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Abstract

Cathepsin S (CatS), a member of cysteine cathepsin proteases, has been well studied due to its 

significant role in many pathological processes, including arthritis, cancer and cardiovascular 

diseases. CatS inhibitors have been included in D3R-GC3 for both docking pose prediction and 

affinity ranking, and in D3R-GC4 for binding affinity ranking. The difficulties posed by CatS 

inhibitors in D3R mainly come from three aspects: large size, high flexibility and similar chemical 

structures. We have participated in GC4; our best submitted model, which employs a similarity-

based alignment docking and Vina scoring protocol, yielded Kendall’s τ of 0.23 for 459 binders in 

GC4. In our further explorations with machine learning, by curating a CatS specific training set, 

adopting a similarity-based constrained docking method as well as an arm-based fragmentation 

strategy which can describe large inhibitors in a locality-sensitive fashion, our best structure-based 

ranking protocol can achieve Kendall’s τ of 0.52 for all binders in GC4. In this exploration 

process, we have demonstrated the importance of training data, docking approaches and 

fragmentation strategies in inhibitor-ranking protocol development with machine learning.
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I. INTRODUCTION

In computer-aided drug design, accurately ranking potential inhibitors for a specific target is 

critical in virtual screening and inhibitor optimization[1–13]. Typically, a structure-based 

computational protocol for ranking involves a number of different tasks, including data 

collection and preparation, receptor structure selection, inhibitor conformation generation, 

binding pose prediction, and binding affinity ranking[9]. The choice made for each task may 

influence its subsequent task, and eventually influence the overall performance of the 

ranking protocol. Besides conventional approaches, machine learning and deep learning 

algorithms have been widely applied in each stage of ranking protocol development[14–22]. 

An excellent platform that can facilitate the development and test of such integrated ranking 

protocols is Drug Design Data Resource (D3R), which aims to promote computer aided drug 
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discovery (CADD) by providing large and high-quality protein-ligand binding data sets as 

well as organizing competitions to test CADD workflows regularly.

D3R Grand Challenges (GC) are competitions of pose and affinity or relative affinity 

prediction focusing on specific targets. In the past four years, D3R has released target-

specific databases to evaluate docking and affinity ranking protocols in a blind test 

manner[23–25]. The availability of these high-quality experimental data greatly benefits 

CADD community, and simultaneously accelerates the development of new computational 

methods. Cathepsin S (CatS) is a member of cysteine cathepsin family, and is predominately 

found in antigen presenting cells, where it degrades MHC class II-associated invariant chain. 

Malfunction of CatS is related to hyper immune response, cancer, arthritis and etc.[26,27]. 

CatS has been used as a sub-challenge target in both D3R GC3 [24] and GC4: GC3 has 

evaluated both pose prediction and affinity ranking methods on CatS system; while in GC4, 

only affinity ranking is tested with a much larger data set of 459 CatS inhibitors.

We have participated in GC4 and submitted two models for the CatS sub-challenge. Both 

models used poses generated by the same similarity-based alignment docking protocol but 

different affinity ranking scoring function: one employed Vina score[28]; the other used a 

developing version of XGBoost-based scoring function, which incorporated features from a 

core-fragmentation method and was trained using a general training set covering protein-

ligand complexes from multiple targets. However, test results are not satisfactory, and the 

better one using Vina score has a Kendall’s τ of 0.23 for 459 binders in GC4. The difficulty 

of ranking CatS inhibitors may come from their large size, high flexibility and similar 

chemical structures: the average molecular weight of the CatS GC4 inhibitors is around 700 

g/mol; the average number of rotatable bonds is around 8; all of the CatS GC4 inhibitors 

share the same tetrahydropyridinepyrazole derivative core, which is a well-established 

scaffold targeting CatS [29–31]. Meanwhile, considering that CatS has been studied for 

decades and it has a relatively large amount of binding affinity data which has not been used 

by us for developing those two submitted models, we have motivated to further explore 

target-specific ranking protocols with machine learning. In our further development, by 

curating a CatS specific training set and adopting a similarity-based constrained docking 

method as well as an arm-based fragmentation strategy which can describe large inhibitors 

in a locality-sensitive fashion, our best structure-based ranking protocol can achieve 

Kendall’s τ of 0.52 for all binders in the GC4 test set. Our overall exploration process is 

summarized in Fig. 1 and is described in detail below.

II. METHODS

Our exploration of structure-based ranking protocols mainly focuses on three stages, namely 

training data collection, binding pose prediction and binding affinity ranking, and different 

approaches have been tested in each stage. The overview of our exploring process is 

summarized in Fig. 1.

II. 1. Data Collection:

To explore CatS-specific inhibitor ranking protocols, we have collected two types of data, 

namely general protein-ligand data and CatS-specific data. The general data set is based on 
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both PDBbind[32] and CSAR[33,34] data sets, which consist of both complex structures and 

affinities for a variety of protein targets.

The CatS-specific data set only includes crystal structures and binding affinities related to 

CatS inhibitors. Co-crystal structures are used to validate binding pose prediction methods, 

and binding affinities are used to develop affinity ranking methods. Considering that CatS 

GC4 inhibitors have the same tetrahydropyridinepyrazole derivative core, our data collection 

focuses on molecules containing this core. Thus, 22 co-crystal structures and 139 binding 

affinities are collected from GC3 released data[24]. Additional 291 binding affinities are 

collected from the ChEMBL database[35]. Since most molecules only have binding 

affinities, the CatS-inhibitor complex structures need to be generated using pose prediction 

methods. The minimal Tanimoto fingerprint[36] distances, calculated by RDKit[37], 

between the curated data sets and the CatS GC4 inhibitors are shown in Fig2.

II.2. Binding Pose Prediction

Structure-based ranking protocol depends on protein-ligand complex structures, but the large 

size and high flexibility of CatS inhibitors bring challenges for pose prediction due to the 

large conformational space they are associated with. GC3 CatS competition results indicated 

that the flipped binding mode of tetrahydropyridinepyrazole derivative core adds more 

difficulties for binding pose prediction (Fig. 3A)[24]. On the other hand, guidance from a 

similar co-crystal ligand, which includes both selecting a receptor conformation and using a 

co-crystal ligand as the docking template, can help with binding pose prediction even in 

those flipped core cases [38–42]. Thus, besides using the general conformer rigid docking 

protocol, we have explored two similarity-based docking approaches: similarity-based 

alignment docking and similarity-based constrained docking.

II.2.1 Structure Preparation—Both protein and ligand protonation states are calculated 

at pH = 5 to be the same as experimental conditions. Protein protonation state is calculated 

using PDB2PQR[43], and ligand protonation state is estimated using experimental pKa 

values of similar functional groups collected from SciFinder[44]. For each ligand, 

conformers are generated using RDKit[37,45] from its SMILES string and minimized using 

MMFF94 with water as solvent[37,46–51]. Docking pdbqt files for both the protein and the 

ligand are prepared using AutoDockTools[52].

II.2.2 General Docking Method: Conformer Rigid Docking—1000 conformers are 

generated for each ligand using RDKit[37,45], and docked onto 3IEJ, which is a crystal 

structure available before D3R GC3 with tetrahydropyridinepyrazole derivative core, using 

Vina rigid docking (performed by smina[53], a fork of Autodock Vina[28]). Vina score is 

used to select final poses. Symmetry-corrected RMSDs between the docked poses and the 

co-crystal ligand are calculated using ArbAlign[54].

II.2.3 CatS-Specific Docking Methods: Similarity-Based Docking—Two 

similarity-based docking methods are explored, namely similarity-based alignment docking 

and similarity-based constrained docking. In both methods, for ligand of interest, its most 

similar co-crystal ligand is picked as a docking reference and the similarity is measured 
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using fingerprint Tanimoto coefficient. The receptor of the reference ligand is used as 

docking receptor.

The major difference between these two methods lies in ligand conformer generation and 

initial positioning into the receptor binding site. In similarity-based alignment docking, 

maximum 1000 conformers are randomly generated and minimized, and then aligned to the 

reference ligand based on their maximum common substructure (MCS). While in similarity-

based constrained docking, atoms in MCS are kept at the same positions as those in the 

reference ligand during conformer generation, and maximum 500 conformers are generated 

since part of the ligand is fixed. In both methods, only conformers within 100 kcal/mol from 

the lowest energy conformer are used for the subsequent docking procedure. Local 

minimization is performed to optimized conformers against the receptor using smina[53]. 

Since conformers are either aligned or constrained to the core of the reference ligand, their 

core conformation should be similar. Then we filter docking poses by their occupancies of 

pockets in the binding site. AlphaSpace[55] is used to detect and match pockets using 

different CatS structures and estimate pocket ligandability. Pocket analysis of all GC3 CatS 

co-crystal structures shows that highly ligandable pockets are well occupied by CatS 

inhibitors as shown in Fig. 3C. Thus, docking poses are ranked by their occupancies of 

highly ligandable pockets, and only the top 100 poses are kept. Among them, the pose with 

the most favorable Vina score is used as the final docking pose.

II.3. Binding Affinity Prediction

The last stage in a ranking protocol is binding affinity prediction. Fragmenting molecules 

can reduce molecular size and flexibility, but current available fragmentation methods[56–

58] are not designed for scoring purpose. We have explored three fragmentation methods 

and used them to compare general and target-specific scoring functions by training on either 

the general data set or the CatS-specific data set with XGBoost[59,60], one of the most 

widely used machine learning algorithms.

II.3.1 Scoring Function Parameterized with General Protein-Ligand Data Set 
and Core-Based Fragmentation—The general protein-ligand data set contains 

complexes from multiple targets, and we used it to explore a core-based fragmentation 

approach, which separates ligands into a core and several side chains as illustrated in Fig. 4. 

The core is defined as the largest ring system in the molecule, and the rest is defined as side 

chains. The integrity of uncuttable motifs, such as rings, double bonds and triple bonds, is 

maintained in the fragmentation process. Features related to the entire ligand and the 

fragments are calculated. We have also tried 3 bridging-water features and 3 ligand stability 

features to take account of explicit water molecules in the binding site and ligand stability. 

CSAR[61,33] and part of PDBbind v2016[32] (structures released before 2015) are used in 

training, and the rest of PDBbind[32] is used as the validation set. The CatS GC3 affinity 

data set is used to fine-tune the model’s performance on CatS system.

II.3.2 Target-Specific Scoring Function—We have explored three fragmentation 

approaches to develop CatS-specific scoring functions to rank CatS GC4 inhibitors, as 

illustrated in Fig. 4 and described in detail below.
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• Core-Based Fragmentation is the same as used for the general protein-ligand 

data set, and it cuts molecules into a core and side chains. Features of the side 

chains are summed to get total side-chain features for scoring function 

development. Core-based fragmentation only depends on ligand chemical 

structure.

• Arm-Based Fragmentation cuts functional groups from the shared 

tetrahydropyridinepyrazole derivative core. It separates CatS inhibitors into a 

core and 4 arms, namely the left arm, the right arm, the lower arm, and the core 

modification. Due to the core-flipping effects (Fig. 3A), the lower arm can be 

switched with the left arm. The core flipping status is predicted to be the same as 

inhibitor’s reference co-crystal ligand’s core status. Since the core structure is the 

same, only the arm features are used in scoring function development. Arm-

based fragmentation depends on ligand chemical structure and core-flipping 

effect prediction.

• Pocket-Based Fragmentation separates a ligand by its occupied pockets. By 

employing the AlphaSpace[55] pocket matching algorithm, pockets on different 

crystal structures of CatS can be clustered together by their relative positions on 

the receptor surface. To reduce the number of fragments, matched pockets within 

8 Å are combined to form matched pocket communities. Atoms occupying the 

same pocket community as well as their associated uncuttable motifs are grouped 

into one fragment. The rest of atoms are considered as linker atoms. Fragments 

in the same matched pocket community are considered as matched fragments, 

which occupy the similar region on the protein surface. Pocket-based 

fragmentation needs protein-ligand complex structures, which depends on pose 

prediction accuracy.

In target-specific scoring function development, XGBoost[59,60] algorithm is used for 

parameterization. The CatS ChEMBL affinity data set is used as the training set and the 

CatS GC3 affinity data set is used as the validation set. Besides the Vina score, 10 features 

used by our previously developed Δvina RF20[21], are employed to describe the contribution 

of each fragment. Among them, five are fragment descriptors and the other five are 

interaction descriptors. Additionally, each fragment’s occupied AlphaSpace[55] volume is 

used as a feature for model training. All features are summarized in Table 1. Before testing 

on the CatS GC4 data set, to make the maximum use of all available data, the best model is 

retrained using the combination of the CatS ChEMBL and the CatS GC3 affinity data sets, 

and then applied to the CatS GC4 data set to get the final performance.

II.4 Performance Evaluation

RMSE refers to the root-mean-squared error between the predicted pIC50 and the 

experimentally measured pIC50, and it is used to evaluate the affinity prediction accuracy. 

Kendall’s τ and Spearman’s ρ are used to evaluate the ranking performance.

Kendall’s τ = number of  concordant pairs − number of  discordant pairs
n n − 1 /2
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Spearman’s ρ =
cov rP, rO

σPσO

where cov(rP, rO) is the covariance of the predicted ranking and the experimental ranking 

and σ is the standard deviation of the rank variables.

III. RESULTS AND DISCUSSION

III.1. Binding Pose prediction

Binding pose prediction is an essential step in structure-based ranking protocols, but the 

large size and high flexibility of CatS inhibitors together with their core-flipping effects 

(Fig. 3A) bring difficulties in the binding pose prediction. We have explored similarity-based 

alignment docking and similarity-based constrained docking to tackle these challenges. Both 

methods are based on the hypothesis that similar ligands should bind similarly on a specific 

receptor, and thus they use the compound’s most similar co-crystal ligand as the reference in 

the docking process. Binding mode analysis of CatS co-crystal structures indicates that 

ligand similarity can distinguish different core-flipping conformations as shown in Fig. 3B. 

Therefore, adopting a similar co-crystal ligand as docking reference helps with core-flipping 

effects prediction.

As shown in Fig. 5, similarity-based docking methods significantly improve the docking 

accuracy comparing to a conventional conformer rigid docking. Similarity-based constrained 

docking has the best performance, which has a medium RMSD of 2.2 Å and an average 

RMSD of 2.3 Å. On the other hand, conformer rigid docking has a median RMSD of 6.4 Å 

if only the top Vina score poses are used. Extending the limit to top 10 Vina score poses and 

selecting the lowest RMSD pose for docking performance evaluation ends up with a median 

RMSD of 4.2 Å, which is still not close to the near native poses (RMSD ≤ 2 Å). Meanwhile, 

similarity-based alignment docking has a median RMSD of 3.0 Å and an average RMSD of 

3.8 Å, but has an obvious outlier with RMSD of 12.3 Å.

In D3R GC4 CatS sub-challenge, our submitted models employ Vina score and the general 

core-based fragmentation score using similarity-based alignment docking poses. When 

applying these general scoring methods on similarity-based constrained docking poses, their 

affinity ranking performances are improved as shown in Table 2. Although previous GC3 

results suggest that the docking accuracy may not be correlated with the affinity ranking[24], 

our comparison here demonstrates that affinity ranking can be improved by enhancing 

docking accuracy. Therefore, our further target-specific scoring function exploration uses 

similarity-based constrained docking poses.

III.2. Binding Affinity Ranking:

In order to further improve the binding affinity ranking, we have explored three 

fragmentation approaches, and the results are summarized in Table 3. The best model is the 

CatS arm-based scoring function trained on the CatS ChEMBL and the CatS GC3 data sets 

with Kendall’s τ of 0.52 and Spearman’s r of 0.71. This is significantly better than Vina, 

Yang et al. Page 6

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which has Kendall’s tau of 0.29 calculated with similarity-based constrained docking poses 

(Table 2). Furthermore, comparing to our best submitted model using Vina score with 

similarity-based alignment docking poses, this new best model has improved both ranking 

and scoring performances, as shown in Fig. 6.

The improved performance may come from two aspects: the training data selection and the 

fragmentation idea. General scoring functions, which are developed using general data sets 

(Vina is derived using PDBbind data), do not perform as well as CatS-specific scoring 

functions on the CatS GC4 test set, except in the case of the CatS non-fragment scoring 

functions trained only using the CatS ChEMBL affinity data. After adding more related data, 

the CatS GC3 affinity data, into the training set, the performances of all CatS-specific 

scoring functions get further boosted to surpass general scoring functions. Additionally, we 

have tried training the core-based scoring function using either the general data or the target-

specific data. Training with the CatS-specific data achieves better ranking performance on 

the test set. These results indicate that having more related data in the training set generally 

can improve the affinity ranking performance.

The fragment-based CatS-specific scoring functions always outperform the non-fragment-

based one on the test set, although the latter uses the same descriptors but on the ligand 

level. Even the core-based scoring function, which captures the least locality information, 

performs better than the non-fragment-based scoring function. The results indicate that 

locality-based fragmentation methods contribute to the binding affinity ranking. Within 

fragment-based scoring functions, the arm-based and the pocket-based scoring functions 

achieve better performance than the core-based scoring function, which could result from the 

relative more locality information they captured. Interestingly, the arm-based scoring 

function always performs better than the pocket-based one on the test set, regardless of how 

much CatS data presents in the training set. Although, pocket-based fragmentation captures 

more locality information, it also has stronger dependency on the docking accuracy. When 

docking poses are inaccurate, fragments can be assigned to the wrong pockets, which would 

negatively affect the training process by grouping fragments occupying different localities 

together. The arm-based fragmentation, with less dependency on the pose prediction and 

relatively more locality information, outperforms other fragment-based scoring functions.

Even though the target-specific training set with arm-based fragmentation shows the best 

performance, they are critically dependent on available data. One common pre-requisite for 

target-specific ranking protocol development is to have sufficient experimental data. For the 

arm-based fragmentation, it also requires a shared core. Many target-specific inhibitors are 

developed from a lead compound, which can be considered as a conserved core, and arm-

based fragmentation should be applicable to these cases. Nevertheless, the arm-based 

fragmentation defines each arm by their attaching positions on the core structure, if the core 

changes, definitions of the arms are not consistent, which can generate misleading locality 

information. Both core-based and pocket-based fragmentation methods can be applied to 

inhibitors without a shared core. The core-based fragmentation can be generalizable to 

general data set, but it only distinguishes core binding sites from the rest. The pocket-based 

fragmentation can be applied to a specific target or a group of similar targets but has higher 

dependency on the accuracy of docking poses, which limits its performance to some extent.
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CONCLUSION

When exploring CatS-specific ranking protocols, a common trend we have seen is that 

tailored data with tailored docking and scoring methods usually leads to better performance. 

The reason why general docking methods do not have good performance on CatS system 

could come from the large size and high flexibility of CatS ligands. In this work, we have 

explored the similarity-based docking approaches for the pose prediction task and the target-

specific fragment-based scoring functions for the affinity ranking task. Our results show that 

the similarity-based constrained docking achieves the best docking accuracy with a medium 

RMSD of 2.2 Å and an average RMSD of 2.3 Å on the CatS GC3 data set, and better 

docking accuracy often can lead to better ranking performance. Our explored fragmentation 

approaches that break ligands into pieces can reduce the size and flexibility of each 

fragment, while account for local structural differences regardless of high similarities among 

CatS ligands. Combining with the target-specific data set, the similarity-based constrained 

docking method and the XGBoost[59,60] algorithm, all fragment-based scoring functions 

can outperform the general and non-fragment-based scoring functions. Among all models 

that we explored, the arm-based scoring function performs the best with Kendall’s τ of 0.52. 

Comparing to our best submitted model, whose Kendall’s τ is only 0.23, we have made 

significant improvement by selecting related training set, improving the pose prediction 

accuracy and employing fragmentation ideas in target-specific scoring function 

development. Such a strategy may also be helpful for other protein targets with relatively 

large and flexible ligands.
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Figure 1. 
Ranking protocol development for GC4 CatS sub-challenge.
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Figure 2. 
The minimal Tanimoto fingerprint distances between the CatS GC4 compounds and the 

collected compounds. CatS GC3 and CatS ChEMBL data sets maintain high similarity to the 

blind test set, the CatS GC4 data set, with maximum Tanimoto distance to be 0.6.
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Figure 3. 
Illustration of similarity-based docking. A. CatS tetrahydropyridinepyrazole derivative core 

has two binding modes, flipped and non-flipped. B. Hierarchical clustering of CatS co-

crystal ligands shows that similar ligands have similar binding modes. Thus, using the most 

similar co-crystal ligand as the docking reference can help predict the binding mode. C. All 

CatS co-crystal ligands bind to the similar region on the receptor surface, which can be 

predicted by AlphaSpace[55] pocket ligandability. Similarity-based docking first brings 

poses to the binding site by employing the docking reference, and then uses pocket 

occupancies of highly ligandable pockets to initially filter binding poses.
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Figure 4. 
Illustration of three fragmentation methods: 1. core-based fragmentation, in which each 

ligand is divided into one core and several side chains; 2. arm-based fragmentation, in which 

each distinct arm is truncated from the shared core structure and labeled by its attachment 

point; 3. pocket-based fragmentation, in which fragments are assigned and labeled based on 

their occupied pockets.
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Figure 5. 
Docking performance. Two similarity-based docking methods show better performances 

than the conformer rigid docking. Similarity-based constrained docking performs better than 

similarity-based alignment docking for having smaller average and median RMSDs and no 

obvious outliers.
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Figure 6. 
Scoring performance of the best newly developed model (Arm-based & Constrained 

docking) and best submitted model (Vina & Alignment Docking).

Yang et al. Page 17

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 18

Table 1.

Features Used in Target-Specific Fragmentation-Based Scoring Function

No. Feature Description Feature Type

1 Vina score Ligand

2 Occupied AlphaSpace volume Fragment

Autodock Vina Interaction Terms

3 Non_hydrophobic  a1, a2, d =

0, a1 or a2 is hydrophobic 

1, ddiff  a1, a2 < 0.5

0, ddiff  a1, a2 ≥ 1.5

1.5 − ddiff  a1, a2 ,  otherwise 

Fragment

4 Non_hydrophobic  a1, a2, d =

0, a1 or a2 do not form hydrogen bond 

1, ddiff  a1, a2 < − 0.7

0, ddiff  a1, a2 ≥ 0.4

ddiff  a1, a2 − 0.4
−1.1 ,  otherwise 

Fragment

5 Solvation a1, a2, d = ASPa1 + QASP × qa1
Va2

+ ASPa2
+ QASP × qa2

Va1
e
− d

7.2
2

Fragment

6–7 Electrostatic a1, a2, d =
qa1

× qa2
dx , x = 1 or 2 Fragment

Autodock Vina Fragment Description Terms

8 Number of heavy atoms Fragment

9 Number of hydrophobic atoms Fragment

10 Number of torsion Fragment

11 Number of rotors Fragment

12 Ligand length Fragment

Note: d is the distance between two atoms, a1 and a2. ddiff is the surface distance calculated by ddiff = d – R(a1) – R(a2), where R(a1) and R(a2) 

are the van der Waals radius of atoms a1 and a2 [28]. q is the atomic charge and V is the atomic volume. ASP and QASP refer to the atomic 

solvation parameter and the charge-based solvation parameter, respectively[62].
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Table 2.

General Scoring Function Performance Using Similarity-Based Alignment Docking and Constrained Docking 

Poses. It should be noted that if using ligand-only molecular weight for the affinity prediction, it has Kendall’s 

τ of 0.26 and Spearsman’s ρ of 0.37 for GC4.

Similarity-based Alignment Docking Similarity-based Constrained Docking

GC4 Performance GC4 Performance

RMSE Kendall Spearman RMSE Kendall Spearman

Vina 0.63* 0.23* 0.34* 0.67 0.29 0.42

General Core-based 0.72* 0.21* 0.30* 0.66 0.25 0.37

*
Performance of submitted models
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Table3.

CatS-Specific Scoring Function Performance Using Similarity-Based Constrained Docking Poses. It should be 

noted that if using ligand-only molecular weight for the affinity prediction, it has Kendall’s τ of 0.26 and 

Spearsman’s ρ of 0.37 for the test set (CatS GC4).

Training Set CatS ChEMBL CatS ChEMBL and CatS GC3

Evaluation

Validataion Set
CatS GC3

Test Set
CatS GC4

Test Set
CatS GC4

RMSE Kendall Spearman RMSE Kendall Spearman RMSE Kendall Spearman

CatS Core-based 0.66 0.25 0.36 0.56 0.30 0.43 0.50 0.41 0.58

CatS Arm-based 0.65 0.34 0.48 0.50 0.42 0.59 0.42 0.52 0.71

CatS Pocket-based 0.66 0.35 0.49 0.52 0.37 0.52 0.48 0.43 0.61

CatS Non-Fragment 0.66 0.26 0.37 0.59 0.24 0.35 0.53 0.35 0.49
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