helix extending down along the stem subdomain to contact AAA6. The top
subdomain is composed of three α-helical bundles arranged in a horseshoe-like pattern at the top of
the middle domain [127]. The following D/E-rich region of Rea1 is not visible in any of the cryo-EM
reconstructions, suggesting that it is highly dynamic and flexible. At the very C-terminus of Rea1 lies
the MIDAS domain, which is important for engaging Rea1′s substrates Ytm1 and Rsa4. Density for
the MIDAS domain is visible in the cryo-EM reconstructions of scRea1 captured in the presence of
AMP-PNP with a truncation of the H2 insertion from AAA2 [127] and spMdn1 stalled with ATP and
Rbin-1 [128]. In these reconstructions weak density for the MIDAS domain can be observed at the top
of the AAA ring above AAA3 in both the spMdn1 and scRea1 structures (Figure 7D) and is consistent
with the variable tail conformations observed in early 2D class averages [118]. The recent structures
support the idea that nucleotide-induced conformational changes are important for MIDAS domain
engagement with the AAA ring. At the pre-ribosome, engagement of the MIDAS domain with the
ring brings it in close contact with the proposed substrate Rsa4 as a prerequisite for the remodeling
reaction [127,128]. In addition, binding to the pre-ribosome could dislocate the AAA2 H2α insertion
from the central channel to allow ATP hydrolysis [127,128].

A higher resolution view of the MIDAS domain has been recently obtained from a series of crystal
structures of the Rea1 MIDAS domain from C. thermophilum [126]. These structures revealed that the
Rea1 MIDAS domain contains three elements that are not found in traditional integrin MIDAS domains.
The first element is a helix that provides structural support. The second element is a disordered
loop that includes a unique NLS sequence while the third element undergoes a large conformational
change upon ligand binding [126]. Complex crystal structures of the ctRea1 MIDAS domain with the
ubiquitin-like or MIDAS-interacting domain (UBL/MIDO) domains of Ytm1 and Rsa4 revealed that
upon UBL binding the third element transitions from an unstructured loop to a structured β-hairpin
that provides an additional binding surface for the UBL domains of Ytm1 and Rsa4 [126]. Docking of
the MIDAS-UBL structure into the coordinates of the spMdn1 cryo-EM reconstruction obtained in the
presence of ATP and Rbin-1 [128] suggests that there is additional density for the MIDAS domain that
is not accounted for in the crystal structures [126]. One possibility is that this density could be the
disordered loop from the second element. This density is visible within the center of the AAA ring and
hints towards the possibility that this loop is important to tether the MIDAS domain onto the AAA
ring [126].
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One thing that was surprising from the cryo-EM reconstructions of scRea1 was that different
nucleotide binding states did not appear to cause large scale conformational changes within the linker
domain. For example, the ADP and AMP-PNP states of scRea1 are highly similar with the AAA2 H2
insertion blocking the central channel in both reconstructions [127]. Deletion of the AAA2 insertion has
not been found to cause large scale conformational changes but has been found to lead to the docking
of the MIDAS domain onto the Rea1 AAA ring. Similarly, reconstructions of spMdn1 in the presence
of AMP-PNP or ATP + Rbin-1 [128] have been found to have overall very similar organizations of the
ring and linker regions. However, the spMdn1 structure determined in the presence of ATP + Rbin-1
has revealed conformational changes within the AAA ring that may be linked with Rea1 ATPase
activity [128]. These conformational changes lead to the described displacement of the AAA2 H2
insertion from the central channel caused by a movement of the AAA subdomains and the binding of
the MIDAS domain onto the AAA ring. The recent cryo-EM structures suggest that Rea1/Mdn1 does
not function by long-range motions within the linker-like dynein but rather works by conformational
changes within the AAA ring that lead to binding and displacement of the MIDAS domain [127,128].
Different linker conformations of scRea1 have been documented by negative staining [118]. Therefore,
it remains unknown how the linker and its flexibility contribute to the release of Ytm1 and Rsa4.
Moreover, Rea1 shares characteristics with unfoldases like Rix7 in that its central channel is occupied
by a polypeptide derived from either the AAA2 H2 insert or the MIDAS domain [126]. While more
work is needed to delineate the exact mechanism of Rea1-stimulated release of Ytm1 and Rsa4, recent
structures have shed light on the conformational dynamics of Rea1.

3.2.2. One Giant Ratchet for Two Jobs: Pre-60S Remodeling by Rea1 at Multiple Stages

Based on genetic and biochemical data, S. cerevisiae Rea1 has been proposed to act at two
distinct maturation stages of pre-60S particles (Figure 8). First, it was suggested that Rea1 remodels
Rix1-associated pre-60S particles in the nucleoplasm by triggering the release of the assembly factor
Rsa4 [83,118]. Rea1 was later proposed to also act at an earlier stage in the nucleolus by catalyzing the
release of the assembly factors Ytm1 and Erb1 from late-nucleolar Nug1-associated pre-60S particles as
a prerequisite for transition into the nucleoplasm [131]. This involvement of Rea1 in the nucleolus
should tightly follow the above-described remodeling step catalyzed by Rix7. Both maturation stages
associated with Rea1 are phases of massive structural rearrangements of the pre-ribosomes [27,31]
reviewed in [3–6].

3.2.3. Step 1: Remodeling of the Transiting Pre-60S Particle

Early nucleolar particles from yeast contain the maturation factor Erb1, which forms a versatile
binding platform for a multitude of proteins, including Ytm1 [31,132]. Together with Nop7, Ytm1
and Erb1 form a trimeric sub-complex which is required for correct trimming of the 27SA3 pre-rRNA
intermediate, a precursor of the mature 25S rRNA [133–136]. Biochemical and yeast-two-hybrid data
have shown that the UBL domain of Ytm1 interacts with the MIDAS domain of Rea1 [131,137]. In vitro
incubation of Rea1 with Rix1-containing pre-60S particles purified from Rea1-depleted cells has been
found to result in the ATP-dependent release of Ytm1 and Erb1 as well as to a lesser extent Nop7 [131].
This in vitro release is dependent on a physical interaction between Rea1 and Ytm1. Abolishing
this interaction by mutating the UBL-domain of Ytm1 (Ytm1-E80A) has been seen to prohibit the
release of these factors from the pre-ribosomes [131]. These observations led to the initial model that
Rea1 is recruited via a direct interaction with Ytm1 to release the Ytm1-Erb1-Nop7 complex in an
ATP-dependent manner from late nucleolar pre-60S particles. However, there is still no structure of a
particle that shows binding of Rea1 at this stage. Therefore, the question remains as to what additional
contacts on the pre-ribosomes (beside Ytm1) are needed for Rea1 to exert its remodeling activity.
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Figure 8. Two-step remodeling of pre-60S particles by Rea1. Yeast Rea1 is proposed to associate with
the pre-60S particle at two distinct stages, these being first at the transition from the nucleolus to the
nucleoplasm and secondly at a later stage of nucleoplasmic maturation. Both maturation stages are
associated with the ATP-dependent release of maturation factors (Ytm1-Erb1 and Nop7 as well as Rsa4)
and structural rearrangements of the pre-ribosome (e.g., rotation of the 5S RNP). In the nucleoplasm,
the Rix1 sub-complex binds to the particle and recruits Rea1 via direct interaction between Rix1 and
Rea1. Downstream, the release of Rsa4 is followed by GTP-dependent dissociation of Nug2 and loading
of Nmd3, which is a prerequisite to render the particle export competent.

Erb1 not only interacts with Ytm1 and Nop7 but has been described as a “multivalent
binding hub” that coordinates the interaction with ribosomal rRNAs as well as multiple maturation
factors [31,37,132,138–140]. Exposed on the surface, the C-terminal β-propeller of Erb1 thereby interacts
with the β-propeller domain of Ytm1 [31,132,140]. A long N-terminal string of Erb1 is deeply threaded
into the pre-ribosome to mediate a large-scale interaction network that presumably stabilizes the
premature architecture of the particle at this stage. Consequently, the removal of Erb1 will result in
major rearrangements of the pre-rRNA and concomitantly the whole pre-60S particle. Rea1 could
provide the energy to drive this large-scale restructuring [31]. The rearrangements associated with the
removal of Ytm1 and Erb1 are considered a prerequisite to correctly form the 60S structure surrounding
the PET and recruit maturation factors to the PTC, as well as for the rotation of the so-called L1 stalk to
a more mature conformation [5,31].

Nop7, the third component of this sub-complex, is associated with the characteristic “foot
structure” which is formed by the ITS2 pre-rRNA together with associated maturation factors and
which is needed for the correct processing of 27SB pre-rRNA [33,113]. The components of the foot
structure (the “A3 factors” including the later joining Nop53) organize the recruitment of factors that
initiate cleavage of the 27SB pre-rRNA and subsequent exo-nucleolytic trimming of the 7S and 25.5S
pre-RNAs [113,132,141]. While Nop7, Erb1, and Ytm1 form a stable complex in vitro, they do not
seem to leave the pre-60S particle at the same maturation step [131,134,136]. Structural investigations
have revealed that Erb1 has to leave its place to allow binding of Nop53, which then recruits the
nuclear Mtr4-associated exosome to process the 7S pre-rRNA [31,111]. Accordingly, Erb1 has to be
released before the exosome can be recruited. Nop7, by contrast, is the last ITS2 binding factor still
present when the exosome is engaged with trimming of the 7S pre-rRNA from the 3′ end [113,132].
Thus, Ytm1 and Erb1 leave pre-60S particles prior to Nop7. This is further supported by structures
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of nucleoplasmic pre-60S particles purified with Nog2 and Arx1 as bait proteins [33,142]. Finally, an
earlier dissociation of Ytm1 and Erb1 was suggested by kinetic investigations using the Drg1 inhibitor
diazaborine [143]. This nicely demonstrates that the described modules of maturation factors do not
necessarily act as rigid entities but behave dynamically during the maturation process with distinct
roles and association/dissociation kinetics.

In human cells, a conserved nucleolar protein assembly known as the PeBoW complex is formed
by Pes1 (homologue of Nop7), Bop1 (Erb1), and WDR12 (Ytm1). The PeBoW complex likely plays an
analogous role in ribosome biogenesis as in yeast, since it is essential for 5.8S and 28S rRNA formation
and correct maturation of pre-60S particles [133,144–150]. Consistent with a role as a recruiting
platform, the mammalian PeBoW complex also interacts with the DEAD-box helicase DDX27 needed
for 47S rRNA 3′-end formation [1,147]. In Arabidopsis thaliana, it has also been reported that Mdn1/Rea1
MIDAS interacts with the UBL domain of the Ytm1 orthologue Pes2 [121]. These examples suggest
that the involvement of Rea1/Mdn1 at this step in ribosome biogenesis is conserved among species
from yeast to higher eukaryotes.

3.2.4. Step 2: Remodeling of the Nucleoplasmic Rix1-Associated Pre-60S Particle

After progression of the pre-60S particle from the nucleolus to the nucleoplasm, yeast Rea1
steps into the ring a second time to release the maturation factor Rsa4 from a late nucleoplasmic
particle [83,118]. A prerequisite for stable association of Rea1 with the pre-ribosome at this stage is the
presence of the salt-stable Rix1-Ipi3-Ipi1 sub-complex [27,117,118]. Rix1 appears to function as one of
the main mediators between Rea1 and the pre-60S subunit because abolishing the direct interaction
between Rea1 and Rix1 prevents recruitment of Rea1 to the particle [118]. In addition, Rix1 proposedly
helps to dislocate the auto-inhibiting AAA2 H2α insertion to render Rea1 catalytically active [127,128].
An analogous complex in mammalian cells is formed by PELP1 (Rix1), TEX10 (Ipi1), and WDR18
(Ipi3). This complex has been reported to be needed for functional 28S rRNA maturation and transport
of pre-60S particles from the nucleolus to the nucleoplasm [151,152]. An analogous physical and
functional connection has also been described in A. thaliana between atMdn1 and the Rsa4-orthologue
Nle1 (Notchless 1) [153–155]. These findings underline the conservation of these steps in the ribosomal
maturation cascade in higher eukaryotic cells.

The nucleoplasmic pre-60S maturation stage connected to Rea1 is associated with a hallmark
remodeling event of the pre-ribosome, the rotation of the 5S RNP [32]. The 5S RNP is a sub-complex
formed by 5S rRNA and the ribosomal proteins L5 (uL18 according to the new nomenclature [156]) and
L11 (uL5) [32,157,158]. In mammalian cells, an excess of free 5S RNP not associated with pre-ribosomal
particles acts as a cellular sensor for disturbed ribosome biogenesis and nucleolar stress and results in
the activation of p53 via Mdm2 [159,160]. This is one of many nodes connecting ribosome biogenesis
to the regulation of cell growth and proliferation (recently reviewed in [1,3]).

As demonstrated in yeast, the conserved Rpf2-Rrs1 heterodimer is required for the early
incorporation of the 5S RNP into the pre-ribosome [1,161–164]. Immediately after incorporation
at the nucleolar maturation stage, the 5S RNP complex is presumably loosely associated with the
particle and cannot be resolved by cryo-EM [31]. As soon as it is clearly visible on nucleoplasmic
pre-60S particles [32,33], the 5S RNP adopts a very different orientation compared to the mature
ribosome. To reach its final position, the 5S rRNA has to be rotated by ~180◦ [27,32,33,35,142]. This
large-scale rearrangement has been proposed to be initiated by binding of Rix1 and has already taken
place on particles containing both Rea1 and Rix1 [27]. A structure of the particle from a rix1 mutant
unable to recruit Rea1 has shown that the Rix1∆C-Ipi1-Ipi3 complex is only loosely bound and contacts
the tip of the 5S RNP in its unrotated form together with Rpf2–Rrs1 [27]. It has therefore been proposed
that rotation of the 5S RNP may be triggered by destabilization of contacts between the 5S RNP and
Rpf2–Rrs1 upon binding of the Rix1 complex [27]. Interestingly, the particle still was found to contain
the foot structure, suggesting that ITS2 processing and rotation of 5S RNP might be temporally tightly
linked. The binding site of the Rpf2–Rrs1 heterodimer, which stabilizes the immature 5S RNP position,
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partially overlaps with the fully inserted Rix1 sub-complex [27,165]. Consistently, Rpf2-Rrs1 is not
found on particles containing the Rix1 sub-complex and Rea1. As recently described, the maturation
factor Cgr1 stabilizes the mature conformation of the 5S RNP after rotation [165], which would allow
Rix1 to stabilize and recruit Rea1. During this transition, Rsa4 also changes its conformation on
the pre-ribosome and could assist Rea1 with adopting its active state on the pre-ribosome with the
MIDAS domain attached to the AAA ring [27,128]. The coordination of 5S RNP remodeling, ITS2
processing, and binding of Rea1 is still not fully resolved and holds plenty of interesting questions for
future research.

Downstream of 5S RNP remodeling, the activity of Rea1 has been thought to be linked to the next
proposed ribosomal maturation checkpoint: the replacement of the GTPase Nug2/Nog2 by the export
adaptor Nmd3 [129]. Due to significant overlap of the binding sites of these two proteins, Nog2 has to
be released before the particles can be made ready for transport. Genetic interactions and biochemical
data have suggested a tight functional coordination between ATP-dependent Rsa4 removal triggered
by Rea1 and the subsequent GTP-dependent release of Nug2 [129]. However, this view has been
challenged by recent structural data of late nuclear pre-60S particles that contain Nog2 and Nsa2
but lack Rsa4 and Rea1 [35]. Therefore, the release of Rsa4 by Rea1 must be an earlier event that is
followed by dissociation of Nog2 and Nsa2. The cascade of linked steps during ribosome maturation
is executed in an extremely narrow time window and thus it remains challenging to reliably derive
the precise order of events and the tight network of direct functional linkages. Strategies to overcome
these obstacles include the use of specific low molecular weight inhibitors that halt the maturation
cascade at specific stages. However, specific inhibitors are only available for very few AAA-ATPases
including S. cerevisiae Drg1 [143,166–168] and S. pombe Mdn1 [128,130] (recently reviewed in [169]).

3.2.5. Inhibitor-Based Analysis of Mdn1

The accumulating data for S. cerevisiae Rea1 as well as human, plant, and S. pombe Mdn1 have
provided more and more insights into the function of these AAA machines during pre-60S maturation,
revealing parallels and differences between the species. Recently, a class of cell-permeable inhibitors
targeting S. pombe Mdn1 (spMdn1) has been discovered from a chemical synthetic lethality screen [130]
and further characterized by cryo-EM [128] (recently reviewed in [169]). These Rbins (short for
Ribozinoindoles) have allowed snapshots of trapped intermediate states of spMdn1 during the ATPase
cycle as described above [128] and have aided the study of the function of spMdn1 in vitro and
in vivo [130].

Treating S. pombe with Rbins has been found to result in mislocalization of GFP-tagged Rpl2501
(uL23/L25) from the cytoplasm to the nucleolus but not reporters of the 40S subunit. This is indicative
of a blocked export defect that is specific to the large ribosomal subunit [130]. Moreover, treatment
with Rbin-1 has been seen to result in processing defects of the 27S and the 7S pre-rRNA [130], which
is reminiscent of the defects observed for the genetically impaired Rea1 function in S. cerevisiae [83].
Interestingly, inhibition of spMdn1 has been observed to result in a transient accumulation of Rsa4
(but not Ytm1) on purified Rix1-particles after 15 min of treatment with Rbin-1 or using an Mdn1
ts-mutant [130]. The transient increase on the particle has been found to be followed by a reduction of
both proteins after prolonged treatment. This two-phased pattern has been interpreted as a further
indication of the involvement of Rea1 at more than one maturation step analogous to the situation
in S. cerevisiae. Consistent with this hypothesis, spMdn1 interacts with both Ytm1 and Rsa4, but the
interaction with Ytm1 appears weaker in S. pombe [130]. In addition, spMdn1 has been proposed
to be connected not only to nucleoplasmic Rix1-associated pre-60S particles but also to nucleolar
Nsa1-particles. Treatment with Rbins has been found to alter the composition of the early Nsa1-particle
(e.g., leading to reduced amounts of Rix7), and therefore spMdn1 has been proposed to contribute
to the assembly of these particles [130]. The lack of detection of Rix7 in the Nsa1-particle led to the
hypothesis that incorrect assembly of the Nsa1-particle is the primary defect upon Mdn1 inhibition,
with alterations at the later Rix1 particle as a secondary effect after prolonged time [130]. However,
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due to the recycling of maturation factors, disturbances of the ribosome biogenesis pathway are prone
to also cause secondary effects upstream of the actual site of inhibition, as shown for inhibition of
Drg1 [143,167,170]. Thus, in general the read-outs after inhibitor treatment have to be evaluated
with care to correctly recognize and interpret rebound effects and differentiate between primary and
secondary defects in the maturation cascade.

In addition to studying the cellular function of spMdn1, Rbins have been used to address the role
of its ATPase activity for remodeling [130]. Treatment with 1µM Rbin-1 has been found to lead to a
~40–50% reduction of spMdn1 ATPase activity in vitro and a severe growth defect in vivo [130]. The
exact binding site of the Rbins is still under investigation; however, these experiments have suggested
that partial inhibition of the ATPase activity of Mdn1 is sufficient to disturb its functionality. It remains
unknown how the individual AAA domains contribute to the release mechanism and whether Rbin
treatment results in a general inhibition of all functional AAA domains of spMdn1 (AAA2-5) or only a
subset of the AAA modules [128,130]. Interestingly, exchanges causing resistance to Rbins cluster in
AAA3 and AAA4 and suggest that the nucleotide binding pocket formed between these two AAA
domains is directly affected by inhibitor binding [128]. If the AAA3-AAA4 nucleotide binding pocket
was the only site of inhibition this would suggest that it contributes ~50% of the overall ATPase activity
of Rea1. Additional experiments utilizing an ATP-hydrolysis-deficient mutant within AAA5 (Walker
B mutant) have shown drastically reduced ATPase activity (85% reduction compared to wildtype
activity), and yet have still been inhibited by Rbins by ~40% [128]. Based on this strong effect, Chen
and coworkers have speculated that blocked ATP hydrolysis in one domain might allosterically affect
the activity of the other functional catalytic domains of Mdn1 (AAA2–AAA4) which is consistent
with coordinated nucleotide binding and hydrolysis in other AAA-ATPases. Whether the inhibitor
exclusively blocks ATP hydrolysis in one or a subset of the AAA domains or affects structural transitions
of the remodeling reaction awaits further research.

3.3. Drg1: AAA-ATPase Ante Portas

3.3.1. Structural Characteristics of Drg1

The gene coding for Drg1 was first identified during a screen for S. cerevisiae mutants resistant to
the heterocyclic boron-containing inhibitor diazaborine [168]. Biochemical, genetic, and cell biological
experiments have subsequently demonstrated that Drg1 is the direct and exclusive target of this
compound in yeast [166–168,170–172]. S. cerevisiae Drg1 is evolutionarily related to p97/Cdc48, with
~50% sequence identity of the AAA-domains [85,87]. Although the NTD of Drg1 shows lower sequence
conservation, it is proposed to be structurally similar to the p97 NTD with a bipartite sub-domain
organization needed for substrate and cofactor interactions [26,84,87]. Flanking the three major
domains (Figure 9A), Drg1 carries N-terminal and C-terminal extensions (amino acids 1–30 and
771–780, respectively) that are essential for growth. Deleting, for example, only the first 28 amino acids
of Drg1 renders the protein non-functional (Bergler lab, unpublished results). These potentially rather
flexible and unstructured extensions could be involved in substrate interactions (N-terminal extension)
but might also be needed for the interaction with additional factors or post-translational modifications
as shown for an unstructured C-terminal extension of p97/Cdc48 which serves as a phosphorylation
site [173,174].
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Figure 9. Structure and Function of Drg1. (A) Domain organization. The very N-terminal extension of
Drg1 (spermatogenesis-associated 5 (SPATA5) in humans), which is absent in the related AAA-ATPase
p97, is essential for stimulation of the ATPase activity by Rlp24. Both AAA domains of Drg1 are
catalytically active and contain putative arginine finger motifs. The pore loop motifs are partially
conserved but no data are available yet as to whether substrate processing of Drg1 involves full or
partial threading of the substrate Rlp24. (B) Drg1 initiates the cytoplasmic pre-60S maturation cascade
in yeast. Drg1 is recruited to pre-60S particles immediately after their export into the cytoplasm. The
flexible C-terminal domain of the shuttling maturation factor Rlp24 recruits hexameric Drg1 via its
NTD and stimulates ATP hydrolysis in both AAA domains of Drg1 to initiate the release process. ATP
hydrolysis in the D2 domain releases Rlp24 from the pre-60S particle, while ATP hydrolysis in D1
subsequently dissociates the substrate Rlp24 from Drg1. Release of Rlp24 initiates cytoplasmic pre-60S
maturation and is therefore required for all downstream events, including release and recycling of
export and shuttling factors including Nog1, Bud20, and Mtr4. Rlp24 is recycled back into the nucleolus
and its place at the ribosome is taken by the ribosomal protein L24 (eL24). Subsequently, the final
r-proteins can be incorporated. FG-repeat: Phenylalanine-glycine repeats.

The function of the human orthologue of Drg1, SPATA5, is still unclear. Drg1 and SPATA5 share
~48% sequence identity, with the D2 domain being the most conserved region. Early reports linked
SPATA5 to spermatogenesis [175] as well as Aurora kinase B extraction in C. elegans [176] and depleting
SPATA5 has been found to affect mitochondria and neurons [177]. However, siRNA knock-down of
SPATA5 has showed a pronounced 47S and 32S pre-rRNA accumulation, strongly suggesting a role in
ribosome biogenesis [7]. Recessive mutations in SPATA5 have been recently linked to developmental
delay, hearing loss, epilepsy, a microcephaly phenotype, and mental disorders [177–181]. Similar
phenotypes are observed with mutants in human ribosome biogenesis genes and ribosomal protein
genes [182]. The phenotypes observed in individuals carrying pathogenic SPATA5 alleles might
therefore arise from decreased proliferation of neuronal progenitor cells due to a block in ribosome
biogenesis as previously proposed for other ribosome biogenesis defects [182]. This evidence suggests
that SPATA5 fulfils a conserved role in ribosome biogenesis.
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3.3.2. Drg1 Initiates the Cytoplasmic Pre-60S Maturation Cascade

The final assembly stage of the large ribosomal subunit is accomplished by multiple steps in
the cytoplasm. After passing through the nuclear pore complexes, the pre-ribosomes associate with
Drg1 (Figure 9B), triggering the release of the shuttling factor Rlp24 [85,170,183]. Rlp24 accompanies
pre-ribosomes from the nucleolus and thereby acts as a placeholder for the r-protein L24 (eL24), which
can only be incorporated after removal of Rlp24 [85,184]. After release, Rlp24 is recycled back into the
nucleolus so that it can associate with freshly synthesized pre-ribosomes and serve its role in early
steps of pre-ribosome maturation [170,185]. Cryo-EM structures of purified pre-ribosomal particles
have shown that Rlp24 is closely intertwined with the maturation factors Nog1 and Bud20 [31–34].
Bud20 supports nuclear export of the pre-60S subunit and has to be efficiently shuttled back into the
nucleus to facilitate the export of succeeding pre-ribosomes [186,187]. The GTPase Nog1 contains an
N-terminal four-helical-bundle domain positioned in the A-site [33]. An additional long-expanded
helical domain of Nog1 spans over half of the large subunit up to the solvent side. The final Nog1 helix
inserts deep into the PET [28,31,33]. After release of Nog1, the PET is occupied by Rei1. The loading
of Rei1 is linked with the release of Arx1 [188]. Finally, in late cytoplasmic pre-60S particles, Rei1 is
substituted by Reh1, which resides in the PET till the very end of the maturation process [30]. Thus,
the PET is sequentially occupied or probed by various assembly factors during the maturation cascade
to ensure correct formation and protection of the tunnel.

The tight entanglement of Nog1 and Rlp24 has raised the question of whether the release of both
factors is directly linked to the activity of Drg1. In vitro, however, Nog1 stays on the Arx1-particle
after Rlp24 is already released [85], contradicting a coupled release of both proteins in one step. Still,
the removal of Nog1 seems to be temporally tightly linked to the release of Rlp24 and can only occur
when Drg1 is functional [85,166,183]. Due to the tight entanglement of these proteins, extraction
of the C-terminal tail of Nog1 from the PET has been proposed to be triggered by the removal of
Rlp24, while the N-terminus of Nog1 is only removed after GTP hydrolysis [189]. This hypothesis
awaits testing by structural analysis. Nevertheless, dissociation of Rlp24 is a strict prerequisite for all
downstream maturation steps in the cytoplasm [85,170,183]. These final adjustments include release
of export factors, loading of remaining ribosomal proteins and finalization of the PTC, the catalytic
core of the ribosome [30,183,185,190–195]. Thus, the active removal of Rlp24 by Drg1 triggers a major
remodeling cascade of the pre-60S subunit shortly after export, paving the way for all downstream
reactions (Figure 9B).

Intriguingly, a fragment of the FG-repeat-containing nucleoporin Nup116 interacts with the
NTD of Drg1 and is required for the release of Rlp24 in vitro [85]. This connection to a nucleoporin
corroborates the hypothesis that the release of Rlp24 by Drg1 is tightly linked to the export of the pre-60S
particle through nuclear pore complexes (NPC). Nup116 is not needed to recognize the substrate
Rlp24 and therefore it might act as an additional anchoring point at the NPC to generate tension
for the mechanical extraction of Rlp24. Although structural information about the release event is
lacking, overall conservation of the protein domains of Drg1 and its pore loop residues suggest that
processing could also involve at least partial threading of the substrate protein into the central pore.
However, since Rlp24 has to be recycled to allow ongoing formation of ribosome biogenesis, a full
unfolding of the shuttling protein seems counterproductive. Due to the missing structural data, the
detailed mode of substrate processing and whether the substrate is thereby unfolded awaits further
investigation. Nevertheless, thorough genetic and biochemical investigations have already allowed
informative insights.

3.3.3. Substrate Recognition and Processing by Drg1

The compact globular N-terminal part of Rlp24 acts as an rRNA-interacting domain and is tightly
buried in the pre-ribosome [28,31–33]. This N-terminal domain is followed by a long α-helical stretch
and an exposed flexible C-terminal domain (C-domain). The major part of Rlp24 is highly similar
to L24 (eL24); however, the C-domain is an exclusive feature of the maturation factor [32,33,85,183].
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The C-domain contains the last ~50 residues of Rlp24, which are rich in charged amino acids.
Although the C-domain is presumably unstructured, it can specifically recruit Drg1 via its NTD with a
binding affinity in the nM range [85]. The exclusive presence of this C-domain explains why Drg1
is only found on Rlp24-containing pre-ribosomes but not on particles where L24 (eL24) is already
loaded [35,85,184]. Intriguingly, the interaction with the Rlp24 C-domain not only recruits Drg1 to
the particle but also stimulates ATP hydrolysis in both of its AAA domains [85]. ATP hydrolysis
in this activated state seems to provide the energy to actively drag Rlp24 out of the pre-ribosome.
This mechanism ensures that ATP is only hydrolyzed in the presence of a bound substrate. Similar
cases of substrate- or cofactor-dependent stimulation of ATPase activity have been observed for other
AAA-ATPases [196–204]. Substrate- or cofactor-dependent stimulation seems to represent a conserved
regulatory feature of related AAA-ATPases. However, with few exceptions (e.g., Torsin [196]), it is
unclear how binding of a substrate or co-factor enables the AAA domain(s) to hydrolyze ATP more
effectively. As described above, in the case of Rea1, ATP hydrolysis could be stimulated at the ribosome
by displacing the auto-inhibitory H2α insertion from the ring [127,128].

As Type II AAA-ATPases, Rix7 and Drg1 carry a total of 12 functional ATPases sites per hexamer
and it is still one of the most prevalent questions as to how these catalytic sites cooperate and contribute
to substrate processing. The assignment of the two domains has been not only studied by using mutant
variants deficient in ATP binding (Walker A mutants) or ATP hydrolysis (Walker B mutants) but also
by the use of the inhibitor diazaborine which specifically blocks ATP hydrolysis in the D2 domain of
Drg1 [68,85,87,101,166]. The interaction with Rlp24 requires loading of ATP into the D1 domain of Drg1
as a prerequisite for hexamerization of the AAA-ATPase. Accordingly, mutant variants of Drg1 unable
to form hexamers (e.g., the temperature sensitive drg1-18 variant) fail to bind to Rlp24 and therefore
cannot associate with the pre-60S particle [85]. Similarly, a mutant version of Drg1 unable to load ATP
into D1 (D1-Walker A mutant) which does not form hexamers fails to interact with Rlp24 [85,87,172].
Interestingly, a Drg1 variant that can load ATP in D1 but is unable to hydrolyze this bound nucleotide
(D1-Walker B mutant) shows much stronger binding to the Rlp24 C-domain compared to the wildtype
protein, suggesting that ATP hydrolysis in D1 dissociates the AAA-ATPase from its substrate [85,166].
Both nucleotide binding and hydrolysis in D1 modulate substrate interaction of Drg1. By contrast,
a mutant variant unable to bind nucleotides into D2 (D2-Walker A mutant) is still able to form hexamers
and shows similar association kinetics to the Rlp24 C-domain as wildtype Drg1 [87]. Due to the missing
nucleotide in D2, this mutant variant dissociates much faster from the Rlp24 C-domain. This suggests
that after initial recognition of the Rlp24 C-domain by hexameric Drg1, ATP has to also be loaded into
the D2 domain to allow stable interaction with the substrate. Together, ATP binding in both AAA
domains of Drg1 regulates and coordinates the transient interaction with its substrate Rlp24.

The release of Rlp24 from the Arx1-particle has been recapitulated in vitro and strictly requires
ATP hydrolysis in the D2 domain of Drg1 [85,166]. This is obvious by the failure of the D2
ATP-hydrolysis-deficient Drg1 (D2-Walker B) mutant to release Rlp24 in vitro and a pronounced
dominant negative effect upon overexpression of this mutant protein [85]. By contrast, the Drg1
D1-Walker B mutant still shows ~60% in vitro release compared to the wildtype protein ([85,166];
Bergler lab, unpublished results). Accordingly, although not strictly required for survival, ATP
hydrolysis in D1 also contributes to efficient in vitro release. Thus, ATP hydrolysis in both domains is
needed for efficient release and recycling of Rlp24 from the pre-ribosome. In summary, both AAA
domains of Drg1 collaborate for optimal substrate processing but contribute differently. In general, a
division of labor between the AAA domains is a shared feature of type II AAA-ATPases, e.g., NSF [79],
Cdc48 [72,73], and Rix7 [68], but it is not strictly determined what role has to be played by the D1 and
the D2 domains.

3.3.4. Capturing Ribosome Biogenesis Dynamics with the Drg1-Inhibitor Diazaborine

The observation that release of Rlp24 initiates the cytoplasmic maturation cascade was crucial to
understanding how inhibiting Drg1 by diazaborine results in entrapment of all known shuttling proteins
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on pre-60S particles shortly after nuclear export ([85,143,166,170,183,187]; Bergler lab, unpublished
results). Diazaborine specifically inhibits ATP hydrolysis in the D2 domain, while ATP hydrolysis in
the D1 domain is not affected [166]. Indeed, many mutations leading to diazaborine resistance result
in exchanges clustering around the D2 nucleotide-binding pocket and cause reduced binding of the
drug. This suggests that the compound directly binds into the D2 domain and thereby blocks ATP
hydrolysis in this site [166]. Interestingly, weak acid stress also seems to affect the activity of Drg1
as recent PAR-TRAPP data from the Tollervey lab has shown increased levels of Rlp24 containing
pre-ribosomes and decreased levels of all downstream intermediates upon exposure to sorbic acid [205].
Intriguingly, this marked response mirrors the effect of diazaborine and likely arises from a pronounced
pH dependency of the D2 domain of Drg1, possibly as a consequence of the cysteine residue present in
the Walker A motif in D2 (Bergler lab, unpublished results).

Similarly to chemical inhibition of Drg1, overexpression of a Rlp24 construct lacking the C-domain,
which fails to recruit Drg1, also results in accumulation of a pre-60S population shortly after export.
This recently visualized particle population contains all shuttling proteins as well as the export adaptor
Nmd3 and exhibits a closed L1 stalk conformation [34]. In the same study, a late nuclear population
of particles has also been detected that contains Nsa2 and Nog2 but lacks Rsa4 and the export
adaptor Nmd3. Interestingly, very similar particle populations have been independently isolated
after treatment of cells with diazaborine (Warren, Bergler labs, unpublished results). The smaller late
nuclear population could arise from a failure to recycle the export adaptor Nmd3, which is trapped at
early cytoplasmic particles due to the failure to release Rlp24 (Bergler lab, unpublished results). Thus,
efficient recycling of shuttling factors is crucial for the efficient production of new ribosomes since
there is presumably no significant pool of free factors under normal conditions. Therefore, by blocking
recycling of shuttling proteins from the cytoplasm, diazaborine treatment also rapidly results in earlier
27S pre-rRNA processing defects in the nucleolus due to shuttling factor depletion at this early stage.
Additionally, as a further consequence of this blockage, later joining ribosomal proteins (e.g., L24 (eL24)
and L10 (uL16)) and maturation factors accumulate in free form and eventually precipitate which
results in activation of the heat shock transcription factor HSF1 [206,207].

Discovering that inhibition of late steps also rebounds on very early events has also revealed
the dynamics and complexity of the ribosomal maturation cascade and the unique advantage of
targeted chemical inhibition. The ability to use chemical inhibition of AAA-ATPases and other key
players as a tool that acts almost immediately allows unprecedented resolution of the occurring effects.
The effects on protein composition and the pre-rRNA processing state of different pre-60S particles
upon diazaborine treatment can be observed after very short times (<2 min). Such timely resolution
cannot be achieved by genetic or classical biochemical approaches for the depletion of proteins but
is indispensable to disentangle primary and secondary effects of an inhibited ribosome biogenesis
pathway. This highlights the power of low molecular weight inhibitors not only in inhibition of
particular enzymes like the AAA-ATPases Drg1 or Rea1 but also in dissecting the extremely interwoven
ribosome biogenesis pathway. Accordingly, analyzing ribosome biogenesis with chemical probes will
provide fresh insights into the dynamics of the pathway and lead to a novel understanding of the
process [11,143].

4. Concluding Remarks and Perspectives

With recent advancements in cryo-EM and the discovery of new chemical inhibitors there has
been an explosion of new information about the structure and function of the three AAA-ATPases
required for maturation of the large ribosomal subunit. We now have near-atomic resolution views
of the motor domains of Rix7 and Rea1/Mdn1 and are beginning to understand how ATP hydrolysis
is coupled with remodeling of the large ribosomal subunit. Cryo-EM structures of these ATPases in
action have revealed similarities with other AAA+ family members and have also identified unique
features. For example, Rix7 and Drg1 draw many parallels with the well-studied Cdc48/p97, such
as having a shared mechanism of unfolding; however, Rix7 has a distinct NTD and unique post-α7
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insertion important for ribosome assembly. Likewise, the Rea1 concatenated AAA ring is structurally
similar to dynein, yet Rea1 does not appear to utilize a dynein-like power-stroke mechanism to drive
assembly factor release. Moreover, work with the inhibitors Rbin-1 and diazaborine has led to novel
insights into the dynamics of ribosome assembly.

Despite recent advances in the structure and function of Rix7, Rea1, and Drg1, our understanding
of the roles these AAA-ATPases play in ribosome maturation is far from complete. One of the biggest
outstanding questions is how do these AAA+ machines engage with pre-60S particles at the appropriate
stage in assembly? Aside from a structure of S. cerevisiae Rea1 bound to late stage nuclear pre-60S
particles we do not have any structures of Rix7 and Drg1 bound to pre-60S particles or a structure of
Rea1 on the pre-60S before Ytm1 release. These structures are greatly anticipated and will no doubt
provide a wealth of insight into how these ATPases are recruited to pre-60S particles and what triggers
ATP hydrolysis. Another major outstanding question about Rix7, Rea1, and Drg1 centers on the
function of these motors across eukaryotes. Do the human homologues NVL2, MDN1, and SPATA5
play analogous roles in ribosome assembly as their yeast counterparts? Studies with Rix7 and its
mammalian homologue NVL2 suggest that Rix7 and NVL2 perform similar functions in 60S maturation.
However, recent work has revealed that vertebrate homologues of NVL2 associate with the nuclear
exosome complex through an Mtr4-binding motif absent in lower eukaryotes. This suggests that
vertebrate NVL2 may have additional functions in pre-rRNA processing. Thus, it will be interesting
to see if MDN1 and SPATA5 have also acquired additional functions in higher eukaryotes. Many
ATPases, such as Cdc48/p97, have diverse cellular roles but it is not known if Rix7, Rea1, and Drg1
have any additional remodeling targets beyond pre-ribosome particles. Studies to address substrate
specificity, single molecule remodeling/unfolding experiments and the development of loss-of-function
mutants are all needed to tackle this important question. Finally, ribosome assembly has emerged as a
new target for anti-cancer therapeutics, and thus, Rix7, Rea1, and Drg1 could be potential therapeutic
targets. Therefore, the development of new AAA inhibitors targeting these fundamental enzymes
might not only further enhance our understanding of biological function but may also prove useful in
cancer treatment.
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