Skip to main content
. 2019 Dec 18;20:726. doi: 10.1186/s12859-019-3284-5

Table 2.

Evaluation of different embedding methods in various CV schemes

Traditional CV Drug-wise CV Pairwise CV Time-slice CV
Embedding ML Model AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC
RDF2Vec Logistic Regression 0.78 0.71 0.78 0.76 0.69 0.76 0.73 0.66 0.74 0.75 0.68 0.76
CBOW Naive Bayes 0.68 0.63 0.70 0.68 0.63 0.70 0.68 0.63 0.70 0.71 0.67 0.73
Random Forest 0.92 0.85 0.92 0.79 0.69 0.78 0.75 0.64 0.74 0.80 0.69 0.80
RDF2Vec Logistic Regression 0.79 0.72 0.79 0.77 0.70 0.77 0.75 0.68 0.75 0.76 0.69 0.76
SG Naive Bayes 0.76 0.68 0.74 0.75 0.68 0.74 0.75 0.67 0.73 0.78 0.72 0.78
Random Forest 0.92 0.85 0.93 0.81 0.71 0.80 0.76 0.63 0.75 0.80 0.68 0.80
TransE Logistic Regression 0.78 0.70 0.76 0.73 0.67 0.73 0.72 0.67 0.72 0.75 0.68 0.76
Naive Bayes 0.75 0.69 0.73 0.72 0.68 0.71 0.72 0.68 0.71 0.76 0.72 0.76
Random Forest 0.90 0.83 0.91 0.76 0.69 0.77 0.73 0.64 0.73 0.77 0.65 0.78
TransD Logistic Regression 0.74 0.68 0.74 0.74 0.67 0.74 0.72 0.66 0.72 0.74 0.70 0.75
Naive Bayes 0.72 0.68 0.71 0.72 0.67 0.71 0.72 0.67 0.71 0.73 0.70 0.73
Random Forest 0.91 0.84 0.91 0.77 0.69 0.77 0.73 0.64 0.73 0.78 0.68 0.78

Bio2RDF DrugBank knowledge graph and DDIs from DrugBank v5 were used in the evaluation. We considered these CV settings: traditional CV, disjoint CV (drug-wise, pairwise) and time-slice CV. The settings are explained in the Evaluation section. (Bold: best score)