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Abstract

A comprehensive map of the structural connectome in the human brain has been a coveted 

resource for understanding macroscopic brain networks. Here we report an expert-vetted, 

population-averaged atlas of the structural connectome derived from diffusion MRI data (N=842). 

This was achieved by creating a high-resolution template of diffusion patterns averaged across 

individual subjects and using tractography to generate 550,000 trajectories of representative white 

matter fascicles annotated by 80 anatomical labels. The trajectories were subsequently clustered 

and labeled by a team of experienced neuroanatomists in order to conform to prior 

neuroanatomical knowledge. A multi-level network topology was then described using whole-

brain connectograms, with subdivisions of the association pathways showing small-worldness in 

intra-hemisphere connections, projection pathways showing hub structures at thalamus, putamen, 

and brainstem, and commissural pathways showing bridges connecting cerebral hemispheres to 

provide global efficiency. This atlas of the structural connectome provides representative 

organization of human brain white matter, complementary to traditional histologically-derived and 

voxel-based white matter atlases, allowing for better modeling and simulation of brain 

connectivity for future connectome studies.
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Introduction

The organization of the structural connections in the human brain determines how neural 

networks communicate, thereby serving as a critical constraint on brain functionality and 

providing potential etiology for clinical pathology (Bota et al., 2015; Sporns, 2014). 

Characterizing this structural organization has relied on either histological slides or 

neuroanatomically-validated atlases based on individual subjects (Amunts et al., 2013; Ding 

et al., 2016); however, a comprehensive population-averaged 3-dimensional (3D) structural 

connectome at the macroscale level has yet to be constructed. A population-averaged 

connectome is critical for demonstrating representative topological interconnectivity in the 

general population, a stated objective of the national investment in the Human Connectome 

Project (Setsompop et al., 2013; Van Essen et al., 2013). If achieved, such a map of the 

structural connectome could augment existing histological and single-subject atlases, thus 

allowing for robust modeling and simulation in both empirical and theoretical studies.

To date, diffusion MRI is the only non-invasive tool for mapping the 3D trajectories of 

human macroscopic white matter pathways (Fan et al., 2016; McNab et al., 2013), with 

preliminary success at resolving the normative pattern of several major white matter 

pathways (Catani et al., 2002; Guevara et al., 2012; Mori et al., 2009; Mori et al., 2008; Peng 

et al., 2009; Thiebaut de Schotten et al., 2011). This has been realized by resolving local 

fiber orientations at the voxel level and delineating entire axonal trajectories by 

implementing a stepwise tracking algorithm (Basser et al., 2000; Mori et al., 1999; Wedeen 

et al., 2012). Nonetheless, there are several caveats to the success of diffusion MRI fiber 

tracking, including the identification of false tracts and suboptimal coverage of small 

pathways or those with complex geometry (Reveley et al., 2015; Thomas et al., 2014). 

Indeed, the percentage of valid connections can range from 3.75% to 92% due to differences 

in reconstruction methods and tracking algorithms (Maier-Hein et al., 2016). Improving the 

quality of resolved fiber pathways using diffusion MRI can be achieved by high-angular-

resolution modalities (Glasser et al., 2016), a template averaged across a large number of 

subjects to facilitate fiber tracking (Yeh and Tseng, 2011b), and neuroanatomical expertise 

to resolve errors in the automated fiber tracking process (Meola et al., 2015a). Template-

based approaches have been shown to reliably capture the morphological characteristics of 

several major white matter fascicules when validated against cadaver microdissection 

approaches (Fernandez-Miranda et al., 2015; Meola et al., 2016a; Meola et al., 2015a; Meola 

et al., 2016b; Wang et al., 2016b; Wang et al., 2013; Yoshino et al., 2016b). Yet building a 

comprehensive tractography atlas of major and minor white matter pathways is still 

challenged by the problem of false fiber pathways, even when relying on high angular 

resolution data.

Here we constructed a population-averaged structural connectome, including both major and 

minor pathways, using an expert-vetted approach. We employed high-angular-resolution 
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diffusion MRI data (n=842) from healthy subjects in the Human Connectome Project (HCP) 

database (Van Essen et al., 2012). The data from each subject were spatially registered and 

simultaneously reconstructed in the standardized ICBM-152 (ICBM: International 

Consortium for Brain Mapping) template space using q-space diffeomorphic reconstruction 

(QSDR)(Yeh and Tseng, 2011b). QSDR allows for aggregating diffusion data into an 

averaged template of voxelwise diffusion distributions while preserving fiber continuity after 

nonlinear deformation to enable template space fiber tracking. The averaged diffusion 

pattern of the entire sample is thus representative of non-pathological structural 

characteristics within healthy subjects. Based on this template, a total of 550,000 tracks were 

generated using a tracking method that was shown to achieve the highest number of valid 

connections in an open competition (Maier-Hein et al., 2016). Generated tracks were 

subsequently clustered and then labeled by a team of clinical neuroanatomists, capitalizing 

on their previous experience in both cadaveric white-matter and comparative tractography 

techniques (Fernandez-Miranda et al., 2015; Wang et al., 2016b). Furthermore, the tracks 

were categorized into the projection, association, and commissural pathways to generate 

multi-level connectograms illustrating network topology at the macroscopic level. The 

strategy of this approach allowed us to compile a comprehensive atlas of the structural 

connectome in the human brain at the population level, allowing for taxonomical 

identification of pathways that together comprise the full macroscopic structural 

connectome.

Methods

Diffusion MRI acquisitions

We used the minimally-preprocessed data (Glasser et al., 2013) from Human Connectome 

Projects (Q1–Q4 release, 2015) acquired by Washington University in Saint Louis and 

University of Minnesota (Van Essen et al., 2012). A total of 842 subjects (372 males and 470 

females, age 22 ~ 36, demographics available at https://db.humanconnectome.org/) had 

diffusion MRI scanned on a Siemens 3T Skyra scanner using a 2D spin-echo single-shot 

multiband EPI sequence with a multi-band factor of 3 and monopolar gradient pulse. The 

spatial resolution was 1.25 mm isotropic. TR=5500 ms, TE=89.50 ms. The b-values were 

1000, 2000, and 3000 s/mm2. The total number of diffusion sampling directions was 90, 90, 

and 90 for each of the shells in addition to 6 b0 images. The preprocessed data were 

corrected for eddy current and susceptibility artifact. The matrices for gradient nonlinearity 

distortion correction were used in the following diffusion MRI reconstruction.

Q-space diffeomorphic reconstruction

The diffusion data for each subject was registered and reconstructed into the ICBM-152 

space simultaneously using the q-space diffeomorphic reconstruction (QSDR)(Yeh and 

Tseng, 2011b). QSDR combines nonlinear spatial registration and high-angular-resolution 

reconstruction of diffusion data to conserve the diffusible spins and preserve the continuity 

of fiber geometry for fiber tracking. QSDR used the deformation field to directly calculate 

the spin distribution function (SDF) in the standard space. SDF, denoted as ψ u , is the 

empirical distribution of the density of spins that have diffusion displacement oriented at 
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direction u during the diffusion time. The SDF of each voxel were discretely sampled at 642 

directions (8-fold tessellated icosahedron) using the following formula.

ψ u = Jφ Z0∑
i

W i φ r sinc σ 6Dbi < gi,
Jφu
Jφu > (1)

Where i iterates through each diffusion weighted images Wi. φ is a diffeomorphic mapping 

function that maps ICBM-152 space coordinates r to the subject’s space. Jφ is the Jacobian 

matrix of the mapping function, whereas |Jφ| is the Jacobian determinant. Wi(φ(r)) are the 

diffusion signals acquired at φ(r). bi is the b-value, and gi is the direction of the diffusion 

sensitization gradient. σ is the diffusion sampling ratio controlling the detection range of the 

diffusing spins. D is the diffusivity of water, and Z0 is the constant estimated by the diffusion 

signals of free water diffusion in the brain ventricle (Yeh and Tseng, 2011b). The 

nonlinearity of diffusion gradients was corrected using the nonlinear terms of the magnetic 

field obtained from gradient coils. The HCP dataset includes a 3-by-3 gradient deviation 

matrix for each voxel to estimate the effective gradient direction and strength. This matrix 

was applied to the diffusion sensitization gradient, gi in Eq. (1) to correct the effect of 

gradient nonlinearity.

The registration component in QSDR used Fourier basis as the deformation function 

(Ashburner and Friston, 1999). The original setting used a set of 7-by-9-by-7 Fourier basis at 

x-y-z directions, and the computation and memory bottleneck was at the inverse of a 1327-

by-1327 matrix (not a sparse matrix). We increased the resolution of the Fourier basis by 4-

fold (i.e. 28-by-36-by-28 Fourier basis), which required solving an 84676-by-84676 matrix 

for each optimization iteration. Here instead of solving the large matrix using a standard 

Gauss-Jordan method (a complexity of O(n3)), which would increase the computation time 

by a factor of (4×4×4)3=262,144, we used the Jacobi method that allowed for parallel 

processing and could utilize solutions from the previous iteration to speed up the processing. 

This greatly reduced the computation complexity to O(n) and only increased the 

computation time by a factor of 4×4×4=64. The parallel processing further reduced the 

computation time, allowing us to reconstruct the data using multi-thread resources. The FSL 

(FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl) fractional anisotropy (FA) template 

was used as a template for ICBM-152 space, and the subjects’ anisotropy maps were used to 

calculate the deformation parameters. The final SDFs were generated at 1-mm resolution.

The registration accuracy was evaluated by the coefficient of determination (i.e., R2) value 

between each subject and template image. The distribution of the R2 values, as shown in 

Suppl. Figure 1, is skewed with a leftward tail. We therefore looked at subjects with the 

lowest R2 values at this tail for identification of outliers. This allowed us to identify two 

problematic datasets (#173132 and #103515) that were then reported to the HCP 

Consortium. It is noteworthy that we did not use the existing HCP alignment or other high 

accuracy diffeomorphic registration methods in our spatial normalization (Archer et al., 

2017; Peng et al., 2009; Varentsova et al., 2014; Zhang et al., 2011). The alignment of those 

methods has good point-to-point matching; however, QSDR requires sufficient a constraint 

on the Jacobian matrix in the white matter tissue because a large rotation and distortion will 
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disrupt the continuity of fiber geometry across voxels and cause a fiber tracking algorithm to 

fail. The fiber architecture in the white matter can be heavily distorted to match gyral 

foldings. A constraint on the Jacobian matrix will avoid this pitfall and ensure that the local 

fiber directions will present a coherent geometry. The Fourier basis method (Ashburner and 

Friston, 1999) used here intrinsically limits the largest possible rotation and allows for fiber 

tracking in the ICBM-152 space.

Construction of an SDF template

The SDFs of all subjects were then averaged, voxel-by-voxel, to obtain a 1-mm SDF 

template termed HCP-842. Before averaging, the SDFs of each subject were scaled by a 

constant value to ensure that the free water SDFs were normalized to one (Yeh and Tseng, 

2011b). The computation was conducted using the cluster at Center for the Neural Basis of 

Cognition, a joint Institute of Carnegie Mellon University and the University of Pittsburgh. 

The cluster had 24 nodes and 320 CPUs. The total size of SDF data from 842 subjects was 

around 1.5 terabytes (after compression), and the computation took a month of time to 

complete.

Whole-brain tractography

We used a deterministic fiber tracking algorithm that leverages information in the SDF (Yeh 

et al., 2013). Each of the streamlines generated was automatically screened for its 

termination location. A white matter mask was created by applying DSI Studio’s default 

anisotropy threshold (0.6 Otsu’s threshold) to the SDF’s anisotropy values. The mask was 

used to eliminate streamlines with premature termination in the white matter region.

To determine the adequate density for whole-brain seeding, previous work has shown that, 

on average, there are around 3 fiber populations in a 2.4-mm cubic voxel (Jeurissen et al., 

2013). This indicated that at least 3 seeds points are needed for each voxel with a volume of 

2.4-by-2.4-by-2.4 mm3, which is 0.2 seeds per mm3. To meet the minimal requirement, we 

obtained 500,000 whole-brain streamlines in addition to 50,000 streamlines to cover the 

spinal cord connections eliminated by the white matter mask. The total number of 

streamlines achieved an average seeding density of 1.0 seed per mm3, which is 5 times of 

the minimum requirement.

The fiber tracking was conducted using angular thresholds of 40, 50, 60, 70, and 80 degrees 

to capture fiber pathways with different turning morphology. Each angular threshold 

generated 100,000 streamlines, and a total of 500,000 streamlines were obtained. Since the 

white matter mask also removed streamlines connecting to/from the spinal cord, an 

additional set of whole brain tracking was conducted to allow streamlines to terminate at the 

lowest section of the brainstem. The fiber tracking was also conducted using angular 

thresholds of 40, 50, 60, 70, and 80 degrees. Each angular threshold generated 10,000 

streamlines, and a total of 50,000 streamlines were obtained. We used different parameter 

combinations because different fiber trajectories are best resolved by different tractography 

schemes. For example, a larger angular threshold is needed for tracking fiber pathway with 

abrupt turning (e.g. Meyer’s loop at the optic radiation), whereas some projection pathways 
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do not have sharp turning (e.g. corticospinal tracts) and thus can rely on lower angular 

thresholds.

Initial clustering using Hausdorff distance

The tractography was clustered using single-linkage clustering. We measured the Hausdorff 

distance (Huttenlocher et al., 1993; Pujol et al., 2015) between a pair of streamlines X and Y 

as

dH X,Y   =  max maxx ∈ X miny ∈ Y d x,y , maxy ∈ Y minx ∈ X d x,y (2)

X is a set of coordinates, i.e. X={x}, whereas Y is another set of coordinates, i.e. Y={y}. 

d(x,y) calculates the Euclidean distance between two coordinates x and y, and the dH(X,Y) 

calculates the Hausdorff distance between set X and Y. Different merging thresholds were 

tested, and we chose 2-mm as the merging threshold to avoid over-segmentation (shorter 

distance) and over-merging (longer distance). The 500 largest clusters, in terms of track 

counts, were selected because the remaining clusters contained less than 0.01% of the total 

streamlines (i.e. < 50 streamlines). The same cluster selection strategy was applied to our 

second set of the 50,000 streamlines (i.e. the streamlines connecting to/from spinal cords), 

and the first 50 largest clusters were collected. Since each cluster may contain streamlines 

with repeated trajectories, we removed redundant trajectories that are substantially close to 

the one another using a Hausdorff distance of 1 mm.

Expert labeling and examination

The 550 clusters were manually labeled by our neuroanatomy teams, including four senior 

neuroanatomists (JFM, AM, MY, FY) and junior neuroanatomists (DF and SP). The labeling 

was based on evidence from publicly available white matter atlases, existing literature, 

microdissection evidence, and neuroanatomy books (Table S1). The first examination round 

was the manual labeling conducted by 3 neuroanatomists (FY, DF, and SP). Each of the 

neuroanatomists independently inspected the termination locations and connecting routes of 

each of the 550 clusters based on publications listed in Table S1. The 2009a, nonlinear 

asymmetric, ICBM-152 T1-weighted image (The McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill University) (Fonov et al., 2011) was used to assist 

inspection. The anatomical label of each cluster was independently assigned and 

subsequently compared to identify inter-observer differences, including the naming of the 

cluster and whether the cluster is a false one. The inter-observer differences were found in 

20 clusters (3.6% of the clusters), mostly involving the branches and segments of fiber 

pathways, and resolved in a joint discussion between two junior (DF, SP) and two senior 

neuroanatomists (FY, JFM). The clusters with the same neuroanatomy name were grouped 

together to form major fiber bundles. The merged bundles underwent a second round of 

inspection by both senior and junior neuroanatomists to identify missing branches and 

remove false connections. The inspection identified missing branches in anterior 

commissure (olfactory and occipital connections), corticothalamic tract (temporal 

connections), corticostriatal tract (occipital connections), corticobulbar tract, corticopontine 

tract (temporal and occipital connections), and tapetum of the corpus callosum. These 

branches were specifically tracked by placing regions of interest at the target area. The same 
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angular and anisotropy thresholds were used. The seeding density was increased until a 

sufficient number of tracks were generated from the tracking algorithm to cover the regions. 

The final fiber bundles were subsequently categorized into the projection, association, 

commissural, cerebellar, brainstem, and cranial nerve pathways.

The next examination round further checked for other missing minor pathways that require a 

dense sampling to form a bundle. This was done by projecting the fiber bundles back to the 

white matter and looking for areas without track coverage. Using a region-based approach, 

the senior neuroanatomists (MY, AM, and FY) tracked missing minor pathways including 

acoustic radiation, posterior commissure, brainstem pathways such as rubrospinal tract 

(RST), spinothalamic tract (STT), dorsal longitudinal fasciculus (DLF), lateral lemniscus 

(LL), medial lemniscus (ML), and cranial nerves such as CN VII, CN VIII, and CN X. 

These pathways were tracked according to previous microdissection studies (Fernandez-

Miranda et al., 2015; Wang et al., 2016b). The course of the posterior column sensory 

pathway, running within the fascicles gracile and cuneatus toward the primary sensory 

cortex, was manually terminated at the level of the thalamus and labeled as ML. This 

segment in the brainstem corresponds to the second order neurons running from the nucleus 

gracile and cuneatus to the thalamus.

Connectivity matrix, connectogram, and network measures

The expert-vetted tractography was used to generate connectivity matrices. A weighted 

connectivity matrix was quantified using a cortical parcellation based on regions derived 

from the AAL atlas (Table S2). It is noteworthy that our tractography atlas can be readily 

applied to any cortical parcellation atlas, and currently there is no consensus on how network 

nodes should be defined. Here we used only one of the most popular parcellation from the 

AAL atlas to illustrate the network characteristics.

The average of along-track SDF values was used as the connectivity value. The 

connectograms of each fiber bundle and whole brain tracks (both expert-vetted) were 

generated using CIRCOS (http://mkweb.bcgsc.ca/tableviewer/visualize/). The network 

measures such as network characteristic path length, global efficiency, local efficiency, 

clustering coefficient were calculated using the definition formulated in Brain Connectivity 

Toolbox (https://sites.google.com/site/bctnet/). The influence of the projection, association, 

and commissural pathways was calculated by calculating the change of network measures 

(quantified by percentage of the original) after removing the tracks.

The University of Pittsburgh Institutional Review Board reviewed and approved the study by 

the expedited review procedure authorized under 45 CFR 46.110 and 21 CFR 56.11 (IRB#: 

PRO16080387).

Data and Code Availability

The processing pipeline (DSI Studio), SDF data of all 842 subjects, and HCP-842 template 

are available at http://dsi-studio.labsolver.org. The SDF template can be reproduced using 

the HCP data and documentation on the website. The atlas data, including the track 

trajectories and connectograms, are available at http://brain.labsolver.org.
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Results

A high spatial and angular resolution diffusion template of the human brain

Diffusion MRI data from 842 participants were reconstructed in the ICBM-152 space to 

calculate the SDF(Yeh and Tseng, 2011b; Yeh et al., 2010) within each voxel (Fig. 1a). The 

goodness of fit between the normalized image and the template was reported as an R2 (Fig. 

S1). These values ranged from 0.73 to 0.86, and the quantiles were 0.81 (25%), 0.82 (50%), 

and 0.83 (75%), suggesting that the distribution of R2 values were mostly centered around 

0.82, and more than 75% subjects had R2 values greater than 0.80. An SDF is an empirical 

distribution of the density of diffusing water orientations, calculated for each voxel to reveal 

the underlying fiber architectures (Fig. 2a). The SDFs of all subjects were averaged to build 

the HCP-842 SDF template, which represents an average diffusion pattern within a normal 

population (Fig. 1b and Fig. 2a). Figure 2b shows the peak orientations of fibers in each 

voxel, resolved from the group-averaged SDFs, near the corpus callosum crossing at central 

semiovale (red: left-right, green: anterior-posterior, blue: inferior-superior). The SDF peaks 

reflect the local orientation of underlying fiber bundles, and the magnitudes measured at the 

peaks provide anisotropy estimates. The peaks and magnitudes offer the necessary 

information for a fiber-tracking algorithm to delineate long-distance white matter 

trajectories.

Although the group-averaged SDFs appear smoother due to the averaging effect, they are 

still capable of resolving major crossing architectures. The number and percentage of voxels 

that contain more than one fiber orientations are listed in Table 1. These results were 

obtained by re-gridding the template at different resolutions to aggregate information about 

underlying fiber pathways in each voxel. The table shows that after re-gridding at 2-mm3 

and 2.5-mm3 resolution, more than 80% of the white-matter voxels in the HCP-842 template 

had more than one distinct fiber orientation. These percentage values are consistent with 

previous estimates of 60~90% of voxels having multiple fiber orientations when sampled 

and reconstructed at a 2.4mm3 resolution (Jeurissen et al., 2013). It is noteworthy that the 

percentage of multi-fiber voxels dropped substantially at 1.5-mm3 and 1-mm3 resolutions. 

This can be explained by Fig. S2 showing how common branching (red fibers, Fig. S2A), 

turning (green fibers, Fig. S2A), and superimposing (yellow fibers, Fig. S2B) configurations 

can result in multiple fiber populations in 2-mm spatial resolution but not in the 1-mm 

resolution. This is because a larger voxel at 2-mm resolution can include a longer segment of 

tracks (e.g. Fig. S2A) or include a nearby fiber population (e.g. Fig. S2B) that results in 

multiple fiber populations resolved in the voxel.

Qualitatively, the HCP-842 appears to resolve underlying neuroanatomical architecture with 

high fidelity in spatial resolution. Comparing a coronal slice of the HCP-842 (1-mm 

resolution, Fig. 2c) with a similar section from the BigBrain histology image (the 200-

micron resolution version, Fig. 2d), we see that HCP-842 clearly delineates subcortical 

structures such as the hippocampus (HIP), substantia nigra (SN), red nucleus (RN), and 

thalamus (TH). The high spatial resolution of the orientation map is even more apparent at 

the anterior commissure (AC) (Fig. 2e), a small left-right connecting pathway clamped by 

the pre-commissural (PreC) and post-commissural (PostC) branches of fornix that run in the 
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vertical direction (color-coded by blue). The clamping structure formed between AC and 

fornix is a benchmark for examining the spatial resolution of the template. Figure 2e 

resolves AC from the PreC and PostC branches, whereas Figure 2f shows the averaged SDFs 

at the same region depicting the structural characteristics of AC with the PreC and PostC 

branches of the fornix. The ability to resolve branches of fornix from AC reveals the 

intricate sensitivity of the HCP-842 to map detailed brain connections.

Supervised labeling and segmentation of major pathways

To isolate major and minor white matter fascicles, we applied whole-brain fiber tracking to 

the HCP-842 group-average template, producing a total of 550,000 fiber trajectories in the 

ICBM-152 space to achieve an average density of 1 track per voxel (Fig. 1c). A white matter 

mask was used to remove tracks that have premature terminations in the core white matter. 

The remaining whole-brain tracks were then automatically clustered by a single-linkage 

clustering algorithm, generating unique clusters of fiber bundles (Fig. 1d). The trajectories 

that were proximally close to one another were grouped. Each cluster could subsequently 

contain a different number of trajectories based on the anatomical proximity of the tracks. 

Figure 3 shows the largest 40 out of the 550 clusters as an example, where the size of a 

cluster is determined by the number of its containing tracks. Shorter pathways, such as the 

uncinate fasciculus, will receive less seeding counts in the tracking process and thus be 

estimated to have a smaller size. Many track bundles were also represented by more than one 

cluster component. For example, cluster #1 and #38 are both labeled as the corpus callosum. 

A team of clinical neuroanatomists then examined and labeled the clusters according to 

neuroanatomical nomenclature. Table S1 lists all labels used in naming the clusters and the 

relevant neuroanatomy literature used for examination. Label “X” indicates a false track, 

which may arise due to false continuations (Fig. 4a) or premature termination (Fig. 4b). 

Only the 550 largest clusters were used because the false rate (either false continuation or 

premature termination) increased substantially in clusters with a smaller size (Fig. 4c). The 

labeled clusters were subsequently merged according to their neuroanatomical label. 

Missing components of the large fiber bundles were tracked separately and merged to ensure 

completeness as per the literature (Fig. 1e).

The high-angular-resolution quality of the atlas can be appreciated in the corticospinal and 

corticobulbar tracts generated from our pipeline (Fig. 5a). These show a fanning projection 

pathway from the precentral (motor) cortex along the cortical surface that is consistent with 

the anatomical evidence (right, modified from Gray’s Anatomy). The lateral fanning parts 

are known to cross with the horizontally-passing corpus callosum and cannot be reliably 

resolved using the traditional low-angular-resolution approaches due to their limited ability 

to resolve crossing fibers (Chenot et al., 2018). In addition, the coronal view of the corpus 

callosum (Fig. 5b) also shows a widespread fanning pattern, not otherwise trackable using 

the lower-angular-resolution methods. The midline portion of the corpus callosum tracks 

(Fig. 5c) shows matching volume with the ICBM-152 T1-weighted images, suggesting that 

the atlas can also provide volumetric measurements. Thus, the atlas appears to capture more 

complete portions of major pathways that are typically lost using traditional approaches.
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A population-averaged atlas of macroscopic structural connectome

The full atlas of the structural connectome is shown in Fig. 6 (abbreviation listed in Table 

S1) and includes the most comprehensive map of white matter pathways yet reported. This 

includes the projection pathways that connect cortical areas with subcortical nuclei and 

brainstem. Acoustic radiation has not been previously reported in tractography due to the 

complicated crossing pattern of the pathway. The association pathways connect disparate 

cortical areas, including a set of U-fibers (U). The commissural pathways connect the two 

hemispheres and include the corpus callosum, anterior commissure, and posterior 

commissure. Posterior commissure has not been previously reported in tractography. The 

cerebellar pathways include the cerebellar tracts (CB) and peduncles (SCP, MCP, ICP), and 

they provide the major input, output, and internal connectivity of the cerebellum. We were 

even able to resolve several brainstem pathways, such as central tegmental tract (CTT), 

dorsal longitudinal fasciculus (DLF), lateral lemniscus (LL). Finally, we discovered a limit 

of the current spatial resolution, where a set of cranial nerves including CN III, CN VII, and 

CN VIII were successfully identified, but CN I, IV, VI, and IX could not be identified due to 

insufficient spatial resolution. The detailed connective routes of the structural connectome 

atlas are presented in Supporting Information, including projection pathways (Fig. S3), 

association pathways (Fig. S4), commissural pathways (Fig. S5), cerebellar pathways (Fig. 

S6), brainstem pathways (Fig. S7), and cranial nerves (Fig. S8). It is worth noting that 

several cranial nerves cannot be found in the HCP-842 template due to the limitation of its 

spatial resolution. The full atlas, including the track trajectories and connectograms, is 

publicly available at http://brain.labsolver.org.

Neuroanatomical constraints on connective topology

Figure 7 shows region-to-region connectivity matrix weighted by the SDF magnitude along 

the fiber pathways, segmented into the projection, association, and commissural pathways. 

The abbreviations for brain region are listed in Table S2. Higher intensity (white) indicates 

greater SDF magnitude along the pathway.

The connectograms of the structural connectome are illustrated in a multi-level approach 

(Fig. 8). The connectogram of the whole brain pathways illustrates the first level of the gross 

network topology (Fig. 8a, the high-resolution version shown in Fig. S9). The overall figure 

shows a dense network topology, and its network characteristics cannot be readily visualized 

due to the high complexity of the brain network at this level. The connectograms of the 

projection, association, and commissural pathways in Fig. 8b, 8c, and 8d depict the second 

level of the network topology (high-resolution details in Fig. S10), and within this level, the 

connectograms start to reveal important network features. The projection pathway in Fig. 8b 

indicates hub structures at thalamus, putamen, and brainstem, illustrating the role of these 

regions in integrative sensorimotor function between the cerebral cortex and corresponding 

peripheral systems. The association pathway, as shown in Fig. 8c, forms clusters within each 

hemisphere and contributes a substantial amount of clustering coefficient and local 

efficiency (Table 2), elucidating its small-worldness that involves multiple relevant gray 

matter regions. The commissural pathways, as shown in Fig. 8d, serve as a bridge 

connecting both hemispheres and provide global efficiency (Table 2) to integrate information 

across cerebral hemispheres. In Fig. 8e, the connectograms of each fiber bundle are further 
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divided to show the third level of the network topology in much more detail, and the 

illustration reveals a consistent hub formation for different fiber bundles, albeit with an 

alternative connectivity pattern to the cerebral cortex. Fig. 8f also shows clustering topology 

within different cortical areas, whereas Fig. 8g shows bridge-like symmetric structures of 

inter-hemisphere connections. Together, these unique topologies based on the class of fiber 

pathway highlights the rich taxonomy of structural connectome in the human brain that 

reflects unique information processing constraints.

Discussion

Here we present the first complete population-level atlas of the human structural 

connectome and its network topology, delineating fiber pathways within the cerebrum, 

cerebellum, brainstem, and a subset of cranial nerves. The fiber trajectories were generated 

from a group-averaged template of 842 subjects using a fiber tracking algorithm that has 

been shown to minimize tracking errors relative to other methods (Maier-Hein, 2016). Using 

an automated clustering approach, tracks were grouped into small bundles and subsequently 

labeled by a team of clinical neuroanatomists and vetted according to their neuroanatomic 

nomenclature. This combination of optimizing strategies allowed us to construct a high-

quality structural connectome atlas of the human brain. This addresses a critical need in 

connectivity estimates that used to suffer from a high false positive error rate in diffusion 

MRI fiber tracking. The group average further addresses a common concern in conventional 

cadaver studies: whether pathways shown in cadaver dissection can be representative enough 

to the general population. A group-averaged tractography atlas can complement cadaver 

study by offering an overview picture of common brain pathways derived from a large 

population. The atlas will thus serve as a stepping stone for future studies to look into 

individual differences in the structural connectome. To this end, this HCP-842 tractography 

atlas and its associated data set will be made publicly available (http://brain.labsolver.org) to 

promote future connectomic studies and assist neuroscientists to gain insight into the 

structural topology of the human brain.

We should note that several human white matter atlases have been previously released. 

These include voxel segmentations on individual subjects that label the core of major 

pathways (Mori et al., 2009; Mori et al., 2008; Peng et al., 2009; Zhang et al., 2011) or 

tractography atlases based on tracking individual subjects data (Catani et al., 2002; Guevara 

et al., 2012; Thiebaut de Schotten et al., 2011; Zhang et al., 2008). Our atlas expands on 

these currently available resources by providing a comprehensive characterization of 

normative major and minor white matter fascicles constructed from a large sample of 842 

individuals who were imaged using high angular and high spatial resolution diffusion 

acquisitions, allowing for the resolution of multiple fiber populations within a white matter 

region to delineate the intertwining architecture of human white matter. This novel 

population-level description of the structural connectome characterizes both the normative 

3D trajectories of white matter fascicles and delineates how gray matter regions in the 

cerebrum, cerebellum, and brainstem are physically connected by nearly all macroscopic 

white matter pathways. For the first time, this atlas offers structural detail and network 

topology of both large and small pathways, such as the clamping structure between the 
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fornix and the anterior commissure that cannot be discerned from individual studies due to 

lower resolution and signal-to-noise ratio of conventional diffusion MRI.

While overcoming many challenges, our current approach still has its limitations. First, our 

atlas does not address the variability of the fiber pathways across subjects. While it is 

entirely feasible to repeat the fiber tracking procedures for each of the HCP subjects, the 

labeling of 550 clusters of all 842 subjects may require a substantial amount of expert 

efforts. This labor-intensive approach would require several years worth of human labor to 

complete. Thus an automated approach to replace expert labeling would better assist this 

future endeavor, but developing such an automated classifier is well beyond the scope of the 

current study. Another issue we did not address in this study is whether 842 subjects is 

representative enough or whether it could be feasible to get a normative atlas with fewer or 

more subjects. We have previously constructed templates using 60 subjects (Beukema et al., 

2015), 90 subjects (Yeh and Tseng, 2011a), and 488 subjects (Meola et al., 2015b) and 

conducted template-space fiber tracking (Wang et al., 2016a; Wang et al., 2012; Yoshino et 

al., 2016a). There were substantial differences observed between these templates that 

appeared to be due, in large part, to variability in the averaging. Thus with larger samples, 

the estimate of the true population mean should become more stable. Therefore we included 

the most number of subjects from the highest directional resolution data sets that we could at 

the time we started the project (i.e., the 900 subject HCP sample). In addition to issues 

related to individual variability, there could be errors in manual labeling of the clusters, and 

thus there should be better ways to address the inter-observer differences, as we only 

resolved differences by a group discussion with the goal of reaching a consensus on every 

track. This would save some time, but not enough to make this feasible and extensible 

enough to use in applied studies. Of course, there are also controversies in neuroanatomical 

structures (Meola et al., 2015a) that can be further complicated by individual differences. 

Thus, we have made all of the clusters data, their labels, and the entire atlas publicly 

available, thereby allowing for future modifications to improve the atlas as well as the 

development of better tools for automated segmentation.

Moreover, the fiber tracking algorithm used in this study could still have false positive and 

false negative results. While expert assistance may address part of this issue, it cannot handle 

the false negative problem, and there could be missing tracks in our atlas. For example, 

several cranial nerves that are smaller than 1-mm in width were not detected by our method. 

These can only be tracked using images acquired at a much higher resolution. Of course, the 

accuracy of spatial registration can be improved through further algorithmic refinements, 

and other template construction methods could be explored in future work (Archer et al., 

2017; Yang et al., 2017). Also, the spatial registration method used in QSDR only relies on 

anisotropy information; however, it is possible to include structural images or the entire 

diffusion data (Park et al., 2003) to boost the accuracy of the registration method. The 

accuracy of track clustering can also be improved using a more sophisticated method (Siless 

et al., 2018). We should point out, however, that these refinements would only further to 

improve the reliability and resolution of the results reported here, rather than point to a 

critical failing of the approach described here.
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In addition, the expert examination may have its own errors, especially for identifying minor 

pathways and branches. It is also possible that the branching patterns of the white matter 

pathways differ person-to-person, and the population-averaged SDF template for whole-

brain tractography may miss some branches. These missing branches could be obtained by 

applying the same tractography algorithm to the non-averaged or less-averaged datasets. 

Finally, the atlas reveals only three levels of the network topology, as more recent studies 

have focused on detailed subcomponents of the fiber bundles (e.g. SLF I, II, and III)

(Fernandez-Miranda et al., 2015; Wang et al., 2016b). Although the spatial resolution of the 

atlas can be improved, it provides a macroscopic framework for future connectomic studies 

to explore microscopic connections under its categorical system.

Despite these limitations, a vetted atlas of the population-level structural connectome has 

many benefits for clinical, scientific, and educational applications. The atlas can be used to 

derive a representative pattern of network measures to assist graph theoretical analysis of 

clusters and hubs in the brain connectome. It can be used to confirm or explore potential 

cortical connections from functional measures (e.g., functional connectivity), augmenting 

current functional-structural correlative inferences or supplementing prior anatomical 

connectivity expectations in studies that do not have access to individual dMRI data. This, 

for example, may enable future investigations into the correlation of white-matter lesions 

with known gross-white matter structures. Another advantage of the current atlas is that it 

includes a normative template of diffusion distribution across the brain. This may allow for 

future efforts comparing normal diffusion patterns with those from the neurological or 

psychiatric pathologies. Finally, in science education, the atlas is a novel resource 

superseding conventional 2D slice-based histological atlases. The trajectory information 

provides panoramic views on the relative location of each white matter bundle, allowing for 

an in-depth understanding of the white matter structure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow chart of the processing steps used to construct a population-averaged structural 

connectome of the human brain. (a) A total of 842 subjects’ diffusion MRI data were 

reconstructed in a common standard space to calculate the spin distribution function at each 

imaging voxel. (b) The spin distribution functions were averaged to build a template of the 

diffusion characteristics of the normal population. (c) The template was used to guide a fiber 

tracking algorithm and generate a total of 550,000 trajectories. (d) Automatic track 

clustering was applied to cluster trajectories into fiber bundles. (e) A team of experienced 

neuroanatomists manually labeled each cluster and identified false pathways according to 

the neuroanatomy evidence. The clusters with the same labeled were grouped together as an 

atlas of structural connectome. An additional quality check was conducted to ensure 

complete coverage. (f) The atlas was then used to build the connectogram showing the 

connections between brain regions.
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Fig. 2. 
(a) Diffusion MRI allows for quantifying, for each imaging voxel, the orientation 

distribution of the water diffusion (termed spin distribution function, SDF) to reveal the 

underlying structural characteristics of axonal fiber bundles in a color-coded surface (red-

blue-green indicates the orientation at the x-y-z axis, respectively). The protruding points of 

the SDFs indicate the orientation of fiber bundles. (b) The color sticks represent the peak 

orientations on SDFs. The coronal view shows that SDF can resolve crossing fibers at 

central semiovale, a white matter region where the corpus callosum crosses vertical passing 

fibers. The SDFs averaged from a total 842 subjects provide orientations of the local axonal 

connections. The information can be used to drive a fiber tracking algorithm to delineate 

white matter connections. (c) The SDF template of the human brain averaged from 842 

diffusion MRI scans (termed the HCP-842 template) shows structural characteristics of the 

human brain. The magnitude map of the HCP-842 template reveals structures such as 

hippocampus (HIP), thalamus (TH), red nucleus (RN), and substantia nigra (SN), which are 

consistent with the histology image from BigBrain slides (d). (e) The orientation map of the 

HCP-842 template allows for delineating the complicated structures, such as the clamping 

structure between the anterior commissures (AC) and the pre-commissural (PreC) and post-

commissural (PostC) branches of the fornix. The structural characteristics are also illustrated 

by the SDFs of the HCP-842 template in (f).
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Fig. 3. 
The 40 largest clusters (selected from a total of 550 clusters) generated from automatic track 

clustering and their labels assigned by neuroanatomists. False connections are assigned by 

“X”, whereas the others assigned by their corresponding neuroanatomy abbreviations.
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Fig. 4. 
False connections due to (a) false continuation and (b) premature termination identified by 

the neuroanatomists. A false continuation is a common cause of false trajectories and often 

found in regions with two fiber population cross on top of each other. Premature termination 

is often due to a failure in resolving crossing or branching pattern in the white matter. (c) 

The probability of a cluster labeled as “false” increases substantially with decreased cluster 

size. This suggests we can discard smaller clusters as there are mostly false connections.

Yeh et al. Page 20

Neuroimage. Author manuscript; available in PMC 2019 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The angular resolution of the structure connectome atlas illustrated. (a) The corticospinal 

and corticobulbar tracks (left) in the structural connectome atlas present a fanning pattern 

consistent with the known neuroanatomy (right). Mapping this fanning pattern requires high-

angular-resolution scans to resolve the crossing configuration in the middle the pathway. (b) 

The coronal view of the corpus callosum mapped by the atlas shows a wide spreading 

fanning pattern, which cannot be mapped using a low-angular-resolution approach. (c) The 

mid portion of the corpus callosum matches well with the ICBM-152 T1-weighted images, 

suggesting that the track bundles in the atlas have volumes matching the standard template.
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Fig. 6. 
Overview of the population-averaged structural connectome atlas categorized into the 

projection, association, and commissural pathways in addition to cerebellum pathways, 

brainstem pathways, and cranial nerves. Each pathway contains thousands of trajectories 

showing the representative connections of the 842 subjects between brain regions in a 

standard space. The trajectories are color-coded by the local orientation (red: left-right, 

green: anterior-posterior, blue: inferior-superior). This connectome atlas provides normative 

connection routes between brain regions that can facilitate network analysis, simulation and 

modeling.
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Fig. 7. 
The connectivity matrix constructed from the human connectome atlas. The color division 

shows the division of three major track systems—projection (blue), association (green), and 

commissural (red)—in the human brain. The intensity shows the between region 

connectivity quantified the magnitude of the along-track diffusion properties quantified by 

spin distribution functions.
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Fig. 8. 
The multi-level connectograms of the human structural connectome. (a) The first level of the 

overall structural connectome shows a dense connections pattern in the average structure 

connectome. (b) The second level of the connectogram shows the network characteristics in 

each pathway system. The projection pathway forms a hub structure at thalamus, putamen, 

and brainstem. The association pathway is constituted of numerous clusters in the brain 

networks. The commissural pathway has long-range connections between hemispheres that 

provide global efficiency. (c) The third level of the connectogram reveals the network pattern 

of each fiber pathways under the projection, association, and commissural system. The 

connection patterns inherit the characteristics of their belonging pathway system shown in 

the second level connectogram.
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Table 1:

Number of voxels with more than on fiber orientations resolved in different resolutions

Resolution Voxels with more than one fiber orientations* Total white matter voxels Percentage (%)*

1 mm 76452 606662 12.60

1.5 mm 114856 195705 58.69

2 mm 74283 89306 83.18

2.5 mm 43551 49050 88.789

*
may include turning, crossing, or branching fibers
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Table 2:

Change of network measures with/without projection, association, and commissural pathways

Pathway System Clustering 
Coefficient (%)

Network Characteristic 
Path Length (%)

Global Efficiency 
(%)

Local Efficiency 
(%)

Small Worldness 
(%)

Projection −0.30 −5.38 3.35 4.60 5.08

Association 62.27 −7.95 6.88 57.90 66.91

Commissural −18.65 −10.57 8.11 −7.47 −8.24

A positive value indicates an increase of network measures with the pathways added.
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