Table 2.
Traditional CV | Drug-wise CV | Pairwise CV | Time-slice CV | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Embedding | ML Model | AUPR | F1 | AUC | AUPR | F1 | AUC | AUPR | F1 | AUC | AUPR | F1 | AUC | |||
RDF2Vec | Logistic Regression | 0.78 | 0.71 | 0.78 | 0.76 | 0.69 | 0.76 | 0.73 | 0.66 | 0.74 | 0.75 | 0.68 | 0.76 | |||
CBOW | Naive Bayes | 0.68 | 0.63 | 0.70 | 0.68 | 0.63 | 0.70 | 0.68 | 0.63 | 0.70 | 0.71 | 0.67 | 0.73 | |||
Random Forest | 0.92 | 0.85 | 0.92 | 0.79 | 0.69 | 0.78 | 0.75 | 0.64 | 0.74 | 0.80 | 0.69 | 0.80 | ||||
RDF2Vec | Logistic Regression | 0.79 | 0.72 | 0.79 | 0.77 | 0.70 | 0.77 | 0.75 | 0.68 | 0.75 | 0.76 | 0.69 | 0.76 | |||
SG | Naive Bayes | 0.76 | 0.68 | 0.74 | 0.75 | 0.68 | 0.74 | 0.75 | 0.67 | 0.73 | 0.78 | 0.72 | 0.78 | |||
Random Forest | 0.92 | 0.85 | 0.93 | 0.81 | 0.71 | 0.80 | 0.76 | 0.63 | 0.75 | 0.80 | 0.68 | 0.80 | ||||
TransE | Logistic Regression | 0.78 | 0.70 | 0.76 | 0.73 | 0.67 | 0.73 | 0.72 | 0.67 | 0.72 | 0.75 | 0.68 | 0.76 | |||
Naive Bayes | 0.75 | 0.69 | 0.73 | 0.72 | 0.68 | 0.71 | 0.72 | 0.68 | 0.71 | 0.76 | 0.72 | 0.76 | ||||
Random Forest | 0.90 | 0.83 | 0.91 | 0.76 | 0.69 | 0.77 | 0.73 | 0.64 | 0.73 | 0.77 | 0.65 | 0.78 | ||||
TransD | Logistic Regression | 0.74 | 0.68 | 0.74 | 0.74 | 0.67 | 0.74 | 0.72 | 0.66 | 0.72 | 0.74 | 0.70 | 0.75 | |||
Naive Bayes | 0.72 | 0.68 | 0.71 | 0.72 | 0.67 | 0.71 | 0.72 | 0.67 | 0.71 | 0.73 | 0.70 | 0.73 | ||||
Random Forest | 0.91 | 0.84 | 0.91 | 0.77 | 0.69 | 0.77 | 0.73 | 0.64 | 0.73 | 0.78 | 0.68 | 0.78 |
Bio2RDF DrugBank knowledge graph and DDIs from DrugBank v5 were used in the evaluation. We considered these CV settings: traditional CV, disjoint CV (drug-wise, pairwise) and time-slice CV. The settings are explained in the Evaluation section. (Bold: best score)