Skip to main content
. Author manuscript; available in PMC: 2020 Apr 15.
Published in final edited form as: Comput Methods Appl Mech Eng. 2019 Jan 7;347:533–567. doi: 10.1016/j.cma.2018.12.008

Table 3.

Results for the sinusoidal analytic tumor / analytic velocity (SIN) test case; ground truth: (ρ f = 15, ρw = 1, ρg = 0, k f = 0, p = p, v =v). We report convergence of the Picard iteration scheme for the SIN test case for three runs with increasingly refined mesh. For the registration, we increase the number of inversion variables by a factor of eight starting from Ni = 64 points per dimension, to Ni = 128 and Ni = 256; for the tumor parameters, we choose n p to be 8,64, and 512 respectively. To study the convergence of our scheme, we perform 20 Picard iterations after termination of the parameter-continuation scheme for the regularization parameter of the registration solver. The relative objective function value Jrel and the relative gradient norm grel of the coupled problem in (3) are reported for every iteration. Further, for each iteration we report the relative norm of the update ec0,L2,rel and ev,L2,rel of the inversion variables p and v respectively.

Ni = 64,np = 8 Ni = 128,np = 64 Ni = 256,np = 512

It βυ Jrel grel ec0,L2,rel eυ,L2,rel Jrel grel ec0,L2,rel eυ,L2,rel Jrel grel ec0,L2,rel eυ,L2,rel
init - 1.00 1.00 1.00 1.00 1.00 1.00
1 1 6.67E−1 9.42E−3 6.73E−1 2.48E−3 6.67E−1 8.76E−4
2 1E−1 5.84E−1 5.37E−4 5.88E−1 2.27E−4 5.84E−1 7.58E−5
3 1E−2 3.08E−1 2.42E−4 8.08E−3 1.01E+1 3.08E−1 1.88E−4 2.66E−2 6.02 3.08E−1 6.97E−5 2.28E−2 4.97
4 1E−2 3.03E−1 1.77E−4 2.48E−3 1.51 3.04E−1 1.01E−4 2.35E−2 2.48 3.03E−1 4.37E−5 2.55E−2 2.94
5 1E−2 3.02E−1 1.44E−4 1.34E−3 2.60E−2 3.00E−1 6.20E−5 7.16E−3 1.33E−1 3.02E−1 2.62E−5 1.00E−2 1.48E−1
6 1E−2 3.01E−1 1.18E−4 8.72E−4 1.43E−2 3.02E−1 4.66E−5 2.51E−3 7.70E−2 3.01E−1 1.81E−5 3.61E−3 9.79E−2
7 1E−2 3.01E−1 9.64E−5 5.61E−4 7.25E−3 3.02E−1 3.78E−5 1.29E−3 4.61E−2 3.01E−1 1.41E−5 1.63E−3 6.43E−2
8 1E−2 3.00E−1 7.91E−5 3.62E−4 4.37E−3 3.02E−1 3.12E−5 8.04E−4 2.70E−2 3.00E−1 1.15E−5 9.29E−4 3.96E−2
9 1E−2 3.00E−1 6.50E−5 2.38E−4 3.30E−3 3.02E−1 2.59E−5 5.29E−4 1.61E−2 3.00E−1 9.51E−6 5.89E−4 2.48E−2
10 1E−2 3.00E−1 5.35E−5 1.57E−4 2.71E−3 3.02E−1 2.15E−5 3.54E−4 9.98E−3 3.00E−1 7.89E−6 3.89E−4 1.58E−2
11 1E−2 3.00E−1 4.40E−5 1.05E−4 2.31E−3 3.02E−1 1.79E−5 2.39E−4 6.42E−3 3.00E−1 6.56E−6 2.62E−4 1.02E−2
12 1E−2 3.00E−1 3.63E−5 6.99E−5 1.90E−3 3.02E−1 1.49E−5 1.63E−4 4.22E−3 3.00E−1 5.47E−6 1.78E−4 6.75E−3
13 1E−2 3.00E−1 2.99E−5 4.69E−5 1.58E−3 3.02E−1 1.24E−5 1.12E−4 2.09E−3 3.00E−1 4.55E−6 1.21E−4 4.54E−3
14 1E−2 3.00E−1 2.46E−5 3.16E−5 1.30E−3 3.02E−1 1.04E−5 7.63E−5 3.09E−3 3.00E−1 3.50E−6 8.33E−5 3.10E−3
15 1E−2 3.00E−1 2.03E−5 2.13E−5 1.07E−3 3.02E−1 8.64E−6 5.26E−5 1.35E−3 3.00E−1 3.17E−6 5.74E−5 2.19E−3
16 1E−2 3.00E−1 1.67E−5 1.44E−5 8.85E−4 3.02E−1 7.21E−6 3.63E−5 1.71E−3 3.00E−1 2.64E−6 3.96E−5 1.60E−3
17 1E−2 3.00E−1 1.38E−5 9.73E−6 7.29E−4 3.02E−1 6.05E−6 2.51E−5 9.31E−4 3.00E−1 2.21E−6 2.74E−5 1.20E−3
18 1E−2 3.00E−1 1.14E−5 6.59E−6 6.01E−4 3.02E−1 5.08E−6 1.59E−5 7.94E−4 3.00E−1 1.86E−6 1.89E−5 8.04E−4
19 1E−2 3.00E−1 9.37E−6 4.47E−6 4.95E−4 3.02E−1 4.30E−6 1.12E−5 6.62E−4 3.00E−1 1.57E−6 1.16E−5 6.50E−4
20 1E−2 3.00E−1 7.73E−6 3.03E−6 4.08E−4 3.02E−1 3.64E−6 7.61E−6 5.22E−4 3.00E−1 1.34E−6 8.04E−6 5.29E−4
21 1E−2 3.00E−1 6.37E−6 2.06E−6 3.36E−4 3.02E−1 3.09E−6 5.23E−6 4.27E−4 3.00E−1 1.14E−6 5.69E−6 4.42E−4
22 1E−2 3.00E−1 5.26E−6 1.40E−6 2.77E−4 3.02E−1 2.62E−6 3.71E−6 3.59E−4 3.00E−1 9.63E−7 4.08E−6 3.74E−4
23 1E−2 3.00E−1 4.35E−6 6.45E−7 2.29E−4 3.02E−1 2.23E−6 1.91E−6 3.05E−4 3.00E−1 8.17E−7 2.10E−6 3.17E−4