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Abstract: Plants of the genus Wikstroemia have long been used as traditional medicines to treat
diseases like pneumonia, rheumatism, and bronchitis. This study was designed to determine the
effect of chamaejasmine, a biflavonoid present in W. dolichantha, on atopic dermatitis (AD)-like skin
lesions in a 2,4-dinitrochlorobenzene (DNCB)-induced murine model of AD. Initially, we examined
the anti-allergic activities of ten flavonoids from W. dolichantha by measuring β-hexosaminidase
release from RBL-2H3 cells. Subsequently, an SKH-1 hairless mouse model of AD was developed
based on the topical application of DNCB. Chamaejasmine (0.5%) or pimecrolimus (1%, positive
control) were applied to dorsal skins of DNCB-sensitized AD mice for two weeks. Serum IL-4 and
IgE levels were determined using enzyme-linked immunosorbent assay kits and transepidermal
water loss (TEWL) and skin hydration were measured using a Tewameter TM210 and a SKIN-O-MAT,
respectively. Of the ten flavonoids isolated from W. dolichantha, chamaejasmine most potently inhibited
DNP-specific IgE-induced degranulation in RBL-2H3 cells. Topical administration of chamaejasmine
attenuated the clinical symptoms of DNCB-induced dermatitis (i.e., itching, dryness, erythema,
and edema). Histological analyses demonstrated that dermal thickness and mast cell infiltration in
dermis were significantly reduced by chamaejasmine. In addition, 0.5% chamaejasmine inhibited
DNCB-induced increases in total IL-4 and IgE levels in serum, improved skin barrier function, and
increased epidermis moisture. Our findings suggest chamaejasmine might be an effective therapeutic
agent for the treatment of atopic diseases.

Keywords: chamaejasmine; Wikstroemia dolichantha; 2,4-dinitrochlorobenzene; atopic dermatitis; skin
barrier function; interleukin 4

1. Introduction

The atopic dermatitis (AD) is a chronic skin disorder provoked by immune system disturbance
and is characterized by itching, redness, skin keratinization, and exudates. AD is caused by a complex
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combination of genetic, environmental, physiological and pharmacological factors and is also associated
with other allergic diseases such as allergic rhinitis, asthma, and conjunctivitis [1,2]. The impact of AD
on health-related quality of life is considerable, and in addition, this skin disease causes a significant
burden in terms of increased health care utilization and costs [3]. AD can be classified as extrinsic and
intrinsic AD depending on whether immunoglobulin E (IgE) specific to an external allergen is involved;
IgE-associated AD (extrinsic AD) is the classical type of this disease and has a high prevalence, whereas
the prevalence of non IgE-mediated AD (intrinsic AD) is approximately 20% [4]. The known functions
of IgE and mast cells in allergic inflammation suggest that IgE-mediated mast cells play major effector
roles in the pathogenesis of AD [5,6]. For this reason, blocking the productions of high levels of Th2
cytokines (e.g., IL-4) and enzymes (e.g., β-hexosaminidase, an enzyme found in preformed mast cell
granules) by mast cells may provide a strategy for treating AD [1,6].

Wikstroemia dolichantha Diels (Thymelaeaceae) is a perennial shrub widely distributed in southern
China and is commonly used as an herbal medicine [7]. In China, Wikstroemia species have been used
in folk medicines to treat hepatitis and arthritis [7,8]. The aerial parts of Wikstroemia species have
been reported to contain predominantly flavonoids, biflavonoids, and coumarins [9,10]. Furthermore,
research supports the diverse pharmacological actions and potential clinical applications of Wikstroemia
species as anti-bacterial, anti-viral, anti-tumor, and antifertility agents [11,12]. Previously, we found
that an ethanolic extract of the aerial parts of W. dolichantha strongly inhibited β-hexosaminidase release
from RBL-2H3 cells in vitro and exhibited anti-dermatitis activities on the atopic dermatitis (AD)-like
skin lesions in an animal model [13]. In the present study, we undertook isolation of the bioactive
components responsible for the anti-inflammatory and anti-atopic activities of W. dolichantha extract.
Accordingly, we investigated the suppressive effects of ten flavonoids from isolated W. dolichantha
extract on β-hexosaminidase release from IgE-stimulated RBL-2H3 cells and on dermatitis in a
2,4-dinitrochlorobenzene (DNCB)-induced AD murine model of AD.

2. Materials and Methods

2.1. Equipment Used

1H- and 13C-NMR, COSY, HSQC, HMBC, and NOESY data were obtained using a superconducting
FT-NMR 400 or 500 MHz spectrometer (Agilent Technologies, Santa Clara, CA, USA). HR-ESI mass
spectra were recorded on an Agilent Technologies, 6530 Accurate-Mass Q-TOF LC/MS. The HPLC
system (Shimadzu, Tokyo, Japan) consisted of a UV/VIS detector (model SPD-20A), two pumps (model
LC-20AT), a system controller (model CBM-20A) and a workstation (model HW-2000 solution). Column
chromatography was performed using Sephadex LH-20 gel (25–100 µM mesh, Pharmacia, Stockholm,
Sweden) and silica gel (230–400 mesh, Merck, Darmstadt, Germany).

2.2. Plant Material and Extraction

The aerial parts of Wikstroemia dolichantha Diels were collected in Yunnan Province, Lijiang, China
and identified by Dr. Sang Woo Lee (Korea Research Institute of Bioscience and Biotechnology).
A voucher specimen (PNU-0024) was deposited at the Medicinal Herb Garden, Pusan National
University. Dried aerial parts of W. dolichanta (5 kg) were extracted with 95% EtOH (12 L × 3) and
evaporated under reduced pressure to yield W. dolichanta EtOH extract (WDE) (466.8 g, 9.3% extract
yield).

2.3. Compound Isolation

WDE was suspended in distilled water (1.6 L) and successively partitioned with n-hexane (4.8 L),
EtOAc (4.5 L), and n-BuOH (5.5 L). The active EtOAc soluble fraction (39.9 g) was chromatographed
on a silica gel column using CH2Cl2-MeOH (20:1 → 100% MeOH, gradient system) as eluent
to yield ten fractions (WDE1~WDE12). Fraction WDE3 (492.0 mg) was fractionated into five
subfractions (WDE3-1~WDE3-5) by Sephadex LH-20 column chromatography using MeOH, and
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subfraction WDE3-3 (74.9 mg) was subjected to Silica gel isocratic CC (column chromatography)
using CH2Cl2-MeOH (40:1) as eluent to yield four fractions (WDE3-3-1~WDE3-3-4). Subfraction
WDE3-3-4 (63.9 mg) was fractionated into two subfractions (WDE3-3-4-1~WDE3-3-4-2) by Sephadex
LH-20 column chromatography using MeOH. Compound 1 [padmatin (12.3 mg)] was obtained as
pure powder by filtering fraction WDE3-3-4-1. Fraction WDE4 (492.0 mg) was fractionated into five
subfractions (WDE4-1~WDE4-5) by Silica gel CC using EtOAc-Hex (5:1 → 100% EtOAc, gradient
system). Subfraction WDE4-3 (84 mg) was suspended in MeOH, and compound 2 [aromadendrin
(35.1 mg)] was obtained by filtration. The resulting filtrate of WDE4-3 was then fractionated into five
subfractions (WDE4-3-1~WDE4-3-5) by Sephadex LH-20 using MeOH, and compound 3 [apigenin
(5.6 mg)] was obtained as pure powder by filtering fraction WDE4-3-4. Subfraction WDE4-4 (62.9 mg)
was fractionated into five subfractions (WDE4-4-1~WDE4-4-5) by Sephadex LH-20 using MeOH,
and subfraction WDE4-4-4 (16.3 mg) was subjected to RP HPLC (Watchers 120 ODS-BP, S-10 µm,
150 × 10 mm; detection, UV at 254 nm; flow rate, 2 mL/min) and eluted with a AcCN-H2O isocratic
system (5:5, 50 min) to yield compound 4 [wikstaiwanone C (3.5 mg, tR 36 min)]. Fraction WDE6 (4.7 g)
was chromatographed on a Silica gel CC using CH2Cl2-MeOH (10:1→ 100% MeOH, gradient system)
as eluent to yield five fractions (WDE6-1~WDE6-5). Compound 5 [taxifolin (35.1 mg)] was obtained
as a pure powder by recrystallizing the filtrate of subfraction WDE6-3 from MeOH. Subfraction
WDE6-2 (467.4 mg) was fractionated into six subfriactions (WDE6-2-1~WDE6-2-6) by Sephadex LH-20
using MeOH, and compounds 6 [neochamaejasmine B (3.3 mg)], 7 [chamaejasmine (93 mg)], and 8
[naringenin (88.5 mg)] were obtained as pure powders by filtering fractions WDE6-2-3, WDE6-2-5, and
WDE6-2-6, respectively. Fraction WDE7 (5.0 g) was subjected to silica gel CC using CH2Cl2-MeOH (10:1
→ 100% MeOH, gradient system) as eluent to yield three subfractions (WDE7-1~WDE7-3). Subfraction
WDE7-3 (2.0 g) was subjected to Silica gel CC using CH2Cl2-MeOH (8:1→ 100% MeOH, gradient
system) to yield five fractions (WDE7-3-1~WDE7-3-5), and compound 9 [afzelechin (102.3 mg)] was
obtained as a pure powder by filtering fraction WDE7-3-1. Fraction WDE8 (2.6 g) was subjected to
Silica gel CC using CH2Cl2-MeOH (20:1 → 100% MeOH, gradient system) as eluent to yield five
fractions (WDE8-1~WDE8-5). Subfraction WDE8-3 (149.6 mg) was fractionated into five subfractions
(WDE8-3-1~WDE8-3-5) by Sephadex LH-20 (MeOH), and subfraction WDE8-3-3(71.1mg) was subjected
to silica gel CC using CH2Cl2-MeOH (10:1→ 100% MeOH, gradient system) as eluent to yield two
fractions (WDE8-3-3-1~WDE8-3-3-2). Compound 10 [catechin (38.2 mg)] was obtained as pure powder
by filtering fraction WDE8-3-3-2.

2.4. RBL-2H3 Cell Culture

The rat basophilic leukemia cell line, RBL-2H3, was purchased from the American Type Culture
Collection (CRL-2256, Bethesda, MD, USA). Cells were grown in minimum essential medium (MEM)
containing Eagle’s salts, 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin, and
100 µg/mL streptomycin in a humidified 5% CO2/air atmosphere at 37 ◦C.

2.5. β-Hexosaminidase Release Assay

RBL-2H3 cells were treated overnight with anti-dinitrophenyl immunoglobulin E (anti-DNP IgE),
rinsed out with Siraganian buffer, and incubated in buffer for 10 min. Cells were then treated with
DMSO or separately with each of the ten isolates of W. dolichantha (30 µM) for 1 h and sensitized with
DNP-BSA antigen (10 µg/mL) for 20 min to provoke degranulation. Supernatants were transferred to
96-well plates and incubated with 1 mM of 4-nitrophenyl-N-acetyl-β-d-glucosaminide as substrate in
0.1 M citrate buffer for 3 h at 37 ◦C. Absorbances were measured using a microplate reader at 405 nm.

2.6. Animals

Six-week-old female SKH-1 hairless mice purchased from Orient Bio Inc. (Seongnam, Korea)
were housed in an air-controlled animal room (25 ± 5 ◦C, 55 ± 5% RH). Animals were fed standard
laboratory food and water ad libitum. All animal experiments were conducted in accord with the Guide
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for the Care and Use of Laboratory Animas issued by the National Institute of Health (NIH publication
No. 85-23, revised 2011) and authorized by the Institutional Animal Care and Use Committee of KIST
(Certification No. KIST-2016-011).

2.7. Induction of DNCB-Induced AD and Treatment with Chamaejamine from W. dolichantha

2,4-Dinitrochlorobenzene (DNCB; 1%) (Sigma-Aldrich, Seoul, Korea) in propylene glycol:EtOH
(7:3 v/v) was used to induce AD-like symptoms. First, mice in the DNCB control group and the
DNCB/isolated compound groups were sensitized by applying 1% DNCB in propylene glycol:EtOH
(7:3 v/v) to dorsal skin once daily for a week (experimental day 1 (ED1) to ED7). DNCB controls were
then challenged by administering 100 µL of 0.1% DNCB from ED8 every 3 days for 2 weeks. Animals
were painted with 100 µL solution of 0.5% chamaejamine or 1% pimecrolimus, a positive control,
in propylene glycol:EtOH (7:3 v/v) and with DNCB, as described above, twice a day from ED8 for
2 weeks. In these groups, chamaejamine or pimecrolimus were applied 4 h after DNCB application.
Mice in the untreated control group were treated with propylene glycol:EtOH (7:3 v/v) daily using the
method described above.

2.8. Histological Examination

To examine histologic changes, dorsal skins were fixed in 10% formalin for 24 h and embedded in
paraffin. Fixed tissues were sectioned at 2–3 mm, dried for 24 h at 37 ◦C, and stained with hematoxylin
and eosin (H&E) or toluidine blue. Histological changes were observed under an optical microscope
(Olympus CX31/BX51, Olympus Optical Co., Tokyo, Japan) and photographed (TE2000U, Nikon
Instruments Inc., Melville, NY, USA).

2.9. Measurement of Transepidermal Water Loss (TEWL) and Skin Hydration

Skin damage severity was evaluated by measuring transepidermal water loss (TEWL) and skin
hydration, using a Tewameter TM210 (Courage and Khazaka, Cologne, Germany) and a SKIN-O-MAT
(Cosmome, Rhur, Germany), according to the manufacturer’s instructions. TEWL and skin hydration
were measured weekly under controlled conditions (25 ± 5 ◦C, 55 ± 5% RH).

2.10. Measurement of Total Serum IgE and IL-4 Levels

Blood samples were obtained and centrifuged at 10,000 rpm for 15 min at 4 ◦C. Total serum IgE
and IL-4 levels were measured using enzyme-linked immunosorbent assay kits (eBioscience, San Diego,
CA, USA).

2.11. Statistical Analysis

All quantitative data for this study were obtained through at least two independent experiments.
In vitro data are shown as the means ± SDs and in vivo data are denoted as means ± SEMs for seven
animals. Statistical analyses were carried out by a one-way analysis of variance (ANOVA) and a
Tukey’s multiple comparisons post hoc analysis.

3. Results

3.1. Isolation of Flavonoids from W. dolichantha and Their Effects on β-Hexosaminidase Release by
RBL-2H3 Cells

The in vitro antiallergic and anti-inflammatory activity profiles of WDE and its extracts (n-hexane,
EtOAc, n-BuOH, and water) were evaluated. The EtOAc extract was the most active and was not toxic
to RBL-2H3 cells (Figure 1). This extract was subjected to silica gel column chromatography, Sephadex
LH-20 column chromatography, and RP HPLC to yield ten known flavonoids, such as, padmatin
(1) [14], aromadendrin (2) [15], apigenin (3) [16], (2R, 3S, 2′’R, 3′’S)-wikstaiwanone C (4) [17], taxifolin
(5) [14], (2R, 3R, 2′’R, 3′’S)-neochamaejasmine B (6) [18], (2S, 3R, 2′’S, 3′’R)-chamaejasmine (7) [18],
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naringenin (8) [16], afzelechin (9) [19], and catechin (10) [20] (Figure 2). These ten flavonoids were
identified using 2D-NMR and HR-MS data.
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Figure 2. Structures of the ten flavonoids isolated from Wikstroemia dolichantha 95% ethanol extract.
1: padmatin, 2: aromadendrin, 3: apigenin, 4: wikstaiwanone C, 5: taxifolin, 6: neochamaejasmine B,
7: chamaejasmine, 8: naringenin, 9: afzelechin, 10: catechin.

The antiallergic and anti-inflammatory effects of all flavonoids isolated from WDE were
investigated by measuring β-hexosaminidase release from RBL-2H3 cells. This release was significantly
greater from antigen-induced (anti-DNP IgE plus DNP-BSA) cells than from untreated controls (3.2-fold
vs. untreated controls). Pretreatment with compounds 2, 3, 4, 5, 6, and 7 at 30 µM effectively suppressed
antigen-mediated β-hexosaminidase release from RBL-2H3 cells (Figure 3). In particular, 7 was most
active against DNP-specific IgE-induced degranulation in RBL-2H3 cells.
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release from IgE-mediated RBL-2H3 cells. Results are expressed as the means ± SDs of two independent
experiments. # p < 0.05 vs. vehicle control; * p < 0.05 vs. IgE + DNP-BSA treated cells. IgE = vehicle
control, IgE + BSA = IgE + DNP-BSA treated cells, keto = 30 µM ketotifene.

3.2. Chamaejasmine (7) from W. dolichantha Ameliorated AD-like Skin Symptoms in DNCB-Induced
Atopic Mice

To investigate the effects of 7 on the skin lesions of DNCB-induced atopic mice, dermatitis levels
were evaluated using skin lesion images. The procedure used to establish the DNCB-induced AD
mouse model is shown in Figure 4a. On the last day of the experiment, DNCB application produced
significant AD-like lesions, including erythema (with scratch marks), erosions, and dryness in the
DNCB controls. Reduced AD-like symptom severity was observed in 0.1% DNCB-treated SKH-1
hairless mice co-treated with 0.5% 7 (DNCB-chamaejasmine group) (Figure 4b), in which the epidermal
thickness of dorsal skin was 81% thinner than in the DNCB control group (Figure 5a,c). In addition,
7 application reduced the number of mast cells by 62% as compared with the DNCB controls group
(Figure 5b,d). Pimecrolimus cream is a well-known treatment for atopic skin disorders and was used
as a positive control. 1% Pimecrolimus cream reduced dorsal skin dermal thickness by 54% versus
DNCB controls (Figure 5a,c) and mast cell infiltration by 33% (Figure 5b,d).
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Figure 5. Effects of chamaejasmine on histopathological changes, epidermal thicknesses, and mast cell
numbers in DNCB-induced AD-like skin lesions in SKH-1 hairless mice. (a) H&E staining, (b) toluidine
blue staining, (c) epidermal thicknesses and (d) mast cell numbers. Results are expressed as the means
± SEMs of two independent experiments. # p < 0.05 vs. the CON group; * p < 0.05 vs. the DNCB group.
CON: vehicle control group, DNCB: DNCB-treated control group, DNCB-chamaejasmine: DNCB and
0.5% chamaejasmine-treated group, DNCB-Elidel: DNCB and 1% pimecrolimus cream-treated group.

3.3. Chamaejasmine (7) Reduced Serum IgE and IL-4 Levels in DNCB-Induced Atopic Mice

The major biochemical characteristics of AD are increased serum levels of IgE and IL-4. Serum
IgE levels were significantly higher in DNCB controls than in untreated controls. Treatment with 0.5%
7 resulted in a 38% decrease in serum IgE concentration versus DNCB controls (Figure 6a). Mean total
serum IL-4 level (42.5 pg/mL) was also higher in DNCB controls than in untreated controls (17.4 pg/mL).
Mean total serum IL-4 levels in the DNCB-chamaejasmine group (25.2 pg/mL) were markedly lower
than in DNCB controls (Figure 6b). Pimecrolimus cream decreased serum IgE levels by 43% (Figure 6a)
and serum IL-4 levels by 27% (Figure 6b) versus those in DNCB controls.
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Figure 6. Effects of chamaejasmine on serum IgE and IL-4 levels in DNCB-sensitized SKH-1 hairless
mice. (a) Serum total IgE levels, (b) serum total IL-4 levels. Serum samples were collected and tested
for IgE and IL-4 concentrations on the last day of the experiment (experimental day 21). Results are
expressed as the means ± SEMs (n = 7) of two independent experiments. # p < 0.05 vs. the CON group;
* p < 0.05 vs. the DNCB group. EtOH extract of Wikstroemia dolichantha, CON: vehicle control group,
DNCB: DNCB-treated control group, DNCB-chamaejasmine: DNCB and 0.5% chamaejasmine-treated
group, DNCB-Elidel: DNCB and 1% pimecrolimus cream-treated group.

3.4. Chamaejasmine (7) from W. dolichantha Recovered Skin Barrier Function in DNCB-Induced Atopic Mice

A significant increase in dorsal skin TEWL was observed in DNCB controls on the last day of the
experiment. In contrast, treatment with 0.5% 7 (43.5 g/m2h) and 0.5% pimecrolimus cream (46.7 g/m2h)
markedly reduced TEWL as compared with DNCB controls (68.9 g/m2h) (Figure 7a). Furthermore,
a significant decrease in skin hydration was observed in DNCB controls during the 21-day experimental
period, but skin hydration was significantly higher in the DNCB-chamaejasmine group (45% increase)
than in DNCB controls (Figure 7b).
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(a) Transepidermal water loss (TEWL) and (b) skin hydration values Results are expressed as the means
± SEMs (n = 7) of two independent experiments. # p < 0.05 vs. the CON group; * p < 0.05 vs. the DNCB
group. EtOH extract of Wikstroemia dolichantha, CON: vehicle control group, DNCB: DNCB-treated
control group, DNCB-chamaejasmine: DNCB and 0.5% chamaejasmine-treated group, DNCB-Elidel:
DNCB and 1% pimecrolimus cream-treated group.

4. Discussion

Flavonoids are a large family of plant secondary metabolites, are found in all fruits and
vegetables [21], and are primarily responsible for the characteristic red and blue colors of flowers



Biomolecules 2019, 9, 697 10 of 13

and berries [22]. Over 4,000 flavonoids have been identified to date and are classified as flavonols,
flavones, flavanones, catechins, anthocyanidins, isoflavones, dihydroflavonols, or chalcones [23]. The
bioactivities of flavonoids are related to their chemical structures and functionalities [24,25]. Flavonoids
are known to have health-promoting effects, which have been largely attributed to their antioxidant,
anti-inflammatory, and chelating properties [25–27]. However, experimental evidence regarding their
anti-allergic effectiveness is scarce and limited to a few individual flavonoids under highly specific
experimental conditions.

Our in vitro studies on the immunological and anti-inflammatory activities of WDE and its
n-hexane (60.3 g), EtOAc (39.9 g), n-BuOH (68.0 g), and water (206 g) fractions revealed the EtOAc
soluble fraction of WDE inhibited β-hexosaminidase release from RBL-2H3 cells. Ten flavonoids, that is,
padmatin (1), aromadendrin (2), apigenin (3), wikstaiwanone C (4), taxifolin (5), neochamaejasmine B (6),
chamaejasmine (7), naringenin (8), afzelechin (9), and catechin (10), were obtained from the active EtOAc
soluble fraction by silica gel column chromatography, Sephadex LH-20 column chromatography, and RP
HPLC. The inhibitory effects of all ten compounds were tested against the release of β-hexosaminidase
induced by dinitrophenylated bovine serum albumin (DNP-BSA) from RBL-2H3 cells, using ketotifen
as a reference. Of the ten isolates, 2, 3, 4, 5, 6 and 7 strongly inhibited β-hexosaminidase release, and
interestingly, all biflavonoids tested (wikstaiwanone C, neochamaejasmine B, and chamaejasmine)
inhibited mouse β-hexosaminidase. Interestingly, chamaejasmine (7) had stronger β-hexosaminidase
activity than wikstaiwanone C (4), which was attributed to the presence of one methoxy group in the B
ring of chamaejasmine (7), which concurs with previous suggestions that the presence of a methoxy
group in bioflavonoids might substantially increase anti-inflammatory activity [28,29]. In the present
study, chamaejasmine (7) showed excellent anti-inflammatory activity, and thus, its anti-AD properties
were studied in the DNCB-sensitized SKH-1 hairless mouse model.

Hapten-induced mouse models of contact dermatitis have been commonly used to investigate
anti-AD properties, such as those of oxazolone, DNCB, and 1, 3, 5-trinitrochlorobenzene (TNCB). DNCB
is considered to be useful for inducing sensitization due to its availability and reproducibility [30,31].
Topical administration of 0.5% chamaejasmine (7) for two weeks markedly attenuated DNCB-induced
AD-like skin lesions, which included hyperkeratosis, epidermal thickening, and mast cell infiltration,
in our murine model. Moisturizers increase skin hydration and improve skin barrier function, thereby
serving as an important first-line therapeutic option for patients with AD increasing skin hydration [32].
Chamaejasmine (7) also protected skin barrier functions by increasing TWEL and skin hydration
as a moisturizer and suppressing inflammatory cytokine IL-4 production versus DNCB controls.
Reduced skin barrier function and inflammation have been reported to be associated as impaired
skin barrier function facilitates allergen entry and thus inflammation and inflammation, which in
turn, may comprise barrier functions [33,34]. Accordingly, our observations suggest chamaejasmine
(7) treatment may inhibit TH2-dominated inflammatory response. In addition, chamaejasmine (7)
suppressed allergic inflammation by strongly inhibiting DNCB-induced increases in serum IgE and
IL-4 levels. Application of chamaejasmine (7) markedly suppressed the expression level of IL-4 in vivo.
It is suggested a possible mechanism that inhibition of IL-4 prevents the differentiation of Th0 to Th2
cells in lymph nodes, the IgE class switch of B cells caused by IL-4 secreted from Th2 cells, and the
degranulation of mast cells by IgE, which mediate lowering allergic response. When Th2 cells migrate
from lymph nodes to skin tissues, IL-4 increases the expression of proteases such as Kallikreins in
keratinocytes of the epidermis, which weaken the binding between epidermal cells and skin barrier
function. In addition, macrophage activates the STAT6 pathway downstream of IL-4, leading to
polarization to M2. Treatment of chamaejasmine (7) is expected to prevent the above symptoms by
IL-4 and reduce the worsening of AD.

A considerable body of evidence suggests that plants flavonoids are health-promoting and
disease-preventing dietary compounds [35]. However, the potential therapeutic use of flavonoids
and flavonoid-rich extracts in infants and children remains a matter of debate [36]. Some well-known
flavones and flavonols, such as, quercetin and kaempferol, have been especially well analyzed for their
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immunological effects [37]. Previous structure-activity studies with flavonoids have shown that flavones
or flavonols were active in inhibiting degranulation of RBL-2H3 cells but flavanones, isoflavones,
and catechins were not active [38,39]. In contrast to previous results on the flavanones, our present
study suggests that flavanones (aromadendrin and taxifolin) and flavanone dimers (wikstaiwanone C,
neochamaejasmine B, and chamaejasmine) may be useful inhibitors of β-hexosaminidase. Further
studies on whole cell systems and on other flavonoids, especially flavanones, will be reported in
due course.

Six flavonoids isolated from W. dolichantha significantly reduced IgE-induced β-hexosaminidase
release from RBL-2H3 cells, and chamaejasmine (7) was found to be the most active. Topical
chamaejasmine (7) application impressively reduced erythema, edema, erosion, dryness, and
lichenification, in our SKH-1 mouse model by suppressing serum IgE and IL-4 levels. Collectively,
these results suggest 7 be viewed as a novel anti-inflammatory and anti-atopic agent with promising
therapeutic potential.
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