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ABSTRACT: The present study proposes a new PI
controller tuning method using extended predictive control
(EPC). The PI controller parameter values are calculated
using the EPC controller output and its closed-loop response.
This provides a simple and an effective tuning strategy which
results in an improved closed-loop response compared to
conventional tuning methods. The tuning methodology is
applicable for single input single output and multi input multi
output stable processes. Simulation and experimental results
reveal the efficacy of the method under plant uncertainty
conditions.

1. INTRODUCTION

The three term control (PID) has been one of the simplest and
most popular control approaches over six decades. The major
demand of PID is due to its simple structure, ease of use, and
robustness.1 Apart from a conventional structure, the control
loops are modified in many ways in order to obtain better
performance and efficiency.2,3 The drawback of the traditional
PID controller is that it cannot handle constraints, it cannot
manage strong interactions, and it is generally used in the control
of simple processes.4 Therefore, off-the-shelf algorithms are not
an optimal choice in many processes.5 This limitation has
extended research toward advanced control areas like optimal,
robust, and adaptive control.6−8 The recent developments
comprise event-triggered control that deals with the problems of
finite communication for constrained nonlinear systems through
optimal policy.9 Model predictive control (MPC) is another
control approach, which is able to handle the process
interactions and constraints. It is a popular and widely used
control approach in several contexts.10

MPC predicts future values of the process outputs based on a
reasonably accurate dynamic model and provides the appro-
priate input signals by solving an optimization problem
involving the computation of the optimum set points with
constraints on inputs and outputs.11 Garriga and Soroush,12

presented a brief survey on various methods of control tuning in
theoretical and practical aspects. Depending on applications and
requirements, there exist different types of MPC algorithms like
adaptive,13 explicit,14 robust,15 economic,16,17 stochastic,18

distributed,19 and so forth. Though MPC is advanced and
embraces a predictive functionality, it lacks in the ease of
industrial applications because of complex calculations within
the sampling interval. This limitation laid the foundation toward

the bridging of MPC and PID control schemes20−23 through
which MPC controller gain or closed-loop data is used to tune
the PID parameters. As far as industrial implementation is
concerned, the idea of bridging the advanced control mechanism
and conventional controller spreads over in different aspects.24

Preitl et al.25 presented two iterative control schemes to
formulate an objective function and validated with a PI
controller. Vrkalovic et al.26 had developed a model free sliding
mode and PI-fuzzy controller using a Grey Wolf Optimizer.27 In
application toward optimization techniques, the teaching−
learning-based optimization algorithm is applied to obtain the
parameters of the fuzzy-PID controller.28

The method proposed here is a new PI controller tuning
scheme using the closed-loop data of the extended predictive
control (EPC) strategy. The controller parameters are obtained
as a function of EPC manipulated variable response, time
constant of the actual process, rise time of EPC unit step
response, and condition number “r2”. In addition to the
proposed control method, the mathematical modeling pre-
sented by Fedele38 has been extended to multi input multi
output (MIMO) processes. This paper is organized as follows:
Section 2 presents a system description of the lab-scale
distillation column and methodology of parameter estimation.
The control design methodology is discussed in Section 3.
Section 4 contains simulation results of parameter estimation
using the procedure given in Section 2 and control scheme
implementation on two case studies are presented with 30%
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plant parameter uncertainty. The last section is devoted to
conclusions.

2. SYSTEM DESCRIPTION AND MATHEMATICAL
MODELING

The model is assumed as the first order plus dead time
(FOPDT) structure throughout the paper, and the system is

assumed to be linear time-invariant at a certain operating region.
The online binary distillation column is considered for this study
with a feedmixture of 30% isopropyl alcohol and 70%water. The
boiling point of isopropyl alcohol and water ranges as 81.5−82.5
°C29 and 99−100 °C correspondingly. The intent is to separate
this mixture and obtain maximum purity of isopropyl alcohol
through the distillation process. Unlike the application in this
paper, there are mixtures called azeotropes, which exhibits the
same boiling point throughout the distillation process.30 Alves et
al.31 presented a new approach for the prediction of azeotrope
formation using neural networks. Figure 1 depicts the schematic
diagram of the bubble cap distillation column. The column
consists of five trays placed in the ascending order from bottom
to top which are equidistant to each other. A heater with 4000
kW is fitted at the bottom of the column, which is manipulated
using solid state relay, and there is an opening to inject the feed
into the column. A condenser is located at the top of the column,
which is used to cool down the hot vapor, which in turn converts
it into the liquid state. There is a reflux drum at the outlet of the
condenser which is used to collect condensed liquid, and a drum
at the bottom end is used to collect the purified distillate. Reflux
flow rate is manipulated by using a peristaltic pump (model:
EnerTech ENPD 100). The sensors and final control elements
are interfaced with the PC (configuration: HP ProDesk 400 G3
SFF, 4 GB RAM and 512 GB) using the data acquisition card.
The mathematical modeling and controller execution have been
realized through Matlab 2018a.
Temperature control is the crucial operation of distillation

which influences the purity of the distillate.32 If the temperature
at a certain tray point in the system is too high or too low,
expectable products or their quality may not be guaranteed.33

Controlling of such systems is a challenge because of their
nonlinear behavior. The control design is more complex because
of its wide operating region of feed composition and flow rates.
Model identification of such systems is difficult because of
interaction in the process because of tray temperatures.34,35 If

the temperature at the top of the tower is more than what it
should be, heavier components will be vaporized and become a
part of the overhead product instead of flowing down as liquid
and vice versa with lower temperatures.36 Pressure is another
parameter which influences the purity of distillate through the
boiling temperature of liquid.
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A linear regression approach is used to estimate system
parameters through the equations that are obtained directly
using the process output when the system is subjected to step
change.37 Unlike other least square methods which uses the
process output from t ≥ θ, this approach considers process
output from time where the step change U0 is applied. The
output of the process when step input is applied to eq 1 is given
as

+ = θ−Ts s Y s KU( ) ( ) e s2
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Differentiating eq 3 with respect to s results in
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Summing up eqs 3 and 4
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To eliminate the derivatives of laplace “s”, eq 5 is divided with
s2
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by applying inverse Laplace transform in eq 6
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Equation 7 can be rewritten as

θ+ + =Tg t g t Lg t g t( ) ( ) ( ) ( )1 2 3 4 (8)

where, θT = L, g1(t) = 2∫ 0
t y(ρ)dρ − ty(t), g2(t) = ∫ 0

t y(ρ)dρ,
g3(t) = y(t), g4(t) = −∫ 0

t∫ 0
ρy(λ)dλ dρ + ∫ 0

tρy(ρ)dρ.
The linear eq 8 allows the estimation of the unknown

parameters “T” and “L” and the values of the auxiliary variable θ.
To this aim, assume that gi(t), i = 1, ..., 4 are measured at times 0,
Ts, ..., (n − 1)Ts, where Ts is the sampling period and “n” is the
number of samples, and it is defined as

Figure 1. Schematic diagram of the distillation column.
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From eqs 9−11, eq 8 can be rewritten as
ψ γ=x (12)

The estimation of parameters using least squares is obtained
as

ψ ψ ψ γ̂ = −x ( )T 1 T
(13)

The system gain “K” is obtained by considering the steady
state process output. Because there exist cases where the step
stops before the steady state is reached, the parameter “K” has to
be also identified during the plant transient response. To this
aim, consider the step response of the process after t = θ.
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Integrating y(t) from t = θ to n
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From eq 15, process gain “K” can be obtained as
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The mathematical modeling approach has been implemented
to estimate model parameters for the lab-scale distillation
column as well as Wood and Berry plant.39 Additional integral
has been used in eq 7 to improve the filtering performance.

3. CONTROL DESIGN METHODOLOGY
A new control tuning method presented in this paper is carried
out by considering the methodology of EPC and suppression
matrix formulation.40 In particular, PI controller gain parameters
are computed by using closed-loop data of EPC.
Extending PID controller gains from the MPC approach is a

contemporary method of the advanced control theory. There
exists different aspects of formulating PID gains from
MPC20,41−44 Table 1 reports different PID formulations based
on MPC.
The objective function to be minimized is defined over the

prediction horizon (p), as a function of error and controller
response for the servo operation. This objective function is
minimized by evaluating a profile of manipulated input moves
implemented at every sampling instant over the control horizon
(m). The control law is based on the solution of the quadratic

cost function using least squares with a weighting factor on the
manipulated variable.

= [ − Δ ] [ − Δ ] + Δ λΔΔ J e A u e A u u umin u
T T

(17)

In this paper, an infinite horizon control problem is
considered to formulate the predictive algorithm. The uncon-
strained MPC control law is given by45

λΔ = + −u A A I A e( )T 1 T
(18)

where “A” is a dynamic matrix obtained from the step response
coefficients of individual transfer function (gij), where “i” is the
output and “j” is the input of the process. “λ” is a suppression
weighting factor, “e” is the vector of tracking difference between
trajectory reference and the prediction of the process. “λI” of eq
18 is considered as the extended moving suppression matrix and
it is represented asWEMS. For “n” step prediction (n = runtime),
system matrix “A” of the MIMO process for “N” inputs and “M”
outputs is given by

Table 1. Existing MPC-Based PID
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Figure 2. Condition number comparison of actual and approximated.
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For the two input two output (TITO) process, eq 19 can be
rewritten as
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The weighting matrix WEMS is formulated by considering the
same even elements of the first row to improve the ill
conditioning of the weighting matrix. For the TITO process,
WEMS is given as
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for m = 3.
The tuning parameters r1 and r2 are tuned independently

based on the corresponding step response coefficient matrices
A11 and A22. Initially, r2 is tuned using condition number γ
through independentmatrixA22. The condition number of (ATA
+ WEMS)

−1 is obtained as

γ=|| + || || + ||−A A W A A W( )T
EMS

T
EMS

1
(22)

and approximated condition number γapprox using weighting
ratio “r” and weighting factor R1 is given as

γ = + − + − −
i
k
jjjjj

y
{
zzzzzr r

R R
1 2 2

2 1
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2
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The analysis to formulate eqs 22 and 23 is presented by Abu-
Ayyad et al.46 through a relatively lower condition number that
depicts a smaller move suppression value.
The value where condition number γ and approximated

condition number γapprox overlaps is considered as the tuning
value of r2. Later, using r2, the tuning parameter r1 is chosen. The
actual and approximated condition number comparison is
shown in Figure 2. The tuning parameter R1 is considered as
“10” for all processes. Another tuning parameter “β” is obtained
using the initial element of matrix “ATA” from individual
submatrices (A11 and A22).
3.1. Formulation of PI Formula from EPC Control. The

EPC algorithm is performed using eq 18 for unit step input in

offline considering the process as an infinite prediction horizon
problem (p = n). Proportional gain is computed by summing up
the magnitude change of controller output “Δu” for all time
samples of EPC response till its settling time. Integral gain is
obtained as a function of proportional gain and rise time “Tr” of
EPC unit step response.
Proportional gain

δ
=

∑ Δ
==K

u k

r
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( )
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i k
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i
P
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2

s
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where “i” denotes the loop number (zth loop), δ is a tuning
parameter selected as the maximum value of the off-diagonal
time constant for loop-1 and the minimum value of the diagonal
time constant for loop-2, that is,

δ = T G Gmax ( , )1 12 21

δ = T G Gmin ( , )2 11 22

“Ts” is the settling time of EPC closed-loop response and “Δu” is
the change in controller output. r2 is the intersection value of the
actual and approximated condition number (γ).
Integral gain

α
= =K

K
T

i z1,2, ...,i
i

i i
I

P

r (25)

where “Tr” is rise time and “α” is the tuning parameter that
employs the speed of the process ranging (0,1). The pace of the
process is directly proportional to offline EPC response for unit
step input. Tuning parameter “δ” for the single input single
output (SISO) process is selected as the time constant “T” of the
FOPDT model.

4. RESULTS AND DISCUSSION
In this section, parameter estimation and validation of the
control tuning method has been carried out by considering two

case studies of MIMO processes. The proposed method has
been compared with GPC−PID and hybrid control methods.
Performance indices using integral time absolute error (ITAE) is
presented with 30% uncertainty on all plant model parameters.

Figure 3. Open loop block diagram representation for the TITO
process.
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4.1. Parameter Estimation. The estimation of model

parameters has been carried out on two case studies (case-1:

Wood and Berry model39 and case-2 experimental distillation

setup17). The methodology presented in Section 2 is used to

estimate the model parameters.
4.1.1. Parameter Estimation Case-1: Wood and Berry

Model Estimation. TheWood and Berry model is considered as

the benchmark for illustrating the MIMO process. The model

estimation is carried out by considering the composition of the

overhead and bottom product as process variables with reflux

flow and steam flow as manipulated inputs. It has been proven to

be a difficult process to control because of an interaction effect

between the input−output variables. The true model has been

depicted in eq 26.

Figure 4. G11 and G12 open loop response of the WB model.

Figure 5. G21 and G22 open loop response of the WB model.

Table 2. Comparison of Estimated Model Parameters for the
WB Model with the Actual Model

parameters
actual model
parameters

estimated model
parameters

absolute
error

error
(%)

K11 12.8 12.78 0.02 0.15
T11 16.7 16.65 0.05 0.29
θ11 1 1.04 0.04 4
K12 −18.9 −18.92 0.02 0.1
T12 21 21.04 0.04 0.19
θ12 3 2.97 0.03 1
K21 6.6 6.575 0.025 0.37
T21 10.9 10.75 0.15 1.37
θ21 7 7.18 0.18 2.57
K22 −19.4 −19.42 0.02 0.1
T22 14.4 14.45 0.05 0.34
θ22 3 2.97 0.03 1

Figure 6. G11 and G12 open loop response of the experimental system.
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The step response data for the Wood and Berry (WB) plant is
obtained by performing two experiments with unit step input
sequentially for both the inputs (U1 andU2). Figure 3 depicts the
block diagram of the open loop TITO process.
Step response data of eq 26 are used to estimate the model

parameters subjected to eqs 8 and 16. Figures 4 and 5 depict fit
test responses of the estimated model.
It is to be noted that to replicate simulation response of the

WB model as actual measurement response, the plant outputs
are corrupted with random Gaussian noise with zero mean and

variance as a factor of 0.05 magnitude. Table 2 depicts the
comparison of model parameters with absolute error and error
percentage.
Therefore the estimated model is given as
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4.1.2. Parameter Estimation Case-2: Lab-Scale Distillation
Column. A highly interactive lab-scale distillation column
(Figure 17) is considered for the experimental study to estimate
the model parameters. The two tray temperatures (tray-1 and
tray-5) are considered as process variables with heater voltage
(Qh) and reflux flow rate (Lr) as manipulated inputs
correspondingly. The step test has been performed for both
the inputs sequentially by manipulating one input change at a
time. Figures 6 and 7 show fit test of the lab-scale distillation
column.
The initial manipulated input are considered as, [Lr, Qh] =

[10, 50]%. For step-1, the inputs are excited from [10, 50] to
[35, 50]% and corresponding response at Y1 and Y2 is observed.
Similarly, for step-2, the inputs are excited from [10, 50] to [10,
75]%.
Note that because of steady state requirement, the step

response time with step change in reflux flow rate is more than
the step change-applied heater voltage with respect to the
variable of interest.
The model estimated by using eqs 8 and 16 is

Figure 7. G21 and G22 open loop response of the experimental system.

Figure 8. Decentralized control structure with a decoupler, where, D11
= D22 = 1, D21 = −G21/G22, and D12 = −G12/G11.

Figure 9. Process variable simulation response comparison of Y1 and Y1 for the WB model.
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Figure 10. Manipulated variable response comparison of Y1 and Y2 for the WB model.

Figure 11. Regulatory response of Y1 and Y2 when load (d1) is applied on Y1.

Figure 12. Regulatory response of Y1 and Y2 when load is applied on Y2.

Table 3. ITAE Values of the WB Model with Uncertainty
(Servo Operation)

methods main interaction total

C-1 GPC−PID 126.48 11.32 137.8
hybrid 7089 1.98 7090.98
proposed 105.26 5.91 111.17

C-2 GPC−PID 416.52 201.7 618.22
hybrid 3252.4 460.4 3712.8
proposed 191.4 159.82 350.96

C-3 GPC−PID 380.3 163.29 543.59
hybrid 3229.1 628.9 3858
proposed 322.12 267.56 589.68

C-4 GPC−PID 388.25 197.19 585.44
hybrid 3206.2 614.2 3820.4
proposed 291.56 258.02 549.58

Table 4. ITAE Values of the WB Model with Uncertainty
(Load Operation)

methods main interaction total

C-1 GPC−PID 126.82 12.02 138.84
hybrid 942.3 2.29 944.59
proposed 105.36 5.77 111.13

C-2 GPC−PID 420.4 210.7 631.1
hybrid 1600 1241 2841
proposed 191.02 159.77 350.79

C-3 GPC−PID 380.4 162.99 543.39
hybrid 2221.1 2132.906 4354.006
proposed 321.9 267.37 589.27

C-4 GPC−PID 386.24 201.69 587.93
hybrid 2153.2 1697.8 3851
proposed 291.37 255.74 547.11
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Figure 13. Process variable responses of Y1 and Y2 for the lab-scale distillation column.

Figure 14. Manipulated variable responses of Y1 and Y2 for the lab-scale distillation column.

Figure 15. Regulatory response of Y1 and Y2 when load is applied on Y1 (pilot plant model).

Figure 16. Regulatory response of Y1 and Y2 when load is applied on Y2 (pilot plant model).
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4.2. Implementation of Control Schemes. The decen-
tralized control structure with a decoupler shown in Figure 8 is
considered for the simulation and comparison of the proposed
controller with GPC−PID,42,47 and the hybrid control
approach41 has been used. Simulation is executed with servo
and regulatory operations under 30% plant parameter
uncertainties in “K”, “τ”, and “θ”.
4.2.1. Case Study-1: Wood and Berry Model. 4.2.1.1. Servo

Operation. The Wood and Berry model is subjected to closed-
loop simulation with set point step changes of [2,4], applied at
time (0,200) min for loop-1. The response is observed at Y1, as
shown in Figure 9a, and for loop-2, the response of process
variable Y2 with set point step changes of [1,2], applied at time
(0,200) min, is represented in Figure 9b. Correspondingly,
manipulated variable responses of loop-1 and loop-2 are shown
in Figure 10a,b, respectively. The controller parameters using
GPC-PID and proposed methodology for Wood and Berry
model is given in Table 7 and Table 8, respectively.
4.2.1.2. Regulatory Operation. Load on both the loops are

imposed individually at the zero steady state, as shown in Figure

8. When load (L1) is applied at output Y1, the effect observed on
output Y1 is quoted as the main effect, and the effect observed on
output Y2 is the interaction effect to the load at Y1. It is the same
in the case of load (L2) on Y2 as well. Figure 11a depicts the
response of Y1 when load is applied at Y1. For the same load at Y1,
the response of Y2 is shown in Figure 11b.
Similarly, Figure 12a depicts the response of Y1 when load is

applied at Y2. For the same load at Y2, the response of Y2 is shown
in Figure 12b.

4.2.1.3. Performance Indices. When determining the
performance of the controller, it is often helpful to consider
how “large” the error from the setpoint is. ITAE is one of the
criteria that are used to evaluate the controller performance by
essentially adding errors at every sampling instant over a period
of run-time. System perturbation is one aspect of determining
the efficiency of the controller. In this paper, plant parameters
are perturbed with 30% uncertainty in all individual model
parameters with four cases (C-1 is nominal plant; C-2 is 30%
uncertainty in “K”; C-3 is 30% uncertainty in “K” and “T”; and
C-4 is 30% uncertainty in “K”, “T”, and θ). Table 3 refers to servo
operation performance of the Wood and Berry model with plant
uncertainties for different control schemes.
Table 4 depicts the ITAE values of theWBmodel subjected to

regulatory operation in comparison with different control
schemes under plant uncertainties.

4.2.2. Case Study-2: Lab-Scale Distillation Column Model.
4.2.2.1. Servo Operation. Lab-scale plant model 27 is subjected
to closed-loop simulation with set point step changes of (1,2)
applied at time (0,200)min for loop-1. The response is observed
at Y1 as shown in Figure 13a. Similarly, for loop-2, set point step
changes of (2,4) is applied at time (0,200) min and the response
is observed at Y2 depicted in Figure 13b. Manipulated variable
response of loop-1 and loop-2 is given in Figure 14a,b
respectively. The controller parameters using GPC-PID and
proposed methodology for pilot-Scale Distillation Column
Model is given in Table 9 and Table 10, respectively.

4.2.2.2. Regulatory Operation.The load on both the loops is
imposed individually on the initial state of system at zeroth
sampling instant. Figure 15a depicts the response of Y1 when
load is applied at Y1. For the same load at Y1, the response of Y2 is
shown in Figure 15b.
Similarly, Figure 16a depicts the response of Y1 when load is

applied at Y2. For the same load at Y2, the response of Y2 is shown
in Figure 16b.

4.2.2.3. Performance Indices. Table 5 refers to ITAE values
of servo operation of the pilot-scale plant model with plant
uncertainties in comparison with different control schemes.
Table 6 depicts the ITAE values of the pilot-scale plant model
subjected to regulatory operation in comparison with different
control schemes under plant uncertainties.
Overall performance of hybrid control is efficient compared to

the proposed algorithm in case of nominal and uncertainty in
“K” but lags when uncertainty is introduced in “T” and θ cases.
Through the performance index, it has been observed that the
proposed control scheme is effective compared to GPC−PID
and hybrid control schemes.

5. CONCLUSIONS
In this work, the parameter estimation using the regression
method has been carried out, and the obtained model is in the
form of the FOPDT structure. The development of a new PI
control tuning approach has been presented from the EPC
strategy. The controller parameters are formulated from

Table 5. ITAE Values of the Pilot Plant Model with
Uncertainty (Servo Operation)

methods main interaction total

C-1 GPC−PID 146.45 125.17 271.62
hybrid 60.28 59.78 120.06
proposed 60.78 53.64 114.42

C-2 GPC−PID 156.07 143.07 299.14
hybrid 66.47 65.86 132.33
proposed 63.99 61.33 125.32

C-3 GPC−PID 152.02 139.4 291.42
hybrid 77.04 82.41 159.45
proposed 60.02 57.75 117.77

C-4 GPC−PID 152.6 139.96 292.56
hybrid 64.15 68.98 133.53
proposed 60.55 58.21 118.76

Table 6. ITAE Values of the Pilot Plant Model with
Uncertainty (Load Operation)

methods main interaction total

C-1 GPC−PID 157.42 134.94 291.91
hybrid 40 40 80
proposed 70.61 61.42 132.03

C-2 GPC−PID 168.49 154.32 322.91
hybrid 50.82 50.66 101.48
proposed 74.14 69.85 143.99

C-3 GPC−PID 163.72 149.83 313.57
hybrid 79.6 81.55 161.15
proposed 70.19 66.32 136.51

C-4 GPC−PID 164.39 150.42 314.81
hybrid 70.65 73.83 144.48
proposed 70.64 66.7 137.34
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summation of instantaneous controller changes and rise time of
the closed-loop unit step response of EPC. The application of
this novel design has been demonstrated through benchmark
and experimental models of the distillation process. Perform-
ance analysis has been carried out to depict the efficiency of the
controller under plant uncertainty and compared with other
well-accepted control schemes.

6. EXPERIMENTAL IMPLEMENTATION ANDANALYSIS
The proposed controller has been implemented on the
experimental setup shown in Figure 17 to control coupled tray
temperature.

Figures 18 and 19 depict process variables and manipulated
variable response of the lab-scale distillation column. The
operating region of tray temperature was initialized at [61, 44]
°C and the proposed controller was implemented with set points

of [75, 70] °C for tray-1 and tray-5, respectively. As the system
reached the desired state, the pressure valve on the reflux drum is
disturbed to observe the regulatory operation. In rejecting the
load disturbance, the controller effect has been observed on both
the manipulated inputs.
There is an arrangement of the pressure knob on the reflux

drumwhich is used to release excess pressure in the column. The
system is perturbed with an external disturbance by releasing
pressure manually using the pressure knob, and the regulatory
response effecting temperature of tray-5 is observed. When the
disturbance is applied at 2.25 × 104 sampling instant, the effect
of the load is observed at 2.65 × 104 sampling instant (because
temperature control is a slow process). While controlling tray
temperature, the controller tends toward saturation because of
integral windup. To overcome integral windup, a conditional
integrator approach3 is used within the control loop.
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■ AUTHOR INFORMATION
Corresponding Author
*E-mail: itarasu@manipal.edu. Phone: +91 974 073 1983.

Figure 17. Lab-scale binary distillation column (available in lab-2, ICE
dept, MIT, Manipal).

Figure 18. Experimental response of process variables for the proposed
controller.

Figure 19. Experimental response of manipulated variables for the
proposed controller.

Table 7. GPC−PID Controller: Wood and Berry

parameters loop-1 loop-2

KP 0.3886 −0.168
KI 0.0932 −0.012
KD 0.527 −0.161

Table 8. Proposed Controller: Wood and Berry

parameters loop-1 loop-2

KP 0.347 −0.091
KI 0.0662 −0.0212

Table 9. GPC−PID Controller: Pilot-Scale Distillation
Column

parameters loop-1 loop-2

KP −8.02 3.67
KI −0.937 1.198
KD −2.574 3.943
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■ NOMENCLATURE
θ dead time
C-1 nominal plant
C-2 uncertainty in “K”
C-3 uncertainty in “K” and “T”
C-4 uncertainty in “K”, “T”, and “θ”
EPC extended predictive control
GPC generalized predictive control
IO input−output
ITAE integral time absolute error
K process gain
Lr reflux flow rate
m control horizon
MIMO multi input multi output
MPC model predictive control
n total run-time
p prediction horizon
PID proportional integral and derivative
PSDC pilot-scale distillation column
Qh heater voltage
SISO single input single output
T time constant
Ts sampling interval
TITO two input two output
TT temperature transmitter
WB Wood and Berry
Xb bottom product concentration (mol/h)
Xd distillate concentration (mol/h)
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(19) Alvarado, I.; Limon, D.; Muñoz de la Peña, D.; Maestre, J. M.;
Ridao, M. A.; Scheu, H.; Marquardt, W.; Negenborn, R. R.; De
Schutter, B.; Valencia, F.; et al. A comparative analysis of distributed
MPC techniques applied to the HD-MPC four-tank benchmark. J.
Process Control 2011, 21, 800−815.
(20) Tan, K. K.; Lee, T. H.; Huang, S. N.; Leu, F. M. PID control
design based on a GPC approach. Ind. Eng. Chem. Res. 2002, 41, 2013−
2022.
(21) Camacho, E. F.; Bordons, C. Model Predictive Control; Springer
London, 2007; pp 81−125.
(22) Sarath Yadav, E.; Indiran, T. PRBS based model identification
and GPC PID control design for MIMO Process. Mater. Today: Proc.
2019, 17, 16−25.
(23) Kouvaritakis, B.; Cannon, M. Model Predictive Control; Springer
International Publishing: Switzerland, 2016; pp 1−62.
(24) Åström, K. J.; Hag̈glund, T. The future of PID control.Contr. Eng.
Pract. 2001, 9, 1163−1175.
(25) Preitl, S.; Precup, R.-E.; Preitl, Z.; Vaivoda, S.; Kilyeni, S.; Tar, J.
K. Iterative Feedback and Learning Control. Servo systems
applications. IFAC Proc. Vol. 2007, 40, 16−27.
(26) Vrkalovic, S.; Lunca, E.-C.; Borlea, I.-D. Model-free sliding mode
and fuzzy controllers for reverse osmosis desalination plants. Int. J. Artif.
Intell. 2018, 16, 208−222.
(27) Rathore, N. S.; Singh, V. P.; Kumar, B. Controller design for doha
water treatment plant using grey wolf optimization. J. Intell. Fuzzy Syst.
2018, 35, 5329−5336.
(28) Sahu, B. K.; Pati, S.; Mohanty, P. K.; Panda, S. Teaching−
learning based optimization algorithm based fuzzy-PID controller for
automatic generation control of multi-area power system. Appl. Soft
Comput. 2015, 27, 240−249.

Table 10. Proposed Controller: Pilot-Scale Distillation
Column

parameters loop-1 loop-2

KP −1.1056 0.6879
KI −0.9641 1.7533

ACS Omega Article

DOI: 10.1021/acsomega.9b02713
ACS Omega 2019, 4, 21230−21241

21240

http://orcid.org/0000-0001-7157-5395
http://dx.doi.org/10.1021/acsomega.9b02713


(29) Seth, S.; Agrawal, Y. C.; Ghosh, P. K.; Jayas, D. S.; Singh, B. P. N.
Oil extraction rates of soya bean using isopropyl alcohol as solvent.
Biosyst. Eng. 2007, 97, 209−217.
(30) Ewell, R. H.; Harrison, J. M.; Berg, L. Azeotropic distillation. Ind.
Eng. Chem. 1944, 36, 871−875.
(31) Alves, R. M. B.; Quina, F. H.; Nascimento, C. A. O. New
approach for the prediction of azeotropy in binary systems. Comput.
Chem. Eng. 2003, 27, 1755−1759.
(32) Ogunnaike, B. A.; Ray, W. H. Process Dynamics, Modeling, and
Control; Oxford University Press: New York, 1994; Vol. 1, pp 1−54.
(33) Skogestad, S. Dynamics and Control of Distillation Columns - A
Critical Survey. Model. Identif. Control 1997, 18, 177−217.
(34) Martin, P. A.; Odloak, D.; Kassab, F. Robust model predictive
control of a pilot plant distillation column. Contr. Eng. Pract. 2013, 21,
231−241.
(35) Mansouri, S. S.; Huusom, J. K.; Gani, R.; Sales-Cruz, M.
Systematic integrated process design and control of binary element
reactive distillation processes. AIChE J. 2016, 62, 3137−3154.
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