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Abstract

Personalized medicine has largely been enabled by the integration of genomic and other data with 

electronic health records (EHRs) in the U.S. and elsewhere. Increased EHR adoption across 

various clinical settings, and the establishment of EHR-linked population-based biobanks provide 

unprecedented opportunities for the types of translational and implementation research that drive 

personalized medicine. We review advances in the digitization of health information and the 

proliferation of genomic research in health systems, and provide insights into emerging paths for 

the widespread implementation of personalized medicine.

Introduction

The medical community has long recognized that inherent features of disease, and response 

to therapeutics, may often uniquely cluster in individuals, families, and population groups. 

Yet, for most of the history of practice of medicine, a broad approach to diagnosis and 

therapy has been adopted. The term personalized medicine was first given prominence in the 

late 1990s to early 2000s (Ginsburg and McCarthy, 2001; Jain, 2002), coincident with the 

sequencing of the human genome. Linking genomic and clinical profiles of individual 

patients held the promise to understand their disease at a deeper level to develop more 

targeted therapies (National Research Council (US) Committee on A Framework for 

Developing a New Taxonomy of Disease, 2011). Today, the availability of vast amounts of 

digital data captured in Electronic Health Records (EHRs), combined with the emergence of 

genomic data in health systems, is opening new research avenues and opportunities for 

improving health management. Thus, the field of personalized medicine, and overlapping 
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terms like genomic medicine, precision medicine and precision health, seek to use genomic 

approaches to tailor therapeutics, prevent disease, and promote health. This perspective 

covers the intersection between genomic research and EHRs, with an emphasis on emerging 

paths toward the widespread implementation of personalized medicine.

The Rise of Genomics in Medicine

In 2003, the completion of the first human genome sequence opened the door to 

personalizing the practice of medicine. It was expected that, over time, new ways of using 

genomic data for predicting and preventing disease, and more targeted and effective use of 

therapeutics, would emerge. Early personalized medicine efforts focused on genetic variants 

that predict drug response have resulted in the growth of genome-informed clinical practice 

guidelines (Caudle et al., 2014). The development of ‘next generation’ sequencing 

technology (Shendure and Ji, 2008), and its precipitous drop in price in the last decade, has 

enabled the use of genomic information to inform clinical decision-making not just for 

certain individuals, but across health systems. There are currently over 5,000 single gene 

disorders and traits with a known molecular etiology (https://www.omim.org/statistics/

geneMap). Since 2009, targeted gene panel and exome sequencing (sequencing of some or 

all of the protein-coding regions of the genome) have been used for the diagnosis of these 

individually rare, but collectively common genetic conditions. Today, with over 55,000 

commercially available clinical genetic tests (https://www.ncbi.nlm.nih.gov/gtr/) and new 

tests entering the market daily, genome sequencing is increasingly used in routine clinical 

care for diagnostic purposes. Other emerging uses of genomic information to inform clinical 

decision-making exist in areas like cancer detection and treatment (Deng and Nakamura, 

2017), pre- and perinatal testing, (Hui and Bianchi, 2017; Peters et al., 2015), inpatient 

management of critically ill infants (Farnaes et al., 2018; Petrikin et al., 2015), and care of 

healthy and sick newborns (Holm et al., 2018) and adults (Vassy et al., 2014).

On the research side, early investments in population-scale efforts, like the International 

HapMap Project (International HapMap, 2003), were leveraged to create catalogs of human 

genetic variation shared across many individuals. These catalogs were used to design the 

first generation of microarrays that assayed hundreds of thousands of genetic variants in a 

single test for low cost. In 2007, the Wellcome Trust Case Control Consortium published 

one of the first landmark papers that paved the way for how these studies, known as 

Genome-Wide Association Studies (GWAS), should be performed (Wellcome Trust Case 

Control, 2007). This study, undertaken in a British population, examined two thousand 

individuals for each of seven major diseases, compared to three thousand healthy volunteers, 

to look for variants associated with each disease. The study demonstrated not only novel 

genomic discoveries, but also how methodology, data, and results should be broadly shared 

with the scientific community, greatly impacting the speed with which genomic discoveries 

could be made and disseminated worldwide. As of December 2018, the NHGRI-EBI GWAS 

catalog (Buniello et al., 2019) contains 3720 published studies for thousands of diseases, 

biomarkers, and drug responses (https://www.ebi.ac.uk/gwas). Furthermore, studies have 

grown to very large samples sizes in international research consortia with several recent 

studies topping 1 million participants (Evangelou et al., 2018; Liu et al., 2019; Nielsen et al., 

2018), accelerating the rate of genomic discoveries.
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With the increasing accessibility of genomic testing, and a greater understanding of both 

individual and population-scale genomic variation, efforts to more broadly integrate 

genomics in health systems for individualizing healthcare are gaining steam. Biobanks of 

human germline DNA samples are being used to generate genomic data linked to clinical 

information from EHRs in health systems. These biobanks serve as a rich resource for 

discovery, translation, and implementation of genomics in medicine. With dense, 

longitudinal clinical data, EHR-linked biobanks can empower the study of the natural 

history of disease. With accruing genomic data, they can also facilitate the implementation 

of individualized strategies for early detection, prevention, and management of disease. 

Nationwide biobanks are emerging in countries like the United Kingdom (Collins, 2012), 

Denmark (Agerbo et al., 2015), Estonia (Metspalu et al., 2004), China (Chen et al., 2011), 

Japan (Nagai et al., 2017) and others (Stark et al., 2019). In 2015, the U.S. launched its own 

national Precision Medicine Initiative, encompassing a large biobanking effort called the All 

of Us Research Program (AoURP). AoURP is actively recruiting over 1 million Americans 

invited to share their genomic, EHR, and other digital data, and be active partners in medical 

research (Collins and Varmus, 2015).

Digitizing Health Information in Electronic Health Records

To appreciate how EHRs have played a role in enabling personalized medicine, it is 

important to understand what EHRs contain, and how they can be used for genomic 

discovery and personalized medicine implementation. EHRs are real-time, patient-centered, 

digital records of health information and clinical care, generated and maintained by 

healthcare providers. They are designed to systematically collect patient information and 

share it across healthcare providers and settings, to help deliver more comprehensive and 

accurate clinical care. Substantial investment and increased financial incentives to 

implement EHRs over the last decade have resulted in widespread EHR adoption in the U.S. 

and other high-income countries (Adler-Milstein and Jha, 2017; Blumenthal and Tavenner, 

2010), as well as increasing EHR adoption in low- and middle-income countries (Williams 

and Boren, 2008). EHRs are widely believed to improve healthcare quality, with benefits 

including secure long-term storage, improved consistency and standardization, and point-of-

care accessibility of patient information. In the U.S., EHR adoption accelerated due to the 

Meaningful Use program, which was introduced as part of the 2009 Health Information 

Technology for Economic and Clinical Health Act to provide federal funds to healthcare 

providers successfully demonstrating meaningful use of EHRs (Centers for Medicare & 

Medicaid Services, 2010, 2012). As of 2017, over 95% of U.S. hospitals had certified EHR 

technology, with the lowest rates (93%) occurring in small rural and critical access hospitals, 

and the highest rates (99%) occurring in large hospitals with over 300 beds (Office of the 

National Coordinator for Health Information Technology, September 2018). With hundreds 

of EHR vendors available (Office of the National Coordinator for Health Information 

Technology, July 2017), EHR systems vary widely across hospitals and other healthcare 

settings. So, although the majority of hospitals in the U.S. have moved past the 

implementation stage of EHRs, there remains a need for improved accessibility, 

standardization, and interoperability between EHRs in different health systems.
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In general, EHRs contain a wealth of longitudinal, real-world patient information collected 

in standard clinical care (Pendergrass and Crawford, 2019; Sutherland et al., 2016). This 

information includes demographics, medical and surgical history, allergies and medications, 

diagnoses and procedures, details from patient encounters, and results and reports from 

various clinical studies (Table 1). EHRs also track other aspects of patient care, including 

practice management functions such as scheduling, billing, and insurance information. The 

information recorded in EHRs is a combination of structured and unstructured data. 

Structured data use a uniform format (within each EHR system) and may also use a 

controlled vocabulary, constraining users to entering or choosing pre-determined values. 

Unstructured data do not follow a particular format and allow users to enter free text without 

constraints. This element allows healthcare providers to include details and context around 

health information and clinical encounters. Therefore, the same clinical information can be 

recorded in EHRs in myriad ways depending on the user. The structure of EHR data can 

significantly impact data usability for research purposes. Structured data are consistent and 

readily extractable, while unstructured data can require additional tools, such as natural 

language processing (NLP), to standardize, codify, and extract (Pendergrass and Crawford, 

2019). Ultimately, both structured and unstructured data are important in providing a 

complete story around patients’ clinical data, offering multidimensional insight into health 

and disease, provider and patient behavior, and healthcare outcomes across populations and 

health systems.

Despite the wealth of data contained in EHRs, barriers persist for integrating genomic and 

clinical data in health systems to empower the implementation of personalized medicine. 

One challenge is that genomic test results are typically reported in EHRs as a summary and 

interpretation of relevant findings (rather than raw data), frequently in the form of scanned 

paper reports (Shirts et al., 2015), limiting how genomic data is represented and accessed. 

New standards are emerging to digitize clinical genomic test results in EHRs (see Alterovitz 

et al. (2015) for a recent primer), requiring the development of EHR infrastructure to interact 

with clinical laboratories, patients, and providers. Several pilot EHR-based programs embed 

genomic test results related to drug response as structured data, combined with CDS, to 

provide point-of-care guidance for providers (Hoffman et al., 2014; Obeng et al., 2016; 

Weitzel et al., 2014). Some efforts are focused on providing patient-facing genomic test 

reports (Williams et al., 2018b). Another challenge is that some data elements important for 

interpreting genomic information are often missing from EHRs, for example, information on 

patient lifestyle and behavior (e.g. diet, exercise, and environmental exposures), and 

medication compliance (Table 1). Family health history, which plays a critical role in 

personalized medicine as an indicator of genetic susceptibility to disease (Guttmacher et al., 

2004), can be inconsistent, sparse, or inaccurate as the acquisition of accurate and detailed 

family history in clinical practice is a timeconsuming and cumbersome process. Innovative 

patient-facing tools have been developed to improve the collection of family history 

information in EHRs, such as the web-based U.S. Surgeon General’s My Family Health 

Portrait (https://familyhistorv.hhs.gov) and others (Li et al., 2019; Orlando et al., 2013), but 

these have yet to be implemented widely across health systems. Increasingly, personal health 

records, containing health information generated (e.g. via mobile health devices) and 

maintained by patients, are being used to supplement data in EHRs (Roehrs et al., 2017). 
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Over time, with improved integration of genomic and other data into EHRs, a fuller picture 

of personal health may emerge.

In addition to storing digitized health data, EHRs have the ability to support other care-

related activities, such as clinical decision support (CDS), either directly or indirectly by 

interfacing with other health information technology systems. CDS is considered a key 

functionality of health information technology that builds upon EHRs to provide individuals 

involved in clinical care processes with pertinent knowledge at appropriate times, in order to 

improve care quality, patient safety, and health outcomes (see https://www.healthit.gov/

topic/safety/clinical-decision-support). Examples of CDS interventions include 

computerized alerts and reminders, condition-specific order sets, and clinical guidelines, 

which are intended to enhance (but not replace) clinical decision-making and reduce errors. 

CDS is increasingly used to support the integration of genomic information into clinical 

care, for example, drug related CDS systems can be extended to include drug-gene 

interaction information (Dolin et al., 2018). Newer Artificial Intelligence (AI)-based 

services, such as those introduced by IBM, Google, Amazon, and other companies looking 

to invest in healthcare, may provide more sophisticated forms of CDS by gathering and 

analyzing massive amounts of data across health systems to make personalized, data-driven 

predictions at the point-of-care. The burgeoning integration of AI into clinical care is a 

promising research area; however, translating technical success in AI-driven analytics into 

meaningful clinical impact remains challenging (The Lancet, 2018).

As EHRs are adapting to empower personalized medicine implementation, they are also 

enabling new paradigms of genomic discovery and biomedical research embedded in health 

systems. However, EHR data are collected for clinical and billing purposes, not for research, 

which poses additional challenges to this secondary use. Challenges to using EHRs for 

research include data inaccuracy, missingness, and bias (Hersh et al., 2013; Sutherland et al., 

2016). For example, the absence of a laboratory test in the EHR should not be considered the 

same as a negative result. Patient factors and provider preferences may influence EHR data 

elements, contributing to this bias. To address some of these challenges, the field of clinical 

informatics has evolved to generate tools and techniques for the secondary use of EHR data 

(Embi and Payne, 2009; Greenes and Shortliffe, 1990), and increasingly sophisticated 

strategies to effectively leverage EHRs for personalized medicine research are emerging 

(Pendergrass and Crawford, 2019). For example, by applying NLP approaches, researchers 

have been able to detect hepatic decompensation from findings described in unstructured 

text contained in radiology reports (Garla et al., 2011). In addition, various elements of 

EHRs can be mined creatively, for example using patients’ emergency contact information 

to infer pedigrees and estimate disease heritability (Polubriaginof et al., 2018). Finally, 

applications of a form of AI called deep learning focusing on types of medical images 

typically stored in EHRs, have shown improvement in the analysis of skin cancer images 

(Esteva et al., 2017) and diagnosis of diabetic retinopathy (Gulshan et al., 2016). As long as 

the limitations of EHRs are understood, opportunities for using real-world patient data to 

drive translational genomic research and personalized medicine are immense.
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The Intersection of Genomic Research and EHRs

The proliferation of EHR-linked biobanks for personalized medicine research and 

implementation has been facilitated by the close collaboration between government funders, 

health systems, and industry partners. Some of the first population-scale biobanks are 

deCODE genetics in Iceland, which is currently a subsidiary of Amgen, and the Estonian 

Genome Center at the University of Tartu’s biobank, with many new biobanks emerging 

worldwide over the last twenty years (Figure 1 and Supplementary Table 1). In the U.S., the 

National Human Genome Research Institute (NHGRI) set forth a 20-year plan leveraging 

genomics and EHRs to chart a course for bringing genomics into clinical care (Green et al., 

2011). One NHGRI-established program is the Electronic Medical Records and Genomics 

(eMERGE) Network, launched in 2007, which links biobanks to EHRs at multiple sites to 

perform genomic research embedded in health systems and establish best practices that 

replicate across health systems (Gottesman et al., 2013; McCarty et al., 2011). Some 

biobanks in large academic centers or national health systems partner with industry, for 

example the collaboration of the Geisinger MyCode Biobank (Dewey et al., 2016b), Mount 

Sinai BioMe Biobank (https://www.mountsinai.org/about/newsroom/2016/mount-sinai-

health-system-launches-collaboration-with-the-regeneron-genetics-center), and UK Biobank 

(http://www.ukbiobank.ac.uk/2018/01/regeneron-announces-major-collaboration-to-exome-

sequence-uk-biobank-genetic-data-more-quickly/) with the Regeneron Genetic Center 

(RGC; Regeneron Pharmaceuticals Inc) to support exome sequencing of their respective 

biorepositories, and Vanderbilt University’s BioVU Biobank collaboration with Google to 

develop infrastructure for data collection and research. In addition, large academic health 

system or governments often make significant institutional investments, even when the direct 

downstream economic benefits are not always clear, recognizing the potential for 

personalized medicine to make real and lasting benefits for health and healthcare.

The models in which health system data may be used to support personalized medicine 

research are varied, and there are special ethical and scientific (Hersh et al., 2013; 

Sutherland et al., 2016; Wolford et al., 2018) considerations to take into account when 

linking genomic data with EHRs. For example, participants in biobanks typically volunteer 

under broad informed consents, as EHRs are expected to add data types over time, and all 

possible uses of participants’ data are often unknown at the time of joining. Furthermore, 

protected health information can be challenging to strip completely from EHRs when 

synthesizing data for research purposes, particularly from free text and images, requiring 

special regulation models that may restrict some access (Boyd et al., 2007). Increasingly, 

biobanks are being built with recontact in mind for future research or for the return of 

genomic results to participants (Schwartz et al., 2018), and some newer biobanks operate 

under a model of continuous engagement and partnership with participants (Collins and 

Varmus, 2015). A cornerstone of genomic research using EHRs is the ability to replicate 

findings across different health systems, populations, and clinical contexts. To facilitate this, 

some biobanks have an open sharing model, such as the UK Biobank, who have released 

genomic and clinical data for nearly 500,000 participants freely to the research community 

via an application process (https://www.ukbiobank.ac.uk/). Others, require specific 

collaborations for access, but may make analytical results freely available, such as the 
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Michigan Genomics Initiative PheWeb server (http://pheweb.sph.umich.edu/) and the 

Stanford Global Biobank Engine (https://biobankengine.stanford.edu/).

Mining EHRs for clinical research has created both rich opportunities and several challenges 

for the genetics community. In typical cohort-based GWAS, one or a few related diseases or 

traits (termed phenotypes) are studied at a time. However, access to longitudinal clinical data 

from large numbers of patients via EHRs means that all variants can be tested against 

thousands of phenotypes at myriad time points at once. This all-against-all strategy is a 

powerful means for genomic discovery in both hypothesis-driven and hypothesis-generating 

ways. It can also help to identify variants that have pleiotropic effects, for example a recent 

study in the Biobank Japan Project showed over 300 pleiotropic variants linked to 53 

biomarkers (Kanai et al., 2018). Furthermore, Mendelian randomization studies using 

biobanks can be used to better understand the relationship between biomarkers and disease 

risk (Au Yeung et al., 2018). Alternatively, participants can be stratified by a single variant, a 

method called Phenome-Wide Association (PheWAS) (Denny et al., 2010), to gain a better 

understanding of clinical impact and comorbidities associated with that variant. Recent 

analysis has demonstrated how combining genomic and EHR data can enable partially 

automation of the diagnosis of genetic disease (Son et al., 2018). As mentioned, EHR data is 

amenable not only to cross-sectional, but also longitudinal approaches, for example to 

predict disease progression (Huopaniemi et al., 2014). Novel derived phenotypes can also be 

extracted from EHRs, such as traits related to brain morphology or function that can be 

derived from brain images, which have recently been shown to have a heritable component 

(Elliott et al., 2018). We can expect that EHR-linked biobanks will increasingly be used in 

genomics-driven drug discovery (Abul-Husn et al., 2018; Dewey et al., 2016a; Myocardial 

Infarction Genetics and CARDIoGRAM Exome Consortia Investigators et al., 2016) and 

drug repurposing. However, as mentioned above, issues of data missingness, error, 

harmonization, and ascertainment bias in EHRs have the potential to confound analysis. 

Strategies combining population-based biobanks with specific disease cohorts will further 

improve our understanding of diseases impacted by ascertainment bias due to age (e.g. 

Alzheimer's disease and childhood cancers) or prevalence (e.g. Crohn's disease, ulcerative 

colitis, and Cystic Fibrosis (CF)). There are also several statistical challenges to overcome, 

including correctly calibrating models of association, and developing methods that can 

operate over large samples sizes and data complexity. Method development to handle the 

computational and statistical challenges in genome-linked EHRs is a very active area of 

research (Wolford et al., 2018).

There are several pitfalls when considering how findings from this type of research will 

translate to real-world clinic populations. One of the most obvious is that participants in 

EHR-linked biobanks are predominantly of European ancestry (Figure 1). Of the 

approximately 5 million participants enrolled in large population-based biobanks around the 

world in 2019, 68% are of European ancestry, 22% are East Asian, and 10% are of other 

non-European ancestry (Supplementary Table 1). This is not surprising, as a similar bias is 

seen in cohort-based GWAS research (Popejoy and Fullerton, 2016). This is a particularly 

pernicious problem as (1) differences in disease burden among ancestrally diverse 

populations are a major cause of health disparities (http://www.cdc.gov/minorityhealth/

OMHHE.html) and (2) the vast majority of human genomic variation is expected to be 
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population private (1000 Genomes Project Consortium et al., 2015). The latter is a challenge 

for interpreting genetic testing, even for very well characterized genetic diseases. For 

example, in the U.S., non-white newborns are more likely to get a false negative CF genetic 

diagnosis compared to white babies, mainly because we have less understanding of CF-

causing variants in non-white populations (Pique et al., 2017). By focusing the majority of 

our genomic research efforts on a narrow slice of humanity, we miss the opportunity for 

discovery of disease-causing variants that have arisen to appreciable frequency in 

understudied populations. A recent study in a diverse biobank in New York City (the BioMe 

Biobank) demonstrated that the variant underlying a little-known recessive genetic disease, 

Steel Syndrome, segregates commonly in populations of Puerto Rican ancestry (Belbin et 

al., 2017). Studies like this empower a better understanding of the natural progression of 

diseases, which populations are at risk, and the development of genetic testing and 

screening. Overall, there is a general consensus that properly powered multi-factorial disease 

studies will require genetic analysis of individual-level genomic data from hundreds of 

thousands to millions of individuals across diverse populations. U.S.-based programs like 

the Million Veteran Program (MVP) (https://www.research.va.gov/mvp/), AoURP (https://

allofus.nih.gov/), and Kaiser Permanente Research Bank (https://

researchbank.kaiserpermanente.org/), will add to diversity, as too will emerging national 

personalized medicine programs in global regions like South America, Africa, the Middle 

East, and South East Asia (Manolio et al., 2015; Stark et al., 2019).

From Research to Clinical Care

Advances in genomic technology and research have led to rising expectations for genomics 

to widely impact clinical care and public health. However, it can take many years for 

genomic discoveries to directly benefit patients. The reasons for this include lack of 

infrastructure to integrate genomics into existing clinical workflows, insufficient evidence of 

clinical utility, and concerns about cost and reimbursement (Sperber et al., 2017). Additional 

healthcare provider-related barriers include an unwillingness to adopt new practices, and 

lack of genomic knowledge and training (Eden et al., 2016; Feero and Green, 2011; Rohrer 

Vitek et al., 2017). To address these challenges, implementation science, the study and 

application of appropriate methods to promote the integration of research findings into 

healthcare policy and practice, is increasingly being applied to genomics. The convergence 

of implementation science approaches with learning healthcare systems (i.e. healthcare 

systems that continuously self-study and improve through data capture and analytics 

embedded in daily practice) seeks to enable faster integration of genomics knowledge and 

personalized medicine into clinical practice (Chambers et al., 2016). In the U.S., the NHGRI 

Clinical Sequencing and Evidence-generating Research (CSER) and Implementing 

Genomics in Practice (IGNITE) Networks both focus on supporting strategies for 

implementing genomics in healthcare and understanding the impact on health systems 

(Green et al., 2016; Weitzel et al., 2016). Additionally, both programs have an emphasis on 

medically underserved populations, promoting the reach of personalized medicine to an 

increasing proportion of the U.S. population (Amendola et al., 2018). Through these and 

other programs, various genomic education strategies for healthcare providers have been 

applied to diverse clinical settings (Rohrer Vitek et al., 2017; Sperber et al., 2017). Efforts to 
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implement genomic medicine in real-world clinical settings are essential to laying the 

foundation for a personalized medicine transformation of health care.

Pharmacogenomics (PGx), or the use of genomic information to predict drug response, has 

been one of the earliest success stories for EHR-driven personalized medicine research and 

implementation. Genetic variants can either alter a drug’s pharmacodynamics, including 

absorption, distribution, metabolism or elimination, or its pharmacokinetics, for example by 

modifying a drug target (Relling and Evans, 2015). In the clinic, PGx can help identify drug 

responders and non-responders, avoid adverse events, and optimize drug dose. For example, 

interindividual variability in response to clopidogrel, a commonly used antiplatelet drug, is 

explained in part by the cytochrome P450 enzyme CYP2C19, in which loss-of-function 

variation increases risk of adverse clinical outcomes (Mega et al., 2010). This has prompted 

practice guidelines for CYP2C19 genome-directed antiplatelet therapy (Scott et al., 2013). 

Global initiatives, like the U.S.-based Pharmacogenomic Research Network (https://

www.pgrn.org/), have helped spur PGx discoveries that are starting to be used to personalize 

the selection and dosing of medications in individual patients. Today, although less than 10% 

of published GWAS have focused on PGx (Giacomini et al., 2017), over 200 drugs have 

PGx information included in their Food and Drug Administration (FDA)-approved labels, or 

“black box warnings” that encourage genetic testing where possible, and may include 

specific actions to be taken based on an individual’s genetic variants (https://www.fda.gov/

drugs/scienceresearch/ucm572698.htm). In addition, there are a growing number of peer-

reviewed, evidence-based clinical practice guidelines for PGx implementation, such as those 

published by the Clinical Pharmacogenetics Implementation Consortium (Caudle et al., 

2014). Therefore, the promise of PGx for broadly implementing personlized medicine is 

great, especially as over 90% of individuals are estimated to be impacted by PGx variation 

(Dunnenberger et al., 2015; Van Driest et al., 2014).

To be used effectively in clinical care, PGx information requires rapid return of results, 

ideally at the point-of-care. A number of PGx implementation programs have explored 

models to disseminate PGx-aided clinical decision-making by coupling PGx testing with 

CDS through EHRs (Herr et al., 2015). This approach requires preemptive clinical PGx 

testing of prospective or biobank patients, depositing genomic information into EHRs, and 

alerting prescribers at the point-of-care through CDS when a drug is ordered for a patient 

with an at-risk genetic variant (Abul-Husn et al., 2014). The use of CDS in this context 

enables the delivery of evidence-based, genome-guided prescribing recommendations 

through the EHR with minimal disruption to clinical workflows. Although several pilot 

programs to implement PGx via EHRs are underway at large medical centers (Dunnenberger 

et al., 2015), many barriers exist for scaling this model across health systems including 

effectively integrating PGx data with EHRs, improving PGx knowledge in healthcare 

providers, and avoiding the overuse of CDS that can lead to burnout (Hicks et al., 2016; 

Sperber et al., 2017). The lessons from PGx implementation are a harbinger for challenges 

that have been or will be faced by other programs seeking to integrate genomics broadly in 

health systems, particularly in arenas where providers lack genomic expertise and support 

infrastructure (Manolio et al., 2015; Sperber et al., 2017).
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Genomic Screening for Preventive Health

Today, there are growing arguments for the use of genomic screening in preventive health, 

even though there remain some concerns about its widespread implementation in routine 

clinical care (Evans et al., 2017; Murray, 2018). For the most part, the first indication that an 

individual harbors a disease-associated variant happens at the time they or a family member 

exhibit signs or symptoms of the disease. In diseases for which preventive measures are 

available, typically termed ‘medically actionable’, genomic screening of asymptomatic 

individuals could have significant public health impact (Berg et al., 2011). For example, an 

estimated 1 to 2 million people in the U.S. are at increased risk of cancer due to Hereditary 

Breast and Ovarian Cancer (HBOC) or Lynch syndrome, and most do not know it. Both 

syndromes have evidence-based guidelines to reduce or prevent cancer risk, and have been 

prioritized by The Centers for Disease Control and Prevention (CDC) as Tier 1 genomic 

applications, i.e. having the highest level of evidence to support their implementation (Green 

et al., 2019; Khoury et al., 2018). In general, a medically actionable genomic result is 

defined as one having an established association with a disease that has important health 

implications and for which proven medical interventions or therapies exist to reduce 

morbidity and mortality (Green et al., 2013; Kalia et al., 2017). Current estimates predict 

3-5% of individuals harbor a medically actionable variant (Dewey et al., 2016b), and 

programs that combine individual screening with cascade testing of family members are 

poised to capture many more affected individuals (Knowles et al., 2017). Therefore, several 

research endeavors are using EHR-linked biobanks to explore the clinical utility and 

demonstrate effective implementation models of genomic screening for preventive health 

and personalized medicine (Williams et al., 2018a).

In 2007, the Geisinger Health System (GHS), an integrated health system in Pennsylvania 

and an early adopter of EHRs, launched an EHR-linked biobank, the MyCode Community 

Health Initiative (Carey et al., 2016), which now has over 200,000 unselected participants 

enrolled and broadly consented for discovery research. The DiscovEHR collaboration 

between GHS and the RGC was established in 2014 to combine exome sequence data with 

de-identified, longitudinal EHR data from MyCode participants. These data are being used 

to fuel genomic research and genome-guided drug discovery efforts (Abul-Husn et al., 2018; 

Dewey et al., 2016b), as well as the GHS GenomeFIRST Medicine program, which returns 

genomic results to MyCode participants (Schwartz et al., 2018). The first 50,000 individuals 

sequenced through the DiscovEHR collaboration have been screened for genomic variants 

associated with HBOC (Manickam et al., 2018) and Familial Hypercholesterolemia (FH, 

another CDC Tier 1 genomic condition) (Abul-Husn et al., 2016), among other conditions. 

Investigators examined the prevalence of expected pathogenic variants – i.e. known 

pathogenic variants as per the clinical genetics database ClinVar (Landrum et al., 2014), and 

predicted loss-of-function variants – in genes known to be associated with FH or HBOC. In 

each case, the number of individuals harboring expected pathogenic variants was larger than 

expected, demonstrating that deploying genomic screening across unselected populations is 

likely to uncover a higher prevalence of genomic conditions than has been previously 

estimated. Furthermore, these studies showed that FH and HBOC are often underdiagnosed. 

Compared with previous clinical care, unselected genomic screening identified 5 times more 
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individuals with genomic risk for HBOC (Manickam et al., 2018), half of whom would not 

have met current screening guidelines (Daly et al., 2017) for referral to genetic counseling 

and genetic testing. Similarly, less than a quarter of individuals with FH-associated variants 

would have met pre-sequencing criteria for a clinical diagnosis of FH based on their EHR 

data (Abul-Husn et al., 2016), which is consistent with current estimates that fewer than 10% 

of FH cases in the U.S are identified (Knowles et al., 2017). Overall, these data suggest that 

genomic conditions are likely to be underdiagnosed, and that unselected genomic screening 

would be beneficial in accurately ascertaining individuals with conditions putting them at 

higher risk of cardiovascular and cancer-related morbidity and mortality.

To date, there are not clear guidelines or procedures in the U.S. on reporting medically 

actionable genomic results to research participants, and biobank policies vary on how they 

address the return of genomic results (Jarvik et al., 2014; Wolf et al., 2012). In the 

GenomeFIRST Medicine Program, exome sequence data are analyzed for variants in 80 

genes for return of results to MyCode participants (Schwartz et al., 2018). These include 59 

genes that the American College of Medical Genetics (ACMG) has recommended for return 

to patients having undergone clinical exome or genome sequencing, even when unrelated to 

the primary indication for testing (Kalia et al., 2017). Genomic results are clinically 

confirmed and then deposited into the EHR. By returning genomic results to MyCode 

participants and following their outcomes, investigators are gaining knowledge about the 

clinical utility of performing population genomic screening for preventive health (Buchanan 

et al., 2018). The opportunity for a single test to screen for many diseases at once poses 

challenges for evaluating its appropriate clinical utility and cost effectiveness. Therefore, a 

major impact of such research would be to generate sufficient evidence for payers to offer 

reimbursement of genomic screening, and turn this into a scalable and sustainable model. In 

the meantime, programs like GenomeFIRST Medicine rely on support from multiple 

internal and external sources, including industry partnerships, grants, institutional funding, 

and philanthropy.

Other health systems are quickly following suite to explore population genomic screening 

initiatives and their impact on clinical care. Color, a consumer-facing genomic testing 

company launched in 2015, has partnered with a number of U.S. health systems to provide 

population screening for genes associated with hereditary cancer risk, cardiovascular disease 

risk, and drug response, as part of the Color Population Health program (https://

www.color.com/health-systems). The Alabama Genomic Health Initiative, a collaboration 

between the University of Alabama at Birmingham and the HudsonAlpha Institute for 

Biotechnology, is funded by the state of Alabama to offer genomic screening to an 

unselected population cohort of adults. Using the Illumina Global Screening Array, it is 

returning results for the ACMG 59 genes to its participants (https://www.uabmedicine.org/

aghi). The Yale Center for Genomic Health recently announced their genomic medicine 

project, partially funded by the state of Connecticut, that intends to recruit 100,000 

participants into a research biobank that will offer clinical exome sequencing and the return 

of actionable genomic results (https://www.genomeweb.com/clinical-sequencing/yale-

launch-large-scale-genomic-medicine-project). Other existing EHR-linked biobanks are 

piloting programs to return results to participants, including the BioMe Biobank and MVP 

(Supplementary Table 1). Outside the U.S., countries like Estonia, Denmark, Japan, and 
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Qatar are undertaking population-based genomic screening programs offering return of 

results to participants (Stark et al., 2019). As global investments in the billions of dollars are 

being made to integrate genomics into healthcare, we should expect that genomic 

applications of personalized medicine, including PGx and preventive health, will scale 

broadly in many health systems.

The Future of Personalized Medicine

We are in the midst of an acceleration of personalized medicine, driven by a dramatic drop 

in price of genome sequencing, and an explosion in the number of companies offering 

genetic tests. The global genetic testing market is expected to surpass $22 billion by 2024 

(https://www.gminsights.com/pressrelease/genetic-testing-market), and direct-to-consumer 

companies increasingly place genomics into the hands of consumers (Khan and Mittelman, 

2018), changing the way patients and providers approach genetic testing. Several more 

advancements in genomic technology are expected to impact the landscape of genetic testing 

in the near future. Although the majority of current clinical sequencing uses panels or 

exomes, there are an increasing number of pilot programs using whole genome sequencing 

(WGS), which has the potential to capture all classes of genetic variation in one analysis. 

Genomics England, in partnership with National Health Service (NHS) England, has 

successfully implemented WGS at scale in direct healthcare, having completed sequencing 

of 100,000 patients, and their families, with rare diseases or cancer (Turnbull et al., 2018). In 

the U.S., rapid WGS of acutely ill inpatient infants has been shown to reduce morbidity and 

cost of hospitalization (Farnaes et al., 2018). However, there is still much to learn about the 

clinical utility of WGS in clinical settings, and challenges to address, including cost, clinical 

interpretation, and data storage in health systems (Manolio, 2017). At the time of this 

writing, a number of long-read sequencing technologies are reducing in cost (i.e. PacBio, 

10X Genomics), with the promise of improved understanding of the order and structure of 

genomic rearrangement, which are hard to capture with next generation technology. If these 

technologies are successful in entering the clinical domain more broadly, they could increase 

the diagnostic yield for genetic diseases. Other technical hurdles will be overcome as the 

scientific community moves toward pan-ethnic reference genomes, large databases of 

publicly available population-scale variants (Lek et al., 2016), and deepening clinical genetic 

databases (Landrum et al., 2014; Rehm et al., 2015). However, even as genomic testing 

improves in accuracy and validity, we expect that we will continue to face challenges in 

genomic test interpretation, understanding, and communication.

We can also expect genomics might enter new arenas in medicine, for example for 

predicting lifetime risk for complex diseases. Because complex diseases often involve 

multiple underlying genetic and environmental factors, genomic prediction for these diseases 

is more complicated and thought to be less useful clinically (Manolio et al., 2009). However, 

thanks to breakthroughs from very large GWAS, ‘polygenic risk scores’ (PRS), which 

aggregate large numbers of genetic variants in a single test for prediction, are gaining 

accuracy. PRS have been recently shown to predict some complex diseases, such as breast 

cancer and coronary artery disease, reaching similar accuracy as tests for rare pathogenic 

variants for those diseases (Khera et al., 2018; Shieh et al., 2016). As GWAS continue to 

progress, accuracy of these scores are anticipated to increase (Witte et al., 2014). PRS can be 
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performed across multiple diseases using low cost technology, and can provide information 

in addition to lifestyle and family history, to identify high-risk individuals in the general 

population. However, many challenges exist for translating these findings into clinical care, 

particularly as it is not clear how well PRS will work in real-world clinical settings. Several 

clinical trials are underway to evaluate how PRS affect management for some complex 

diseases like breast cancer (https://clinicaltrials.gov/ct2/show/NCT03688204). There is 

however accruing evidence to suggest that PRS may not transfer well across populations 

(Martin et al., 2017). Early applications of PRS show greater accuracy of prediction in 

European populations compared to other populations (Martin et al., 2019). This skew has the 

potential to exacerbate current health disparities. To move personalized medicine forward 

ethically, predictive analytics for complex diseases must be developed in a way that proffers 

equitable clinical utility for all populations.

Personalized medicine implementation will increasingly rely on EHRs to store vast amounts 

of genomic data and appropriately integrate relevant genomic information into clinical care. 

However, many developing countries lack the robust healthcare and information technology 

infrastructure to broadly implement EHRs. Even within the U.S., healthcare settings that 

have not yet adopted EHRs, such as small and rural hospitals, represent patient populations 

with the least access to genomics and personalized medicine. This disparity poses a 

challenge to the broad representation of diverse populations in genomic research and 

personalized medicine implementation. AoURP is making a concerted effort to include 

diverse populations to advance health for all, through outreach to underserved communities 

via mobile education and enrollment centers. The Genomic Medicine Alliance is a global 

academic research network that encourages collaboration and harmonization of genomic 

research activities between developed and developing countries (Cooper et al., 2014). For 

personalized medicine to globally impact clinical care, it is becoming more apparent that 

international, collaborative efforts are needed to supplement the current one-off, local, 

implementation efforts. The Global Alliance for Genomics and Health (GA4GH), which 

aims to promote and facilitate data sharing in genomic research (Hayden, 2013), and the 

Global Genomic Medicine Collaborative (G2MC), which aims to develop and disseminate 

best practices for global genomic medicine implementation (Manolio et al., 2015), have 

established the International 100K Cohort Consortium (IHCC) in 2018 to coalesce genomic 

data from large unselected population cohorts from around the world (https://

ihcc.g2mc.org/). These efforts promote universally applicable frameworks to understand 

how complex genomics information can successfully be implemented in health systems.

Fundamental discoveries elucidating the genomic factors underlying disease over the past 

decades have yielded powerful engines of knowledge, and an enormous potential to benefit 

patients. Substantial investments in the coming decade to integrate this complex information 

into routine clinical care are likely to transform the field of medicine as we know it today. 

Given that the delivery of healthcare is increasingly dependent on EHRs, we are likely to see 

an evolution in how patients and providers engage with healthcare data. Emerging paradigms 

for leveraging genomic information, combined with other biological data, AI, and robotics, 

in health systems will empower the next era of personalized medicine.
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Figure 1: 
Selected population-based biobanks with current or planned genomic data linked to EHRs 

and ≥ 20,000 enrolled participants. The x-axis indicates the year in which enrollment started 

(information obtained from personal communication, press releases, recent publications or 

biobank websites; Supplementary Table 1) and the y-axis indicates the proportion non-

European ancestry participants in each biobank. The size of the solid circles indicates 

sample size of enrolled participants in bins of 20K-100K, >100K-500K, and >500K. Color 

of the solid circles indicates region of the world in which the biobank is enrolling (per the 

colored map of the world). Biobanks are labeled by name and those indicated with an 

asterisk currently have or plan programs to return genomic results to participants.
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Table 1.

Structure, categories, and examples of patient-level data available in EHRs

Structure and Availability of 
EHR
Data

Categories of Data* Examples of Data and Data Standards

Structured Demographics Age, gender, race/ethnicity, contact information

Vital Signs Height, weight, heart rate, blood pressure, temperature

Allergies Environmental and drug allergies, adverse drug reactions

Immunization status Vaccinations and dates obtained

Prescriptions and 
medications

Past and current medications, dosage, and frequency; RxNorm codes

Laboratory results Longitudinal laboratory measures; LOINC codes

Provider order entries Laboratory tests, imaging, and other studies ordered, referrals to 
specialists

Diagnosis codes International Classification of Diseases (ICD) 9 and 10 codes

Procedure codes Current Procedural Terminology (CPT) codes

Semi-structured or mixed (e.g. 
unstructured text organized into 
pre-defined sections)

Problem list Up-to-date list of important health problems, including diagnoses, 
symptoms, physical findings, clinical test findings

Personal history Past medical, surgical, obstetric, developmental, social histories

Family history Medical history of family members

Clinical test reports Interpretations of laboratory, radiology, pathology, and other tests

Unstructured Clinical notes Progress note, consultation, hospital admission note, discharge summary, 
etc. Free-text narratives of clinical encounters, including provider thought 
and decision-making processes

Other Imaging data Radiology: X-rays, ultrasounds, computerized tomography (CT) scans, 
magnetic resonance imaging (MRI) scans

Endoscopy

Echocardiography and electrocardiography (ECG)

Scanned documents Genomic test results; pedigrees; medical records and test results from 
external sources

Inconsistent/missing from EHRs Family history Medical history of family members, including age of onset and severity; 
Pedigree

Medication compliance Prescriptions filled and taken at correct dose and frequency

Exposures Tobacco, pollution, radiation, hazardous chemicals (e.g. pesticides)

Lifestyle and behavior Diet, exercise, consumption of alcohol, tobacco products, recreational 
drugs, non-prescribed medications, supplements, natural/herbal remedies

*
This is a non-exhaustive list of common EHR data categories. Different data structures may exist within categories, and vary between EHRs.

Abbreviations: LOINC, Logical Observation Identifiers Names and Codes
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