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ABSTRACT Infection of the host with Mycobacterium avium subsp. paratuberculosis
results in chronic and progressive enteritis that traverses both subclinical and clinical
stages. The mechanism(s) for the shift from an asymptomatic subclinical disease
state to advanced clinical disease is not fully understood. In the present study, natu-
rally infected dairy cattle were divided into subclinical and clinical infection groups,
along with noninfected control cows of similar parity, to study host immune re-
sponses in different stages of infection. Both infection groups had higher levels of
secretion of gamma interferon (IFN-y), tumor necrosis factor alpha (TNF-a), and
interleukin-2 (IL-2) than control cows, whereas only clinical cows had increased se-
cretion of IL-10, IL-12, and IL-18 upon stimulation of peripheral blood mononuclear
cells (PBMCs) with antigen. Conversely, secretion of IL-17A was decreased for clinical
cows compared to subclinical and control cows. Proinflammatory cytokine genes
were upregulated only for subclinical cows, whereas increased IL-10 and IL-17 gene
expression levels were observed for both infection groups. Increased CD4*, CD8*,
and 8 T cell receptor-positive (TCR') T cells were observed for subclinical cows
compared to clinical cows. Although clinical cows expressed antigen-specific im-
mune responses, the profile for subclinical cows was one of a dominant proinflam-
matory response to infection. We reason that a complex coordination of immune re-
sponses occurs during M. avium subsp. paratuberculosis infection, with these
responses shifting as the host transitions through the different stages of infection
and disease (subclinical to clinical). A further understanding of the series of events
characterized by Th1/Th2/Th17 responses will provide mechanisms for disease pro-
gression and may direct insightful intervention strategies.
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ohne’s disease (paratuberculosis), caused by infection with Mycobacterium avium

subsp. paratuberculosis, has become widespread in U.S. dairy herds in recent years
(1) and has worldwide presence in cattle, sheep, goats, as well as other ruminant and
nonruminant species. The actual cost of this disease to the average producer is still a
relative unknown (2, 3), but much of this uncertainty stems from the hierarchy of
disease states within a herd, with few cases of clinical disease and the majority of
infected animals maintaining a subclinical infection status (4). Although economic
losses have been associated with both disease states, greater losses are associated with
clinical disease (5-7).

Paratuberculosis in cattle is characterized by a protracted period of asymptomatic
subclinical infection during which the host seemingly controls the disease by thwarting
bacterial replication within macrophages (8, 9). A majority of infected animals remain
in an asymptomatic disease state throughout their productive life span, dominated by
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Th1-mediated host immunity. As infection advances and the disease state becomes
clinical, host immunity shifts to a more Th2-dominated immunity. However, this
paradigm is an oversimplification, as a significant overlap of Th1/Th2 immunity may
exist in infected animals, even those that are eventually culled because of advanced
clinical disease (10, 11). Despite stalwart research efforts, there remains a basic lack of
understanding as to the stimulus that results in clinical disease. Stressors as well as host
genetics appear to play some role in the transition, but dysregulation of host immunity
is at the forefront of causative factors (12-15). While antigen-presenting cells (APCs)
such as dendritic cells and macrophages are the first defense against this intracellular
pathogen, adaptive immune responses defined by T cell-mediated immunity are critical
for the control of bacterial replication in the host (16). The paradigm of Th1/Th2
adaptive immunity in M. avium subsp. paratuberculosis infection is still being unraveled,
and Th17-mediated immunity is still relatively undefined.

The present study was conducted to further characterize host immune responses to
M. avium subsp. paratuberculosis infection in subclinical and clinical stages of disease in
naturally infected dairy cattle. Results from this study will allow a more comprehensive
view of participant immune markers that may differentiate between subclinical and
clinical infection and provide information on immune dysregulation allowing animals
to succumb to a more advanced state.

RESULTS

Subclinical and clinical disease increases proinflammatory cytokine secretion.
In the present study, host immune responses were compared for noninfected control
cows and cows naturally infected with M. avium subsp. paratuberculosis, in both
subclinical and clinical stages of disease. Cytokine secretion was used to characterize
the influence of the disease state on activated peripheral blood mononuclear cells
(PBMCs). Measurement of cytokine secretion in cell-free supernatants after stimulation
of cells with a whole-cell sonicate of M. avium subsp. paratuberculosis (MPS) demon-
strated significant (P < 0.05) increases in interleukin-2 (IL-2), gamma interferon (IFN-vy),
and tumor necrosis factor alpha (TNF-«) for infected animals, regardless of status,
compared to noninfected controls (Fig. 1A and B). There were no significant effects of
infection status on the secretion of IL-4, IL-6, or IL-1f3, although increased secretion of
IL-1B and IL-6, both proinflammatory cytokines, trended for cows in the clinical disease
group (clinical cows) (Fig. 1C and D). Clinical cows further demonstrated higher levels
of secretion (P < 0.05) of IL-12 and IL-18 after MPS stimulation of cells in culture than
did control cows (Fig. 1D). Additionally, the level of secretion of IL-10, a key regulatory
cytokine, was higher (P < 0.01) in clinical cows and intermediate (P < 0.04) for subclin-
ical cows (Fig. 1E). Interestingly, IL-10 secretion yielded a similar pattern for nonstimu-
lated (NS) cultures, with higher levels of constitutive secretion of IL-10 for clinical cows
than for controls (data not shown). Finally, clinical disease resulted in reduced (P < 0.05)
IL-17A secretion by PBMCs, an effect that was notable in MPS cultures (Fig. 1F) as well
as NS and concanavalin A (ConA)-stimulated cell cultures compared to secretion by
cells from noninfected control cows (data not shown).

Upregulation of cytokine gene expression in cows with subclinical disease.
Gene expression can provide key information on the ability of cells to respond to
infection. Despite this, gene expression does not always align itself with protein
secretion due to posttranslational modifications. In the present study, the expression of
cytokine genes proffered a somewhat different pattern from that of secreted cytokines,
with greater upregulation noted for cows in the subclinical treatment group (Fig. 2).
Significant upregulation (P < 0.05) of IFN-v, IL-12, IL-18, RANTES, IL-4, IL-23, transform-
ing growth factor B (TGF-B), and inducible nitric oxide synthase (iNOS) genes was noted
in PBMCs isolated from subclinical cows and cultured for 24 h with MPS compared to
the control and clinical groups. In contrast, upregulation of IL-10 and IL-17 genes was
noted in stimulated cells for both infected groups compared to control noninfected
cows, with only IL-10 gene expression being significantly (P < 0.05) upregulated for
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FIG 1 Secretion of Th1-mediated interleukin-2 (IL-2) (A), interferon gamma (IFN-v) (B), and tumor necrosis
factor alpha (TNF-a) (B); Th2-mediated interleukin-4 (IL-4) and interleukin-6 (IL-6) (C); APC-mediated
interleukin-1 (IL-1P), interleukin-12 (IL-12), and interleukin-18 (IL-18) (D); Treg-mediated interleukin-10
(IL-10) (E); and Th17-mediated interleukin-17A (IL-17A) (F) cytokines (picograms per milliliter). PBMCs
were isolated from control noninfected cows and cows in subclinical and clinical stages of disease and
stimulated for 24 h in vitro with a whole-cell sonicate of Mycobacterium avium subsp. paratuberculosis
(MPS). Cell-free supernatants were harvested and then analyzed by using an ELISA or Aushon Biosystems
bovine multiplex custom arrays. Data are expressed as means + SEM (¥, P < 0.01; **, P < 0.05).

clinical cows. Similar patterns of cytokine gene expression were noted after stimulation
of cells with ConA across infection treatment groups (data not shown).

Subclinical disease results in increased T cell subpopulations in freshly isolated
PBMCs. Dissimilar and, at times, divergent results were observed in cell subpopulations
for cows in different stages of infection. The first comparison is the stratification of cell
subpopulations in freshly isolated PBMCs compared to PBMCs that had been stimulated
with MPS antigen for 144 h (Fig. 3). Evaluating the cell subpopulations in freshly
isolated PBMCs allowed us to more directly evaluate effects of in vivo infection status.
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FIG 2 Relative gene expression analysis (2744¢7) for cytokines was performed using custom TagMan gene expression assays for bovine IL-4, IL-10,
IL-12, IL-17A, IL-18, IL-23, IFN-7, TGF-3, iNOS, and RANTES. PBMCs were isolated from control noninfected cows and cows in subclinical and clinical
stages of disease and stimulated for 24 h in vitro with a whole-cell sonicate of Mycobacterium avium subsp. paratuberculosis (MPS), followed by
RNA extraction. A eukaryotic 185 rRNA endogenous control (FAM-MGB probe, non-prime limited) was used as an internal control to normalize
RNA content between samples. Nonstimulated cell controls for each cow were used as the calibrator. All reactions were performed in triplicate,
and data were analyzed with the 27T method. Data are expressed as means = SEM (*, P < 0.05).

Interestingly, PBMCs isolated from clinical cows were comprised of lower (P < 0.05)
percentages of CD4* and CD8" cell subpopulations than those from subclinically
infected cows (Fig. 3A). Similarly, percentages of y8 T cell receptor-positive (TCR™) cells
were lower (P < 0.05) for both infected groups, but the lowest percentage was noted
for cows with clinical infection status. An increase (P < 0.05) in the percentage of B cells
was observed for subclinical cows compared to control noninfected cows. The per-
centages of PMBCs that expressed activation markers, CD44hi and CD45RO, were also
lower (P < 0.05) for clinical cows than for the control and subclinical cows.

Stimulation of PBMCs with M. avium subsp. paratuberculosis antigen decreases
CD4+ T cells but increases B cells. Ex vivo culture of PBMCs with MPS for 6 days
allowed for antigen recall responses to occur, and changes in percentages of some cell
populations were observed, as noted in Fig. 3B. Although effects of infection status
remained relatively similar for CD8* and y8 TCR™ T cell subpopulations, exposure to
the antigen preparation resulted in an overall decline in CD4* T cells for all treatment
groups and dispelled any effects due to infection status. In contrast, the B cell
population increased (P < 0.05) dramatically for clinical cows compared to the other
treatment groups. Additionally, clinical disease resulted in greater numbers of PBMCs
expressing CD62Lhi and CD44hi upon stimulation of cells with antigen. There were no
observed differences due to infection status of cows in the percentage of monocytes
(CD14) or natural killer (NK) (CD335) cells present in freshly isolated PBMCs or after
antigen stimulation of cells (data not shown).

Clinical disease markedly decreases expression of CD45RO on T cells. Key
differences due to infection status of cows were observed when activation marker
expression was assessed within T cell subpopulations stimulated for 144 h with M.
avium subsp. paratuberculosis antigen (Fig. 4). Within the CD4™ T cell population, the
CD25 expression level was higher (P < 0.01) for subclinical cows, with an intermediate
response (P = 0.07) noted for clinical cows (Fig. 4A). In contrast, a decline in CD45RO
(P < 0.01) expression was observed for infected cows regardless of status, and de-
creased CD44hi (P < 0.01) expression was noted for cows that were clinically affected.
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FIG 3 CD4", CD8*, yd TCR*, B cell-positive, CD25*, CD62Lhi, CD44hi, and CD45RO* lymphocyte populations within total PBMCs isolated from control
noninfected cows and cows in subclinical and clinical stages of disease. Cells were either freshly isolated (A) or stimulated in vitro for 6 days with a whole-cell
sonicate of Mycobacterium avium subsp. paratuberculosis (MPS) (B). Mononuclear cells, based on forward- and side-scatter characteristics, were analyzed for cell
surface marker expression. Cell subpopulations are expressed as a percentage of the total mononuclear cell population to determine effects of infection status
on population shifts. Data are expressed as means = SEM (¥, P < 0.01; **, P < 0.05).

A decrease in CD45R0 expression was also noted on CD8* T cells (P < 0.0001) after
stimulation of PBMCs with MPS for naturally infected cows (Fig. 4B). Although subclin-
ically infected cows had the highest (P < 0.05) proportion of CD8* T cells, cows with
clinical infection had higher (P < 0.05) expression levels of CD26 on CD8™ T cells than
did subclinical and control animals (Fig. 4B). The most interesting impact of infection
status was observed for yé TCR* T cells and the expression of activation markers
within that subpopulation (Fig. 4C). Infection with M. avium subsp. paratuberculosis
resulted in a stair-step-type reduction in the number of y6 TCR™ T cells within the
total PBMCs, with the subclinical cows having an intermediate percentage of cells
(12.52%) and the clinical cows having the lowest percentage of cells (6.06%),
compared to control noninfected cows (21.63%). Conversely, the expression level of
CD25 on the y8 TCR* subpopulation was higher for clinical cows (P < 0.0001) and
intermediate for subclinical cows (P < 0.0002), compared to control cows. Addi-
tionally, CD26 expression was increased (P < 0.01) on yé TCR™ T cells isolated from
clinical cows (Fig. 4C). Once again, a reduction (P < 0.05) in CD45RO™* expression on
v8 TCR™ T cells was observed for clinical cows.

Expression of CD40, CD80, and CD86 was also assessed on CD14* cells (data not
shown). Although no differences were noted for freshly isolated PBMCs, trending
increases (P < 0.08) in CD80 and CD86 expression were demonstrated for CD14" cells
from subclinical cows after stimulation with antigen compared to cells from either
control or clinical cows (data not shown).
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FIG 4 Mean fluorescence intensities (MFI) of expression of activation markers on lymphocyte populations of CD4+
(A), CD8* (B), and y8 TCR* (C) T cells within total PBMCs isolated from control noninfected cows and cows in
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DISCUSSION

In this study, subclinical and clinical cow statuses were stratified using standard
diagnostic tools for paratuberculosis, including antigen-specific IFN-y responses, M.
avium subsp. paratuberculosis-specific antibody, and fecal shedding of M. avium subsp.
paratuberculosis. Although cattle classified as having clinical disease demonstrated
higher serum antibody levels (sample/positive [S/P] ratio of 2.73) and greater fecal
shedding (6,305 CFU/g) than subclinical cows (S/P ratio of 0.21 and 3 CFU/g; respec-
tively), antigen-specific IFN-y responses (0.23 [MPS-nonstimulated Abs,s,,,.,]) were
similar for cows regardless of infection status, confirming that a definitive association of
Th1 and Th2 immune responses with infection status is more complicated than
previously thought. Nevertheless, antigen-specific IFN-y responses generally precede
the development of antibody responses or fecal shedding of M. avium subsp. paratu-
berculosis.

Although these basic diagnostic tools are helpful, aligning results of cytokine
secretion and expression with host immunity would allow us to better interpret how
the infection status of cattle may impact the ability to control infection. Similar to the
above-mentioned whole-blood IFN-7y responses, both subclinical and clinical cows had
equivalent responses for antigen-specific IL-2, IFN-y, and TNF-«a secretion in culture
supernatants, suggesting that Th1 responsiveness was not impacted by the stage of
infection. Despite this, elevated levels of IL-6 were also noted in cows with a clinical
infection status. This is interesting, as IL-6 plays a role in driving CD4* T cells to a Th2
phenotype (17), and high levels of serum antibody to M. avium subsp. paratuberculosis
in clinical cows provide evidence of a Th2 immune response. These results suggest that
as disease progresses, cows will gain the capability of invoking Th2-mediated immune
responses but maintain the ability to mount Th1-mediated immunity as well.

Further indication that a strong Th1-mediated immune response is still apparent in
clinical cows is the elevation in the levels of the proinflammatory cytokines IL-12 and
IL-18 observed here. Both IL-12 and IL-18 are engaged in critical roles in the induction
of IFN-y in mycobacterial infections (18, 19), and increases in the levels of these
cytokines in the present study align with increased secretion of IFN-vy. These cytokines
are secreted predominantly by APCs, and elevated levels seem contradictory to dogma
that macrophage function is diminished in clinical disease, thus allowing for intracel-
lular replication of M. avium subsp. paratuberculosis (20-22). Secretion of these cyto-
kines in culture suggests that cows with a clinical infection status retain the ability to
respond to antigenic stimulation, and the greater bacterial burden of the host may
even elicit heightened responses, as we note here, compared to subclinical cows.

The upregulation of these proinflammatory cytokines during advanced disease is
problematic for the host, eventually resulting in damage to the tissue(s) at the site of
infection (23). A role of IL-10 in tempering proinflammatory responses becomes more
critical in animals with chronic inflammatory responses to pathogens, such as cows in
the clinical stage of paratuberculosis (24). The IL-10 level was more elevated in clinical
cows in the present study, indicating that a regulatory immune response was in play.
It is also important to note that despite its regulatory role, IL-10 may inhibit macro-
phage function, allowing intracellular replication of M. avium subsp. paratuberculosis
(25). Additionally, sources of IL-10 include not only regulatory T cells (Tregs) but also
Th2 T cells and macrophages, and IL-10 expression is tightly controlled by both itself
and IFN-y (26). It is clear from recent studies that although macrophages are present in
higher numbers in the intestinal tissue of clinical cows, the macrophage phenotype
may be confounding the ability of the host to clear the pathogen (27-30). The balance

FIG 4 Legend (Continued)

subclinical and clinical stages of disease. Cells were stimulated in vitro for 6 days with a whole-cell sonicate of
Mycobacterium avium subsp. paratuberculosis (MPS). Mononuclear cells, based on forward- and side-scatter charac-
teristics, were analyzed for cell surface marker expression. Activation markers expressed on CD4, CD8, and yd TCR*

T cell subsets are expressed as MFI. Data are expressed as means = SEM (*, P < 0.01; **, P < 0.05).
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between unbridled proinflammatory responses and activation of macrophages may be
the determining factor in the host advancing to full-blown clinical disease.

Except for increased gene expression for IL-10 observed in clinical cows, all other
cytokine genes, primarily proinflammatory in nature, responded to antigen stimulation
with greater expression in cells from subclinical cows. Subclinical cows often secreted
low or equivalent levels of these cytokines compared to cows with clinical disease.
Gene transcription and protein secretion often do not align for a myriad of reasons, but
for cytokines in particular, this is largely due to posttranscriptional control (31). In
addition, there are different pathways for cytokine secretion by innate and adaptive
immune cells, depending upon the cell type, the cytokine, and the signal for release,
and this may have impacted the measurement of secreted cytokines in the present
study (32). Additionally, increased cytokine release could be due to priming of cells in
vivo by a higher bacterial burden in the clinical cows, whereas at a subclinical stage of
infection, cytokines may be sequestered by the cell until needed (32). If this is the case,
in the present study, the upregulation of proinflammatory genes observed in cells from
subclinical cows would suggest an immune system “at the ready,” with the ability to
elicit robust Th1-mediated responses.

The effect of M. avium subsp. paratuberculosis infection status on lymphocyte
subsets has been previously reported for a variety of ruminant species but remains a
salient point in this study, as flow cytometric analyses were performed concurrent with
cytokine secretion/expression analyses. It is interesting to note that cells freshly isolated
from clinical cows demonstrated reduced numbers of CD4, CD8, and yd TCR T cells
compared to subclinical cows, and this pattern remained consistent for CD8 and 8 TCR
T cells after antigen stimulation in vitro. These results are similar to those observed in
naturally infected sheep stratified postmortem into different disease states, with no
differences noted in numbers of CD4*+ T cells within total PBMCs but an increased
number of CD8* T cells observed in paucibacillary sheep (29). More importantly, yd TCR
T cells were reduced for both paucibacillary and multibacillary sheep compared to
asymptomatic and noninfected controls, consistent with results that we observed
for subclinical and clinical cows here. The consistent decrease in memory T cells
(CD45R0O™) from naturally infected cows, but particularly for clinical cows, is an inter-
esting observation. A decrease in memory T cells has been observed in patients with
active tuberculosis (33) but has not been well defined for mycobacterial infection in
cattle. The lower frequency of memory T cells noted in clinical cows than in subclinical
cows in the present study suggests a shift in antigen recognition and response that
may correlate with advanced clinical disease.

Another interesting observation was the expansion of the B cell population for
clinical cows upon stimulation with antigen. This was in contrast to the higher number
of B cells in freshly isolated PBMCs observed for cows with a subclinical status. We
previously demonstrated that cows in the clinical stage of disease had higher total
numbers of B cells and that the CD5 marker could discriminate different B cell
subpopulations between subclinical and clinical cows (34). B cells may take on both
effector and regulatory roles in the host and, as such, produce a plethora of cytokines,
such as IFN-v, IL-12, IL-2, IL-13, IL-4, IL-10, and TGF- (35). Therefore, a greater presence
of B cells and a heightened response to antigen may explain the disparate levels of
secreted cytokines observed between cows with subclinical and clinical infection
statuses.

Finally, reduced secretion of IL-17A for cows in the clinical stage of disease is
thought provoking. Similar findings were reported by Park et al. (36), who compared
the expression levels of Th17-derived cytokines within peripheral blood mononuclear
cells across cows in various clinical stages of paratuberculosis. Expression of IL-17A was
downregulated in naturally infected cows with low, medium, and high M. avium subsp.
paratuberculosis-specific antibody responses compared to noninfected and enzyme-
linked immunosorbent assay (ELISA)-negative controls. In contrast, responses to Myco-
bacterium bovis vaccination and/or infection have demonstrated an upregulation of
IL-17A secretion, but responses were variable depending upon the bacterial burden,
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pathological lesion score, and timing of sampling after infection and vaccination (37).
Lockhart et al. (38) demonstrated that the primary source of IL-17 is y8 T cells, rather
than CD4 T cells, in response to Mycobacterium tuberculosis infection. This is a pivotal
observation, as IL-17 has been thought to primarily be produced by the Th17 subset of
CDA4 T cells. Studies in mice challenged with M. tuberculosis and Pseudomonas aerugi-
nosa demonstrated that IL-17A-producing y8 TCR™ T cells provide critical immunity to
the lung, perhaps through the recruitment of neutrophils or the production of antimi-
crobial peptides early in the infection period (39, 40). In the present study, we found
that clinical cows had reduced numbers of y6 TCR* T cells, corresponding to reduced
IL-17A secretion by cultured cells. Furthermore, a model has been proposed that
suggests a plasticity of helper T cells in states of chronic inflammation that allows Th17
cells to revert to hybrid Th17/Th1 cells or to Th1 cells that do not produce IL-17 (41).
It is interesting to note that TGF-B is involved in the differentiation of T cells to both
Th17 and Treg phenotypes, suggesting that a lack of IL-23 may shift away from the
induction of proinflammatory IL-17 activity and toward a more regulatory IL-10 re-
sponse. Additionally, IL-6 also plays a critical role in the induction of IL-17 via differ-
entiation of Th17 cells (42); however, the elevated IL-6 secretion observed in the
present study for clinical cows is inconsistent with reduced IL-17A secretion. Porcherie
et al. (43) mimicked bovine mastitis using a mouse model and found that mammary
glands challenged with Escherichia coli had increased IL-6 and decreased IL-17A levels.
These effects correlated with higher bacterial numbers in the gland and increased IL-10
levels, similar to results observed in the present study. Although IL-17 is notable for
roles in protection against extracellular pathogens and in autoimmune disorders, it has
not been shown to be critical for host defense against intracellular pathogens such as
mycobacteria (44). Indeed, it seems more likely that Th17 and Th1 cells work in a
synergistic manner to achieve the highest level of protective immunity, and popula-
tions of these cell types may flux with the stage of disease. With this in mind, it seems
reasonable to surmise that IL-17 may well be a critical mediator of the loss of effective
immunity for clinical cows.

In summary, it is clear that the singular measure of cytokines would not serve to
present a complete picture of the dynamic host immunity to M. avium subsp. paratu-
berculosis infection since there is a significant overlap of responses. However, the
combined data for cytokine secretion and shifts in immune cell subpopulations provide
a more comprehensive analysis. The profiles obtained suggest that even in clinical
disease, cows maintain an active immune response, but proinflammatory responses are
tempered by regulatory control. In contrast, subclinical cows demonstrated a robust
proinflammatory response that would provide critical help to clear the pathogen but
seems tightly controlled based upon the level of infection. Additional studies into the
mechanisms of innate and adaptive immunity during the course of infection will be
helpful to further define a basis of understanding for this complex disease.

MATERIALS AND METHODS

Animals. Holstein dairy cows ranged in age from 4 to 9 years in this experiment and were placed into
three groups, consisting of 6 noninfected healthy cows, 6 cows naturally infected with M. avium subsp.
paratuberculosis but asymptomatic (i.e., subclinical), and 6 cows with the clinical form of Johne’s disease.
Infection was monitored bacteriologically by fecal shedding of M. avium subsp. paratuberculosis using
standard culture methods on Herrold’s egg yolk agar medium containing mycobactin J, amphotericin,
nalidixic acid, and vancomycin (Becton, Dickinson, Sparks, MD), as previously described (45). Serological
tests were used to further characterize the status of infected animals. Serum was harvested from whole
blood and assayed for the presence of M. avium subsp. paratuberculosis antibodies by a commercial
ELISA (Herdchek; Idexx, Westbrook, ME), and bovine IFN-y was measured in plasma using the Bovigam
test kit (Prionics, La Vista, NE) according to the manufacturer’s instructions. Animals categorized as having
clinical disease had ELISA antibody titers with an S/P ratio averaging 2.73, and fecal shedding averaged
6,305 CFU of M. avium subsp. paratuberculosis/g of feces. Cows in the subclinical treatment group were
ELISA negative and averaged <3 CFU of M. avium subsp. paratuberculosis/g of feces. Infected animals in
both the subclinical and clinical stages of infection had positive antigen-specific IFN-y results
(AbS4500mMPS-Abs 0. \NS = 0.23 = 0.05 and 0.22 * 0.05, respectively). All animals were housed in
American Association for Accreditation of Laboratory Animal Care-accredited facilities, and all animal-
related procedures were approved by the IACUC (National Animal Disease Center, Ames, IA). Infected
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TABLE 1 Primary antibodies?

Working MAb

Antigen MAD clone Isotype concn (ug/ml)® Specificity
CD4 GC50A1 IgM 14 T helper cell
CD8 BAQ111A IgM 14 Cytotoxic/suppressor T cell
N12 CACT61A IgM 14 8 cell receptor
B cell BAQ155 1gG1 7 Total B cell
CD25 CACT116A 19G1 15 IL-2 receptor

CACT108A lgG2a 15

LCTB2A 19G3 15
CD26 CACT114A 1gG2b 15 Activation marker
CD45R0 GC42A1 1gG1 10 Memory/activation marker
CD44 BAG40 1gG3 10 Activation marker
CD62L DREG-5 1gG1 10 Activation marker
CD80 ILAT59A 19G1 10 Costimulatory signal marker
CD86 IT2.2 19G2b 5 Costimulatory signal marker

aFrom VMRD, Inc. (Pullman, WA). MAb, monoclonal antibody.
bDiluted in PBS with 1% fetal calf serum and 0.04% sodium azide.

cows were housed separately on-site from healthy control cows to prevent cross-contamination between
groups.

Cell culture. Peripheral blood mononuclear cells (PBMCs) were isolated from the buffy coat fractions
of blood. PBMCs were resuspended in complete medium (RPMI 1640 [Gibco, Grand Island, NY] with 10%
fetal calf serum [Atlanta Biologics, Atlanta, GA], 100 U of penicillin G sodium [Gibco] per ml, 100 ug of
streptomycin sulfate [Gibco] per ml, 0.25 ug of amphotericin B [Gibco] per ml, and 2 mM L-glutamine
[Gibco]). Cells were cultured at 2.0 X 10° cells/ml in replicate 48-well flat-bottomed plates (Corning
Incorporated, Corning, NY) for 1, 3, or 6 days at 39°C in 5% CO, in a humidified atmosphere. Duplicate
wells were set up for each animal for the following in vitro treatments: medium only (nonstimulated [NS]),
concanavalin A (ConA) (10 wg/ml; Sigma), pokeweed mitogen (PWM) (10 wg/ml; Sigma), and a whole-cell
sonicate preparation of M. avium subsp. paratuberculosis (MPS) (10 ug/ml). For cytokine analyses, one set
of plates was removed at 1 and 3 days and centrifuged at 400 X g for 5 min. Supernatants were removed
without disturbing the cells in culture and stored at —20°C prior to cytokine measurement. A replicate
set of plates was incubated for either 3 days (NS, ConA, and PWM) or 6 days (NS and MPS), and cells were
harvested for flow cytometric analyses.

Cytokine analyses of cell culture supernatants. Bovine IL-10 was quantified as previously de-
scribed (46), using anti-bovine IL-10 antibodies (MCA2110 and MCA2111B; Serotec, Raleigh, NC) and a
bovine IL-10 standard (0.3125 to 20 ng/ml; Kingfisher Biotech, St. Paul, MN). Similarly, bovine IL-12 in cell
culture supernatants was measured by an ELISA using anti-bovine IL-12 antibodies (MCA1782EL and
MCA2173B; Serotec) and a bovine IL-12 standard (55 to 1,500 U/ml; Kingfisher Biotech). Further cytokine
analyses of the culture supernatant for IFN-y, IL-18, IL-2, IL-4, IL-6, and tumor necrosis factor alpha
(TNF-a) concentrations were performed using Searchlight custom bovine arrays (Cira custom bovine
6-plex array kit; Aushon Biosystems, Billerica, MA) according to the manufacturer’s instructions. Concen-
trations (picograms per milliliter) of each cytokine were quantified in samples using Searchlight array
software (Aushon Biosystems) by reference to a standard curve for each cytokine. Measurement of
bovine IL-17A (Kingfisher Biotech, Inc.,, St. Paul, MN) and IL-18 (Biotang, Inc., Lexington, MA) was also
performed according to the manufacturers’ instructions.

Flow cytometric analysis. For flow cytometric analyses, culture plates were removed at 3 days (NS,
ConA, PWM) and 6 days (NS, MPS) of incubation, cells within each well were gently resuspended, and
50 ul of the cell suspension was added to wells of 96-well round-bottom plates (Corning Incorporated,
Corning, NY) containing 50 wl of primary monoclonal antibodies to CD4, CD8, and y8 TCR* T cells; B cells;
and CD5, CD14, CD25, CD26, CD44, CD62L, CD80, CD86, CD335, and CD45R0 (Table 1). Cells were then
incubated at 4°C for 30 min. After incubation, plates were centrifuged at 1,250 rpm for 2 min at 4°C, and
the supernatant was decanted. One hundred microliters of a secondary antibody cocktail consisting of
fluorescein-conjugated anti-mouse IgM (Southern Biotech, Birmingham, AL), R-phycoerythrin-conjugated
goat F(ab), anti-mouse lgG2a (Southern Biotech, Birmingham, AL), and peridinin chlorophyll protein
complex-conjugated rat anti-mouse IgG1 (Becton, Dickinson, San Jose, CA) diluted 1:312, 1:625, and 1:42,
respectively, in phosphate-buffered saline (PBS) with 1% fetal calf serum and 0.04% sodium azide was
then added to the designated wells, and the plate was centrifuged again at 1,250 rpm for 2 min at 4°C.
The cells were then suspended in 200 ul of BD FacsLyse (BD Biosciences, San Jose, CA) for immediate flow
cytometric analysis. Samples were evaluated using 30,000 events per sample using a FACScan flow
cytometer (Cell Quest software; Becton, Dickinson). Mononuclear cells, based on forward- and side-
scatter characteristics, were analyzed for cell surface marker expression (FlowJo; TreeStar, Inc., San Carlos,
CA). Cell subpopulations were expressed as a percentage of the total mononuclear cell population to
determine effects of infection status on population shifts, whereas activation markers expressed on CD4,
CD8, and 8 TCR* T cell subsets were articulated as mean fluorescence intensities (MFI).

RNA extraction and reverse transcription. RNA was extracted from PBMCs after 24 h of culture with
in vitro treatments (NS and MPS), as described above. Briefly, cells from duplicate wells were harvested after
centrifugation of plates at 1,500 rpm for 5 min and lysed with 350 ul of RLT buffer (RNeasy lysis buffer; Qiagen,
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TABLE 2 Real-time PCR bovine cytokine gene target sequences?

Infection and Immunity

Cytokine Target sequence Assay ID

IL-4 CTTGGCAAGCAAGACCTGTTCTGTG Bt03211898_m1
IL-10 CTGGATGACTTTAAGGGTTACCTGG Bt03212725_m1
IL-12A GCTACAGAAGGCCAGACAAACTCTA Bt03213918_g1
IL-17A ACTTCATCTATGTCACTGCTACTGC Bt03210251_m1
IL-18 ATTGTTTCCTTTAAGGAAATGAATC Bt03212733_m1
IL-23 AACAGTCAGTCCTGCTTGCAAAGAA Bt04284624_m1
IFN-y ATTGGAAAGATGAAAGTGACAAAAA Bt03212722_g1
TGF-B ACCCGCAGAGAGGAAATAGAGGGCT Bt04259486_m1
iNOS CAGCCCCCGTCCAGTCCAGTGACAC Bt03249590_m1
RANTES CTCCATGGCAGCAGTTGTCTTTATC Bt03216832_m1

aGene expression assays from Life Technologies (Grand Island, NY).

Valencia, CA). RNA was isolated using an RNeasy minikit (Qiagen) according to the manufacturer’s directions
and eluted from the column with 40 ul of RNase-free water (Ambion, Austin, TX). Total RNA (500 ng) was
reverse transcribed using SuperScript Il (Invitrogen, Carlsbad, CA) with 150 ng of random hexamers, 10 mM
deoxynucleoside triphosphates (dNTPs), and 40 U of RNaseOut (Invitrogen), according to the manufacturer’s
directions. Samples were heated to 65°C for 5min and then reverse transcribed at 50°C for 60 min. The
resulting cDNAs were stored at —80°C until used for real-time PCR.
Cytokine gene expression. Real-time PCR was performed using custom TagMan gene expression
assays for bovine IL-4, IL-10, IL-12, IL-17A, IL-18, IL-23, IFN-7, TGF-3, iNOS, and RANTES (Life Technologies,
Grand Island, NY) according to the manufacturer’s directions for relative quantitation. Target sequences
for the above-mentioned cytokines are presented in Table 2. Briefly, 4 ul of the cDNA template was
added to a 20-ul reaction mixture containing TagMan universal PCR master mix and a gene expression
assay working stock consisting of forward and reverse primers and a 6-carboxyfluorescein (FAM)-MGB
probe. A eukaryotic 185 rRNA endogenous control (FAM-MGB probe, non-prime limited; Invitrogen) was
used as an internal control to normalize RNA content between samples. The NS sample was used as the
calibrator. All reactions were performed in triplicate, and data were analyzed with the 2724¢T method.
Statistics. Data were analyzed using the PROC Mixed procedure of the Statistical Analysis System
(SAS Institute, Cary, NC). Values are reported as least-square means =+ standard errors of the means (SEM).
When significant effects (P < 0.05) due to infection or in vitro treatment were observed, a means
comparison was conducted using the Tukey-Kramer post hoc test.
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