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Abstract

This paper deals with a Cox proportional hazards regression model, where some covariates of 

interest are randomly right-censored. While methods for censored outcomes have become 

ubiquitous in the literature, methods for censored covariates have thus far received little attention 

and, for the most part, dealt with the issue of limit-of-detection. For randomly censored covariates, 

an often-used method is the inefficient complete-case analysis (CCA) which consists in deleting 

censored observations in the data analysis. When censoring is not completely independent, the 

CCA leads to biased and spurious results. Methods for missing covariate data, including type I and 

type II covariate censoring as well as limit-of-detection do not readily apply due to the 

fundamentally different nature of randomly censored covariates. We develop a novel method for 

censored covariates using a conditional mean imputation based on either Kaplan–Meier estimates 

or a Cox proportional hazards model to estimate the effects of these covariates on a time-to-event 

outcome. We evaluate the performance of the proposed method through simulation studies and 

show that it provides good bias reduction and statistical efficiency. Finally, we illustrate the 

method using data from the Framingham Heart Study to assess the relationship between offspring 

and parental age of onset of cardiovascular events.
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1 | INTRODUCTION

Time-to-event data are ubiquitous in biomedical, social, behavioral, and epidemiological 

studies. Nevertheless, the issue of randomly censored covariates in Cox proportional 

regression model has been largely overlooked compared to censored outcomes, especially in 

the studies of time-to-event outcomes where censoring may be due to loss of follow-up, drop 

out, study termination or detection limits (Klein & Moeschberger, 2005; Kalbfleisch & 

Prentice, 2011). For instance, randomly-censored covariates arise in the setting of 

cardiovascular disease analyses. An important question in the field of cardiovascular 

epidemiology is how best to quantify associations between parental risk factors and the 

onset of cardiovascular disease in their offspring. Often, parental risk factors, such as age-of-

onset of disease in parents, are randomly right-censored, meaning that the study either 

terminates prior to a cardiovascular event being observed or a patient is lost to follow-up 

prior to a cardiovascular event. In these cases, for a sensible data analysis, the goal is to 

impute a value for censored age-of-onset of disease in the parents, under some conditions. 

This allows us to include those patients, eliminate completely or at least reduce bias, and 

power the study appropriately. In this paper, we illustrate a new method for imputation of 

these randomly censored covariates using the Framingham Heart Study—an ongoing study 

of cardiovascular disease risk over two generations. We show that this method can be used to 

analyze the relationship between randomly censored covariates (the parental age of onset of 

cardiovascular disease) and a time-to-event outcome variable (the age of onset of 

cardiovascular disease in their children).

Until recently, the issue of censored covariates was addressed only in the context of type I 

and type II, or limit-of-detection censoring (Bernhardt, Wang, & Zhang, 2014; Helsel et al., 

2005; Helsel, 2006, 2011; Sattar, Sinha, Wang, & Li, 2015; Wu, Chen, Ware, & Koyama, 

2012; Yue & Wang, 2016). However, it should be borne in mind that these types of 

censoring are different from random censoring. In type I censoring, participants in a study 

are followed for a prespecified, fixed duration of time, whereas in type II censoring, the 

study is stopped when a prespecified number of participants are observed to experience the 

event of interest. Limit-of-detection censoring concerns censoring that occurs in 

measurement systems or instruments. Instead of follow-up times, the focus is on the 

prespecified level(s) of detection under (or over which) the precision of the system or the 

instrument is not sufficient enough to discern, measure, and quantify to an acceptable level 

of accuracy certain results of an experiment. When such a result is not accurately measured, 

it is recorded as being below (or above) a given threshold value and thus considered as 

censored (Cole, Chu, Nie, & Schisterman, 2009; Helsel et al., 2005; Helsel, 2011; Kong & 

Nan, 2016; Lee et al., 2017). In addition, censoring due to limits of detection can be 

characterized as type I (if the measurement lies below or above a prespecified threshold) or 

type II censoring (when an experiment is carried out until it reaches a prespecified number 

of detected measurements).

Unlike type I and type II time censoring, random censoring occurs where study participants 

are censored at varying time points (Kalbfleisch & Prentice, 2011). In the same way that 

methods for outcomes that are subject to type I, type II, or limit-of-detection censoring do 
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not apply to randomly censored outcomes, methods related to these types of censoring may 

not work well with randomly censored covariates.

Furthermore, data with randomly-censored covariates are often mistaken for missing 

covariate data and analyzed as such. While missing and censored covariate observations 

share some similarities, they are fundamentally different. An observation is missing when its 

measurement is unavailable, either by design or by accident. However, a censored 

observation is an observation for which the true information is only partially observed due to 

a wide range of reasons, including loss due to follow-up, drop out, study termination, end of 

the study, or even an inherent limit-of-detection of an instrument’s measurements. Although 

there are several well-established methods to handle missing covariates, they cannot be used 

for censored covariates as they do not fully capture the essence of these covariates and 

cannot use all possible (partial) information contained in the observations with censored 

covariates.

For this paper, we consider a survival analysis using Cox proportional hazards model, where 

some values of the covariates of interest are randomly censored. Such censored covariate 

observations arise as a result of a time lag between the time of measurement of the covariate 

(usually at baseline) and the occurrence of an event of particular interest that is closely 

related to the covariate and assured its availability (Atem, Sampene, & Greene, 2017; Lee, 

Park, & Park, 2003; Tsimikas, Bantis, & Georgiou, 2012). Suppose, for instance, that we 

wish to study the impact of early onset of cardiovascular events in parents as a predictor of 

age-of-onset of cardiovascular disease in children. Since not all parents or offspring may 

have experienced the event of interest by the end of the study, some observations are likely 

to be randomly censored.

A common method that is used to analyze data with censored covariates is the complete-case 

analysis where observations with censored covariate measures are simply deleted from the 

data analysis. While the complete-case analysis may provide unbiased estimates of the 

regression coefficients under specific conditions (e.g., independent censoring or small 

percentage of censored observations), removing censored observations can drastically 

reduce the sample size and, thereby, render this approach highly inefficient, especially when 

the percentage of censoring is high (Lipsitz, Parzen, Natarajan, Ibrahim, & Fitzmaurice, 

2004). This is particularly crucial when there are multiple censored covariates since the total 

percentage of censored observations in the data set can be substantial. Using closely related 

techniques such as the available-case analysis may lead to the same issues (Rigobon & 

Stoker, 2009).

Moreover, it has been demonstrated that using ad hoc imputation methods where, for 

instance, censored observations are replaced by a constant value, the covariate mean, or the 

median will result in biased estimates of parameters (Atem, Sampene, & Greene, 2017; 

Bernhardt, Wang, & Zhang, 2014; Sattar, Sinha, & Morris, 2012; Sattar, Sinha, Wang, & Li, 

2015). Finally, while dichotomizing continuous covariates is already a bad idea (Fitzsimons, 

2008; Royston, Altman, & Sauerbrei, 2006), it is even worse when such a variable is 

censored (Austin & Hoch, 2004; Rigobon & Stoker, 2009).
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More elaborate methods based on maximum likelihood estimation of fully parametric 

models (Langohr, Gómez, & Muga, 2004; Sattar et al., 2012), or on Cox proportional 

hazards regression model have been proposed (D’Angelo & Weissfeld, 2008; Chen, Wu, 

Ware, & Koyama, 2014; Dinse et al., 2014). Other methods such as semiparametric methods 

(Kong & Nan, 2016), multiple imputation procedures for accelerated failure time models 

(Bernhardt et al., 2014), or on M-regression models (Wang & Feng, 2012) have been 

developed and shown to work well for type I, type II, or limit-of-detection censoring, under 

some specific conditions. However, these methods cannot be readily applied to censored 

covariates in survival analysis where the focus is on random censoring, which is a totally 

different type of censoring (Atem et al., 2017).

While there have been extensive studies for other types of censored covariates, a handful of 

papers have looked into this issue of randomly censored covariates in classical linear and 

logistic regressions as well as other generalized linear models (Atem et al., 2017; Lee et al., 

2003; Tsimikas et al., 2012). Methods for handling survival analysis in the presence of 

censored covariates have received less attention. Presently, randomly censored covariates are 

gaining ground with recent publications by Lee et al. (2003); Atem, Qian, Maye, Johnson, 

and Betensky (2017); Atem and Matsouaka (2017); Atem, Qian, Maye, Johnson, and 

Betensky (2016).

In this paper, we develop a non-parametric and semi-parametric conditional imputation 

method for a right-censored covariate. Unlike Lee’s method, which is empirically based on 

the risk function and partial likelihood estimation (Lee et al., 2003), our proposed method 

replaces censored observations with conditional mean values predicted either by a non-

parametric (Kaplan–Meier) or a semi-parametric estimation (Cox proportional hazards 

model) technique, while maximizing the use of available information in the data. This 

technique is an improvement to the conditional imputation of Atem et al. for linear 

regression (Atem et al., 2017); it can be easily programmed and implemented using common 

statistical software packages.

The remainder of this paper is organized as follows. First, we introduce an illustrating 

example based on the Framingham Heart Study. Then, in Section 3, we develop a general 

framework for the proposed method. In Section 4, we present simulation studies where we 

compare the complete-case and the proposed conditional imputation method. In Section 5, 

we apply our method to the study of association between offspring age at cardiovascular 

event and parent age of onset of cardiovascular event. Finally, we end the paper with a 

discussion in Section 6.

2 | ILLUSTRATING EXAMPLE: THE FRAMINGHAM HEART STUDY

The Framingham Heart Study is an ongoing prospective study of the etiology of 

cardiovascular diseases (CVDs). The study began in 1948 and enrolled 5,209 men and 

women aged between 28 and 62 years as part of the original cohort. In 1971, the Offspring 

Study began with a sample of 5,124 men and women aged 5–70 years who were either 

(genetic or adoptive) offspring or spouses of offspring of the original cohort. Approximately 

every 4 years, study participants are examined to update their health status information and 
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potential risk factors. Standard clinical examination includes physician interview, physical 

examination, and laboratory tests. Over the years, close monitoring of Framingham Study 

participants has been crucial in identifying major CVD risk factors (Chen & Levy, 2016)

In this paper, we considered the available data of 2,622 participants from the original cohort 

(Exam 12; years 1971–1974) and 2622 participants from the offspring cohort (Exam 1; years 

1971–1975). The Framingham Heart Study reviews and adjudicates events for the 

occurrence of cardiovascular diseases. When available, parental age of cardiovascular event 

and offspring age of cardiovascular event are recorded. In our data set, a total of 1,816 

participants from the original cohort and 671 of the offspring cohort had a cardiovascular 

event.

We are interested in estimating the parameters of a Cox proportional hazards model of the 

relationship between age of parent’s onset of a clinically diagnosed cardiovascular event and 

the time-to-onset of cardiovascular disease on offspring participants, looking at both the 

Original and Offspring cohorts. We used age as a time scale to run the survival analysis of 

the time-to-cardiovascular event in offspring.

3 | PROPOSED METHOD

3.1 | Notations and definitions

Suppose N study participants are independently sampled from a reference population. For 

each participant i, let Ti and Ci be the true survival and censoring times respectively, Xi the 

K-vector of potentially censored covariates, Ri the covariate-censoring time, and Zi the M-

vector of fully observed covariates. Due to the right-censoring in survival times T and the 

covariate X, the data observed are {(Yi, Δi, V1i, D1i, … , VKi, DKi, Zi)T : i = 1, 2, … , N}, 

where Vki = min(Xki, Rki), Dki = I(Xki ≤ Rki), Yi = min(Ti, Ci), and Δi = I(Ti ≤ Ci), for K = 

1, … , K.

For simplicity, we start with one censored covariate X, that is, K = 1 and seamlessly 

generalize the methodology to more than one censored covariate later. To formalize our 

method, we are interested in assessing the relationship between the potentially randomly 

right censored covariate X and the survival time, adjusting for the effects of fully observed 

covariates Zi through a Cox proportional hazards model

h(t) = ho(t)exp βX + γ⊤Z , (1)

where ho(t) is the baseline hazard, β and γT are the unknown regression coefficients we need 

to estimate.

Throughout this paper, model 1 is our substantive model, which we assume is correctly 

specified. We also assume that both R and C are random right-censoring mechanisms and 

non-informative, that is, C ⊥ T (X, Z), C ⊥ X |Z and R ⊥ X|(T,Z). The last assumption R ⊥ 
X|(T, Z) implies that the censoring in X may depend on the fully measured covariates Z as 

well as on the time-to-event outcome (Rathouz, 2007). It can be relaxed if there is a set of 

auxiliary variables, that is, variables that are not inherently of interest and do not provide 
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additional information on the hazard model of T beyond what can be obtained with (X, Z) 

alone, but may potentially contain valuable information to predict censoring R and thus 

enhance the imputation of censored observations (Collins, Schafer, & Kam, 2001; Zhou & 

Pepe, 1995). Finally, we denote by f the density distribution of X (or that of (V, D) 

depending on the context) and by fT and FT, respectively, the conditional density and 

cumulative distribution functions for the survival time T. Similarly, we also used the 

notations fC and FC for the censoring mechanism C.

3.2 | Imputation procedure

An imputation model for the covariate X can be obtained by specifying the conditional 

distribution f(V, D|Z). However, if such an imputation model is not compatible with the 

substantive model, the imputation procedure may lead to specious results. As suggested by 

Bartlett et al. (2015), such an incompatibility can be avoided if there is a joint model for the 

outcome and the covariate of interest from which we deduce an imputation model or 

algorithm. Our imputation model is similar to the method proposed by Rubin (2004), 

Schafer (1999), and Meng (1994). In order to eliminate inconsistency, they proposed that the 

assumptions in both models (imputer and analyst model) should be similar and the imputer 

model should not make more assumptions than the analyst model. The conditional 

distribution of such a joint model, given the available covariates, would correspond to the 

given (correctly) specified substantive model.

In the absence of covariate censoring, we can use the factorization,

f (X |T , Z) = f (T , X |Z)
f (T |Z) = f (T | X, Z) × f (X |Z)

f (T |Z) ,

which implies that f(X|T,Z) ∝ f(X|Z)f(T |X, Z).

When covariate censoring is present, we observe both (V, D) for the covariate measure and 

(Y, Δ) for the outcome. The above factorization can be used to write

f (V , D |Y , Δ, Z) ∝ f (V , D |Z) f (Y , Δ | X, Z) . (2)

This allows us to elucidate the second assumption in Section 3.1 and demonstrate the role Y 
plays in imputing censored values of X.

A, case in point, when T is censored at time C = c, the joint density f(V, D|Y, Δ, Z) is 

proportional to ST (c|V,D,Z)fc (c|V,D,Z)f ((V,D)|Z). On the other hand, when the survival 

time T is observed at time T = t, the right-hand side of (3) becomes fT (t|V,D,Z)[1 − FC(t|
V,D,Z)]f((V,D)|Z). With assumption C ⊥ X|Z, the factorization simplifies to

f (V , D |Y , Δ, Z) ∝ 1 − FT(c |Z) f C(c |Z) 1 − Δ f T(t |V , D, Z) 1 − FC(t |Z) Δ f (
(V , D) |Z) .

(3)

Therefore, to obtain a genuine and compatible imputation of X (also known as congenial 

imputation (Meng, 1994)) using the observed data, the left-hand side of the above 
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factorization (2) requires that leveraging the information provided by the fully observed 

covariates Z, observed measures of X as well as Y, while accounting for the role of the 

censoring mechanisms D and Δ (Meng, 1994; Collins, Schafer, & Kam, 2001; Rubin, 2004; 

Beesley, Bartlett, Wolf, & Taylor, 2016; White & Royston, 2009). We, of course, hope that 

the imputation distribution is modeled correctly so that it does not introduce bias, since both 

the imputation model and the analysis model are based on Cox proportional hazards model 

which we assumed is the correct model for both cases.

As we will demonstrate in the next section, we can achieve a good imputation of the 

censored covariate values when we incorporate the observed outcome of interest Y, the 

temporal dependence of the censoring Δ affecting the true survival T (left-hand side of (2)), 

and the information provided by observed measures V of the covariate of interest X. At the 

end of the imputation process, for each observation i, the imputed value Xi is either equal to 

Vi if Xi was observed or to a function g(Vi, Yi, Di, Zi), if Xi was censored, where g is a 

known function, defined depending on the context as we show below.

Having a good idea of what such a substantive model will look like helps tremendously with 

the imputation process. The factorization (2) and the specification of the imputation 

distribution can be successfully completed in a way that it does not introduce bias in the 

parameter estimations of the covariate X. This ensures that inference based on the data 

available approximate the underlying likelihood of the observed data (Bartlett et al., 2015; 

Beesley et al., 2016; White & Royston, 2009).

To impute a randomly censored observation Xj, we replace it by an estimate of E(Xj Xj > Rj, 

W), for j = 1, … , N, with W = (Z, Z*, Y, Δ) and Z* is the vector of auxiliary covariates (if 

available) (Atem et al., 2017). Let τ = max{D1X1, … , DNXN}. We assumed that τ belongs 

strictly on the support of X in the sense that, if Xi correspond to a censored observation, we 

considered it as an event X following Datta’s assumption, that is τ S(τ) = 0 and 

∫ τ
∞S(u)du = 0 (Datta, 2005).

When the censoring in X is strictly independent of (Y, Δ) and in absence of covariates Z or 

if the censoring R is strictly independent from Z and T, the conditional expectation E(Xj| Xj 

> Rj, Z) is just equal to E(Xj|Xj > Rj), where

E X j | X j > R j = S R j
−1∫

R j

τ
S(u)du + R j, (4)

where S(h) = ∫ h
∞ f (t)dt is the survival probability of X. We can estimate S using the Kaplan–

Meier estimator S , and linearly extrapolate S , to approximate the values of S at censored 

observations, by using the mean between subsequent events (Atem et al., 2017; Datta, 2005).

Based on the trapezoidal approximation rule, the integral ∫ a
bS(u)du ≈ 1

2 (b − a)[S(a) + S(b)], for 

(a, b) ∈ R2 and a ≠ b. Hence, we can approximate E(Xj|Xj > Rj) by
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∑
i = 1

n
I V(i) > R j

S V(i) + S V(i + 1)
2S R j

V(i + 1) − V(i) + R j,

where V(1) < V(2) < … < V(n) are the ordered observed values of the variable V = min(X, R).

When additional covariates Z and Z* are available, we use a Cox proportional hazards 

model-based estimator S  of S, that is, S(u) = S0 u
exp α⊤W j  for u ∈ R, where S0 is the 

baseline survivor function. Specifically, we ran a Cox proportional hazards model for X 
given by λ(x|w) = λ0(x) exp(αTw), where λ(x|W) and λ0(x) are, respectively, the hazard 

and the baseline hazard for X = x estimated at W = W and W = 0, respectively. Therefore,

E X j | X j > R j, W ≈ 2S0 R j
exp α⊤W j

−1

× ∑
i = 1

n
I V (i) > R j S0 V (i)

exp α⊤W j + S0 V (i + 1)
exp α⊤W j V (i + 1) − V (i)

+ R j .

(5)

We estimate the baseline survivor function S0 using the Breslow estimator (Breslow, 1972).

3.3 | Imputation algorithm

The variance estimation from the Cox proportional model, based on the above singly 

imputed data, does account for the uncertainty and the variability related to such an 

imputation process. It tends to underestimate the actual variance of the parameter of interest 

(Schafer, 1999; Little, 1992). To calibrate the estimated variance, we use the following 

algorithm:

1. Sample N units with replacement from the original data to form a bootstrap 

sample;

2. Use the bootstrap sample to replace each censored value Xj by the conditional 

mean E(Xj|Xj > Rj, Wj) as indicated in Section 3.2; then

i. fit the model h(t) = ho(t)exp βbX + γb
⊤Z

ii. store the variance Var βb

3. Repeat steps 1 to 2 B times (B ≥ 500);

4. Calculate the estimated variance

Var(β) = 1
B ∑

b = 1

B
Var βb ,
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where each Var βb , for b = 1, … , B is the model-based variance from step 2.

The use of bootstrap resampling in our algorithm resemble the algorithm commonly used for 

the regression calibration method in measurement error theory (Carroll, Ruppert, Stefanski, 

& Crainiceanu, 2006; Royston et al., 2006; Yi, 2017; Buonaccorsi, 2010; Tu & Greenwood, 

2012).

3.4 | Multiple censored covariates

The foregoing method for random censored covariate can be extended to accommodate more 

than one randomly censored covariate, using the method for multivariate missing data 

analysis proposed by Buck (1960). As in the one covariate case, we are interested in 

assessing the relationship between the K-vector of potentially censored covariates X = (X1, 

… , XK) and the survival time T, adjusting for the effects of fully observed covariates Z 
through a Cox proportional hazards model

h(t) = ho(t)exp β1X1 + ⋯ + βKXK + γ⊤Z , (6)

where ho(t) is the baseline hazard and (β1, … , βK,γT) are the unknown regression 

coefficients. We assume that model (6) is correctly specified and denote the vector of 

censoring indicators for X by R = (R1, … , RK).

Following Buck (1960), we can factorize the distribution of f (X|T,Z) as f(X,Z) f(T|X,Z)

For censored value of the covariate XK, we subsequently consider functions of the form

gk Vk, X1, D1 , …, Xk − 1, Dk − 1 , Xk + 1, Dk + 1 , … XK, DK , (Y , Δ), Z (7)

for some gk, k = 1, … , K, and break down the imputation of censored covariates into a 

series of single-censored covariate procedures.

Similarly to the above one-covariate imputation, the conditional expectation E(XXj| XXj > 

RXj, W{−k}) is approximated by

2S0 Rk j
exp α⊤W − k j

−1

∑
i = 1

n
I V (ki) > R j

× S0 V (ki)
exp αTW − k j + S0 V (ki + 1)

exp α⊤W − k j × V (ki + 1) − V (ki)

+ Rk j,

(8)

where Vki = min(Xki, Rki), k = 1, … , K. The vector W{−k} includes Z, Y, Δ, (X1, … , Xk−1, 

Xk+1, XK) and (D1, … , Dk−1, Dk+1, DK), where Dk = (Dk1, … , DkN) and Dki = I(Xki < Rki) 

represents the indicator of covariate censoring, for k = 1, … , K. Therefore, for each 

participant j, the imputed covariate value X jk will then be either equal to Vjk or equal to 

E(Xkj|Xkj > Rkj, W{−k}).
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4 | SIMULATIONS

In this section, we demonstrate the characteristics of the proposed method via simulation 

studies. We generated different sets of data corresponding to different scenarios (and 

distributions) of right-censoring mechanism R for the censored variable X. In each of these 

different scenarios, we generated M = 3,000 simulated datasets of size N equal to 250, 500, 

and 750, respectively.

4.1 | Simulation setup

In each data set, we generated a fully observed covariate Z following the standard normal Z 

~ (0, 1) and the censored covariate X W eibull 3
4 , 1

4 . In addition, we considered three 

different scenarios for the distribution of the censoring mechanism R of X:

1. no censoring, that is, the covariate X is fully observed;

2. R ~ W eibull(1, 1) for 25% censoring;

3. R ~ W eibull(1, 0.3) for 50% censoring.

The hazards of the survival events T were based on a proportional hazards model 1, where 

h(t) = h0(t) exp(βX + γZ) with β = −1 and γ = 0.5. Thus, the outcome was generated from T 
~ W eibull(1, 1∕4θ) where θ = exp(−βX − γZ). Finally, we generated the censoring variable 

C ~ W eibull(1, q), where q = 1 and q = 0.3 to reach approximately 25% and 50% censored 

events.

Similarly, we considered the variable Z ~ (0, 1) as above and generated also the censored 

covariates X1 W eibull 3
4 , 1

4  and X2 W eibull 1
2 , 1

4  under three different scenarios for the 

distribution of the censoring mechanisms R1 and R2 as follow:

1. no censoring, that is, X is fully observed;

2. R1 ~ W eibull(1, 1) for 25% censoring and R2 W eibull 3
4 , 3

4  for 25% censoring;

3. R1 ~ W eibul(1, 0.3) for 50% censoring and R2 W eibull 3
4 , 1

4  for 50% censoring.

In addition, we generated the outcome T ~ W eibull(1, 1∕4θ), for θ = exp(−β1X1 − β2X2 − 

γZ) following the proportional hazards model 6 defined as h(t) = h0(t) exp(β01X1 + β02X2 + 

γZ) with β1 = −1, β2 = 0.5 and γ = 0.5. Its corresponding censoring random variable C ~ W 
eibull(1, q) where q = 1 and q = 0.3 for, respectively, 25% and 50% censoring.

4.2 | Evaluation criteria

For each scenario of the censoring mechanisms R, R1, or R2 and for each of the M = 3,000 

simulated data sets, we determined the estimates βkm, m = 1, … , M, of the parameters of 

interest βk, k = 1 (resp. k = 1, 2), using the algorithm aforementioned with B = 500 bootstrap 

samples. We calculated the percentage bias = 100% βk − βk /βk, where βk = 1
M ∑m = 1

M βkm; 

the Monte Carlo simulation standard error, that is, the empirical standard error (ESE) of the 

estimate of interest over all M simulated data sets; the model-based standard error (SE) 
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which is the average of all standard errors from each fitted model; the mean squared error 

(MSE); and the 95% coverage probability, that is, the proportion of the time that the 95 % 

confidence interval contains the true parameter value βk, k = 1 (resp. k = 1, 2).

We compared the results from our proposed method—the conditional imputation with 

bootstrap (CI-B)— to those from (1) the complete-case analysis (CC) to highlight the impact 

of censoring on the censored covariate and (2) the conditional imputation without bootstrap 

(CI), to show the importance of bootstrap variance estimation in accounting for the 

uncertainty related to the imputation scheme.

The most consistent and efficient approach will be the one that has the smallest bias, a 

model-based standard error similar to the simulation error, the smallest MSE, and a coverage 

probability close to 0.95. Naturally, we expected the scenario with no censoring (full data) to 

yield results with the most consistent and efficient model parameters. Therefore, the 

efficiency of our proposed method was then assessed based on how close it is from the non-

censored covariate scenario compared to the other two methods.

4.3 | Simulation results

Tables 1–3 report the results of our simulation studies. An inspection of these tables indicate 

that the performance of the different methods depends on both the sample size and the 

percentage of censored covariate(s). As expected, for each method, given a percentage of 

censored covariate, the bias decreases as the sample size increases. Also, for a given sample 

size, the bias increases as the percentage of censored covariate increases from 25% to 50%. 

All three methods result in reasonable coverage probabilities.

For a sample size N = 250, all three methods were slightly biased and comparable. However, 

the standard error of the complete-case analyses were high and increased tremendously as 

the censoring rate increased. This explains the high MSEs for the complete-case analysis 

compared to the other two imputation methods. The conditional imputation with bootstrap 

performed better than the complete-case analysis since the relative efficiency, measured by 

MSE, was higher in the complete-case than both imputation approaches. The efficiency for 

conditional imputation with bootstrap was more pronounced as compared to the complete-

case analysis when multiple variables were subject to random censoring (Table 3).

Most of the 95% coverage probabilities were adequate. However, for smaller sample size N 
= 250, with heavy censoring, that is for 50% censoring, the coverage probabilities fell below 

95 % for all the methods under both Kaplan–Meier and Cox proportional hazards model 

estimation. In fact, the coverage probabilities even dropped below 94% for both the 

complete-case and conditional imputation methods for 50% censoring under Kaplan–Meier 

approximation. As the sample size increased to N = 500 and N = 750, the bias decreased and 

the coverage probabilities became close to (and sometimes higher than) the nominal 95% 

level for all three methods.

Overall, since deleting censored observation reduces precision, the simulation standard 

errors and the model-based standard errors for the complete-case analyses were the largest 

compared to the other two imputation methods especially when two variables are subject to 
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censoring. The simulation results show that the complete-case method yielded the highest 

bias, standard error and MSE, especially under heavy censoring of multiple variables. This is 

the result of reduction in precision since censored observations are deleted. The higher the 

percentage of censoring, the higher the standard error in the complete-case analysis. The 

increase in standard error for the complete-case (as compared to the other two methods) was 

even more pronounced when censoring increased to 50% and with two variables subject to 

censoring.

The conditional imputation based on the Cox model performs better than the conditional 

imputation based on Kaplan–Meier for n = 750. For larger sample size, the study is well-

powered to estimate additional parameters that can be included in the model. Furthermore, 

in the context of missing data, (Meng, 1994) recommend that all the necessary variables—

including auxilliary variables and the outcome—should be added to the imputation model. 

This is extremely crucial when data are missing at random. Similarly, when dealing with 

censored data, it is important to include all variables in the imputation model (including the 

outcome and the corresponding censoring indicator). The imputation based on Kaplan–

Meier does not perform as well as that the imputation based on the Cox model because the 

latter includes all the variables available in the analysis phase and thus improves the 

imputation.

The simulation error of both conditional imputations—either based on Kaplan–Meier or Cox 

proportional hazards model—were always greater than the model-based error because both 

imputation methods did not adjust for the extra uncertainty arising from the imputation 

process. Moreover, the CI method results in the smallest standard error since in estimating 

its corresponding standard error the uncertainty related to the imputation process is not taken 

into consideration. However, this is improved through the bootstrap resampling in our 

proposed CIB method. This adjustment in standard error resulted in larger MSE in the both 

conditional imputation with bootstrap under Kaplan–Meier and Cox proportional hazards as 

compared to conditional imputation for one or two censored covariates imputation.

5 | APPLICATION

To illustrate the proposed method, we considered the data from the Framingham Heart Study 

(FHS) introduced in Section 2. We assessed the association between age at cardiovascular 

event in offspring and age of onset of cardiovascular event in parents, after controlling for 

gender, body mass index (BMI ≤ 30 or BMI > 30), and wine intake (yes or no).

One major assumption, for illustrative purposes, is that we have treated death as an 

independent censoring event for onset of CVD in our data analysis. If death is instead a 

competing risk then the independence assumption would be violated. While we cannot test 

for independent censoring, we might be concerned that death prior to CVD would not 

always qualify as an independent censoring event. In this case, we need to view our Cox 

models as a cause model for the cause-specific hazard for CVD that are conditional on being 

alive. In applications in which this is a major concern, competing risk methodology could be 

used to estimate a cumulative incidence function and employ a survival model that adjusts 

for the competing risks.
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We performed two sets of analyses. First, we ran two separate Cox proportional hazards 

models to assess the association between age at cardiovascular events in offspring and 

maternal (resp. paternal) age at onset of cardiovascular event. Second, we investigated the 

joint association of both paternal and maternal age at onset of cardiovascular events on 

offspring age at first cardiovascular event in a single Cox proportional hazards model.

In the data set restricted to mothers and offspring, a total of 907 out of 1,401 mothers and 

388 out of the 1,401 offspring participants experienced a cardiovascular event. The 

percentages of censored measures in each these groups were 35.26% and 72.30%. On the 

other hand, of the 1,221 fathers in the father-offspring data set, 909 of them experienced a 

cardiovascular event (censoring percentage equal to 25.55%). In addition, there were 283 out 

1,221 offspring participants who had a cardiovascular event (thus 76.82% censored 

observations).

Table 4 summarizes the results of the two separate analyses. All the methods led to 

significant association between cardiovascular event in offspring and parents. This indicates 

that offspring participants whose parents had a early onset of cardiovascular disease, have 

higher hazards of a cardiovascular event. As expected, the complete-case analysis was the 

least powerful method since deleting censored observations reduced the sample size.

We also assessed the association between parental and offspring age at onset of a 

cardiovascular event by running a Cox proportional hazards model that includes the two 

censored covariates. The final data set contained a total of 1,141 observations that had both 

parents’ age at onset of CVD. Of the 1,141 parents, only 555 mothers and fathers experience 

CVD. Thus, for the complete-case analysis, 586 (i.e., 51.36%) observations were discarded 

because of censoring.

Table 5 shows that there is a tremendous loss in power using the complete-case analysis as a 

consequence of such a considerable deletion of valuable data. Moreover, the results from 

Table 5 based on the complete-case analysis show a non-significant association between 

father age of onset of CVD and offspring age of onset of CVD (as opposed to the results 

obtained in Table 4 where we ran a separate model for paternal’s age of onset of CVD 

event).

However, both the CI and CI-B results in significant association between both parents age of 

onset of CVD and offspring age of onset of CVD; these results are compatible to those 

obtained from Table 4 when running two separate models.

6 | DISCUSSION

In this paper, we have proposed an imputation method for randomly censored covariates that 

uses either a Kaplan–Meier estimation or a Cox proportional hazards model (when there are 

additional baseline or auxiliary covariates) to input censored observations. The imputed data 

is then use to assess the effects of these convariates on a time-to-event outcome through an 

additional Cox regression proportional hazards model.
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Our imputation method is similar to the conditional imputation of Atem et al. (2017) for 

linear regression model and in the spirit of the conditional imputation of Little for missing 

data (Little, 1992). It consists in replacing censored covariate observations by their 

corresponding conditional mean values, given all the other covariates as well as the time-to-

event outcome and auxiliary variables (when available). Each conditional mean is 

determined based on either the Kaplan–Meier approach or a Cox proportional hazards model 

of the censored covariate(s) using a trapezoidal integral approximation rule (Atkinson, 

2008). Furthermore, the way we have leverage the time-to-event outcome in our imputation 

process is different and more delicate than Atem et al. (2017) did for linear regression model 

with a continuous outcome, due to the nature of the time-to-event outcome since it is subject 

to random censoring as well.

Unlike the complete-case analysis, which fails to capitalize on the available information in 

the data on the censored observations, our proposed imputation method allows us to not only 

replace censored values with the best approximation possible, but also to retain all the 

available information in a more complete data set. The conditional imputation without 

bootstrap method also provides unbiased parameter estimates, but underestimates the 

standard error as it does not make up for reduced variability in error due to imputation 

scheme. However, this is improved through the bootstrap resampling in our proposed 

method. Our method yielded valid inference in terms of the parameter estimates, the bias, 

and the mean-squared error. Finally, by analyzing the Framingham Heart Study, we showed 

that when censored observations are properly accounted for using our imputation method, 

we can have a good estimate of the effect of the age of onset of a parental cardiovascular 

event on the age of cardiovascular disease in their offspring.
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TABLE 1

Imputation of a censored covariate based on Kaplan–Meier Estimation

Light censoring (25% censoring) Heavy censoring (50% censoring)

Size Method Bias* SE ESE MSE CP Bias* SE ESE MSE CP

250 Full −0.80 0.245 0.250 0.060 96.2 −0.80 0.245 0.250 0.060 96.2

CC 0.81 0.691 0.720 0.478 95.4 −4.10 0.903 0.903 0.817 92.2

CI 2.91 0.362 0.420 0.132 95.8 3.77 0.464 0.700 0.216 91.3

CI-B 2.91 0.405 0.440 0.165 96.1 3.77 0.620 0.642 0.386 92.0

500 Full 0.26 0.170 0.175 0.029 96.9 0.26 0.170 0.175 0.029 96.9

CC 0.71 0.497 0.498 0.247 96.4 4.00 0.642 0.653 0.414 95.0

CI 2.61 0.226 0.297 0.052 96.0 −3.48 0.310 0.350 0.097 95.2

CI-B 2.61 0.276 0.278 0.077 96.1 −3.48 0.338 0.349 0.116 95.4

750 Full −0.16 0.138 0.138 0.019 97.4 −0.16 0.138 0.138 0.019 97.4

CC 0.35 0.409 0.411 0.167 97.0 −2.93 0.521 0.524 0.273 97.0

CI 0.84 0.195 0.224 0.038 96.2 3.52 0.249 0.328 0.063 96.2

CI-B 0.84 0.229 0.233 0.053 96.2 3.52 0.276 0.278 0.079 96.3

Note. Full = full data; CC = complete-case; CI = conditional imputation; CI-B = CI with bootstrap; SE = (model-based) standard error; ESE = 
empirical standard error; CP = estimated coverage probability of 95% confidence intervals.

* Relative bias percentage = β − β
β × 100%.
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TABLE 2

Imputation of a censored covariate based on Cox proportional hazards model

Light censoring (25% censoring) Heavy censoring (50% censoring)

Size Method Bias* SE ESE MSE CP Bias* SE ESE MSE CP

250 Full 1.61 0.253 0.254 0.064 96.2 1.61 0.253 0.254 0.064 96.2

CC −2.84 0.379 0.389 0.144 96.1 4.41 0.782 0.800 0.613 93.2

CI 2.84 0.263 0.331 0.070 96.0 4.11 0.449 0.501 0.203 92.3

CI-B 2.84 0.323 0.365 0.105 96.1 4.11 0.488 0.540 0.240 94.0

500 Full −0.74 0.171 0.183 0.029 97.1 −0.74 0.171 0.183 0.029 97.1

CC 0.96 0.266 0.279 0.071 96.1 4.19 0.642 0.669 0.414 95.1

CI 0.91 0.183 0.270 0.033 96.1 4.10 0.313 0.341 0.100 94.0

CI-B 0.91 0.221 0.230 0.049 96.2 4.10 0.329 0.341 0.110 95.1

750 Full −0.07 0.138 0.141 0.019 97.6 −0.07 0.138 0.141 0.019 97.6

CC 0.74 0.215 0.226 0.046 97.0 −2.24 0.525 0.542 0.276 96.0

CI 0.72 0.148 0.194 0.022 96.2 2.05 0.240 0.284 0.058 95.0

CI-B 0.72 0.175 0.180 0.031 96.2 2.05 0.288 0.331 0.083 95.6

Note. Full = full data; CC = complete-case; CI = conditional imputation; CI-B = CI with bootstrap; SE = (model-based) standard error; ESE = 
empirical standard error; CP = estimated coverage probability of 95% confidence intervals.

* Relative bias percentage = β − β
β × 100%.
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TABLE 3

Imputation of two censored covariates based on Cox proportional hazards model

X1 X2

Size Method Bias* SE ESE MSE CP Bias* SE ESE MSE CP

250 (1a) Light censoring (25% censoring)

Full 0.808 0.254 0.254 0.065 0.963 0.004 0.129 0.129 0.017 0.963

CC 0.014 0.477 0.504 0.228 0.957 0.004 0.412 0.450 0.170 0.949

CI 0.009 0.301 0.502 0.091 0.950 0.004 0.174 0.220 0.030 0.960

CI-B 0.009 0.2911 0.311 0.085 0.960 0.004 0.178 0.191 0.032 0.949

(1b) Heavy censoring (50% censoring)

Full 0.008 0.254 0.254 0.065 0.963 0.004 0.129 0.129 0.017 0.963

CC 0.039 1.070 1.205 1.146 0.925 0.094 1.103 1.224 1.225 0.921

CI 0.010 0.380 0.432 0.145 0.950 0.007 0.271 0.413 0.073 0.960

CI-B 0.010 0.399 0.415 0.159 0.957 0.007 0.271 0.300 0.073 0.949

500 (2a) Light censoring (25% censoring)

Full 0.004 0.179 0.182 0.032 0.964 0.003 0.091 0.092 0.008 0.968

CC 0.013 0.330 0.336 0.109 0.964 0.004 0.268 0.261 0.072 0.967

CI 0.004 0.200 0.353 0.040 0.954 0.003 0.116 0.171 0.013 0.967

CI-B 0.004 0.216 0.222 0.047 0.964 0.003 0.137 0.142 0.019 0.950

(2b) Heavy censoring (50% censoring)

Full 0.004 0.179 0.182 0.032 0.964 0.003 0.091 0.092 0.008 0.968

CC 0.028 0.722 0.755 0.522 0.944 0.009 0.706 0.749 0.499 0.954

CI 0.006 0.256 0.306 0.066 0.950 0.005 0.168 0.288 0.028 0.964

CI-B 0.006 0.268 0.295 0.072 0.951 0.005 0.191 0.222 0.037 0.950

750 (3a) Light censoring (25% censoring)

Full 0.004 0.144 0.149 0.021 0.965 0.002 0.072 0.071 0.005 0.968

CC 0.013 0.268 0.285 0.072 0.964 0.003 0.216 0.224 0.047 0.967

CI 0.004 0.160 0.183 0.026 0.960 0.003 0.092 0.209 0.008 0.955

CI-B 0.004 0.168 0.183 0.028 0.964 0.003 0.094 0.121 0.008 0.955

(3b) Heavy censoring (50% censoring)

Full 0.004 0.144 0.149 0.021 0.965 0.002 0.072 0.071 0.005 0.968

CC 0.009 0.580 0.590 0.336 0.960 0.007 0.551 0.594 0.304 0.954

CI 0.005 0.204 0.245 0.042 0.960 0.007 0.130 0.244 0.017 0.964

CI-B 0.005 0.210 0.230 0.044 0.957 0.007 0.143 0.175 0.020 0.951

Note. Full = full data; CC = complete-case; CI = conditional imputation; CI-B = CI with bootstrap; SE = (model-based) standard error; ESE = 
empirical standard error; CP = estimated coverage probability of 95% confidence intervals.

* Relative bias % = β − β
β × 100%.
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TABLE 4

Association between maternal (resp. paternal) age and offspring age of onsets of cardiovascular event

Method Estimate SE p-Value

Maternal age

 CC −0.04 7 × 10−3 < 10−4

 CI −0.03 6 × 10−3 < 10−4

 CI-B −0.03 6.1 × 10−3 < 10−4

Paternal age

 CC −0.02 8.3 × 10−3 7 × 10−3

 CI −0.02 7 × 10−3 10−3

 CI-B −0.02 7.2 × 10−3 10−3

Note. CC = complete-case; CI = conditional imputation; CI-B = conditional imputation with bootstrap.
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TABLE 5

Association between parental age and offspring age of onsets of cardiovascular event; including both parents’ 

ages at first onset of a cardiovascular event in a single model

Method Mother SE p-value Father SE p-value

CC −0.05 1.1 × 10−2 < 10−4 2 × 10−3 1.1 × 10−2 0.85

CI −0.03 6.5 × 10−3 < 10−4 −0.02 6.4 × 10−3 4 × 10−3

CI-B −0.03 6.6 × 10−3 < 10−4 −0.02 6.7 × 10−3 0.02

CC = complete-case; CI = conditional imputation; CI-B = CI with bootstrap.
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