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Abstract

Word embeddings are a popular approach to unsupervised learning of word relationships that are 

widely used in natural language processing. In this article, we present a new set of embeddings for 

medical concepts learned using an extremely large collection of multimodal medical data. Leaning 

on recent theoretical insights, we demonstrate how an insurance claims database of 60 million 

members, a collection of 20 million clinical notes, and 1.7 million full text biomedical journal 

articles can be combined to embed concepts into a common space, resulting in the largest ever set 

of embeddings for 108,477 medical concepts. To evaluate our approach, we present a new 

benchmark methodology based on statistical power specifically designed to test embeddings of 

medical concepts. Our approach, called cui2vec, attains state-of-the-art performance relative to 

previous methods in most instances. Finally, we provide a downloadable set of pre-trained 

embeddings for other researchers to use, as well as an online tool for interactive exploration of the 

cui2vec embeddings.
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1. Introduction

Word embeddings have become an extremely popular way to represent sparse, high-

dimensional data in machine learning and natural language processing (NLP). Modern 

notions of word embeddings based on neural networks have their roots in the neural 

language model of Bengio et al.,1 though the idea is closely related to many other 
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approaches, notably latent semantic analysis (LSA)2 and hyperspace analogue to language 

(HAL).3 Word embeddings are motivated by the observation that traditional representations 

for words, such as a one-hot encoding, are high dimensional and inefficient, since such an 

encoding captures none of the similarity or correlation information between words in the 

source text. The central idea is that a word can be characterized by “the company it keeps,”4 

thus context words which appear around a given word encode a large amount of information 

regarding that word’s meaning. Word embeddings model this contextual information by 

creating a lower-dimensional space such that words that appear in similar contexts will be 

nearby in this new space.

The embedding approach in word2vec5 has become quite popular since its introduction, and 

embeddings are now standard components in many NLP tasks. The main application has 

been in the use of “transfer learning,” where embeddings are first learned using extremely 

large sources of unlabeled text (from web-crawls, Wikipedia dumps, etc.), and the 

embeddings are then used in a supervised task as components of a model (e.g., a recurrent 

neural network) which accepts the pre-trained embeddings as inputs. It has been shown that 

transfer learning can work as well as it does for image data,6 opening up numerous 

possibilities to exploit transfer learning in many NLP applications. Within the context of 

medical data, recent examples have shown that transfer learning works very well for imaging 

tasks,7,8 due in large part to the availability of pre-trained computer vision models9–11 that 

were pre-trained on the ImageNet database.12

Machine learning has enormous potential in healthcare;13 however, many researchers lack 

access to large sources of non-imaging healthcare data due to privacy concerns. This has 

resulted in a lack of pre-trained resources for applications in healthcare and medicine 

relative to other areas of machine learning and NLP. Moreover, because healthcare data 

come in a variety of forms, popular word embedding algorithms like word2vec and GloVe,14 

which were originally developed for text, cannot be directly applied to many kinds of 

healthcare data.

The primary goal of this work is to construct a comprehensive set of embeddings for medical 

concepts, which we refer to as cui2vec, by combining extremely large sources of multimodal 

healthcare data.

2. Overview of word2vec and GloVe

2.1. word2vec

The original work that introduced word2vec5 actually contains a collection of models and 

algorithms including the continuous bag of words (CBOW) model and the skip-gram model. 

The CBOW model predicts the probability of the target word given its context defined 

within a window, while the skip-gram model predicts the surrounding context given the 

target word. Specifically, the skip-gram model5 seeks to construct vector representations of a 

target word w and a context word c such that the conditional probability p(w|c) is high for 

<w, c> pairs that co-occur frequently in the source text. For the remainder of this paper we 

will use w and c to refer to the target word and context word respectively, and use and w , c
to refer to the 1 × d dimensional target word and context embeddings. Under the skip-gram 
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model, the conditional probability of observing context word c within a fixed window given 

the target word w is proportional to the dot-product of their corresponding vectors, and is 

given by the softmax function below:

p(w |c) =
exp w c T

∑ j exp w c j
T (1)

where the sum in the denominator is over all unique context words in the source corpus. 

Note that this sum is generally intractable and requires approximations to estimate 

efficiently. Thus, the vectors w , c  encode information about how likely word w is to appear 

in a randomly selected piece of text, given word c has been observed.

A key feature of word2vec are techniques that enable efficient training on large corpora. For 

example, negative sampling approximates the sum in the denominator by randomly sampling 

k context words which do not appear in the current window. This allows the algorithm to be 

run with bounded memory requirements and in a parallel fashion, which improves the 

training speed and enables training on very large corpora.15 Indeed, the key point of 

Mikolov et al. was that training a simple and scalable model with more data results in better 

accuracy than a complex non-linear model on a variety of benchmarks.

2.2. GloVe

Global Vectors for Word Representations (GloVe)14 was introduced shortly after Mikolov et 

al. and differs in several important ways. GloVe produces word embeddings by fitting a 

weighted log-linear model to co-occurrence statistics. Given that a target word w and a 

context word c co-occur y times, GloVe solves the following least-squares optimization 

problem:

argmin
w , c , bw, bc

f (y) w c T + bw + bc − log(y)
2

(2)

where bw , bc are word and context biases, respectively and f(y) is a weighting function and 

is given by:

f (y) =
y

ymax

α
y < ymax

1 y ≥ ymax

(3)

The final embedding for word i is the sum of the resulting word and context vectors for that 

word. This is repeated for all w,c pairs and is trained iteratively using stochastic gradient 

descent. The most expensive step is the construction of the term-term co-occurrence matrix, 

which is necessary before training can begin.

Beam et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Embeddings as a Factorization of a Modified Co-occurrence Matrix

Previous work16 by Levy and Goldberg showed that the skip-gram model with negative 

sampling (SGNS), which is often considered to be state-of-the-art,17 is implicitly factorizing 

a shifted, positive pointwise mutual information (PMI) matrix of word-context pairs. 

Pointwise mutual information (PMI) is a measure of association between a word and a 

context word, and can be computed from the counts of word-context pairs in the corpus, 

given by:

PMI(w, c) = p(w, c)
p(w) * p(c) (4)

where p(w, c) is the number of times word w and context-word c occur in the same context 

window divided by the total number of word-context pairs, whereas p(w), p(c) are the 

singleton frequencies of w and c, respectively. If we shift the PMI by some constant log(k) 

(where k is the number of negative samples in the original word2vec paper5) and set all 

negative entries to 0, and factor the resulting shifted positive pointwise mutual information 
matrix (SPPMI) we recover the implicit objective of word2vec’s SGNS model. The element 

wise SSPMI transformation is shown below:

SPPMI(w, c) = max(PMI(w, c) − log(k), 0) (5)

Therefore, one can simply factorize the SSPMI matrix using any factorization method, such 

as a singular value decomposition (SVD), to obtain a lower-dimension embedding of the 

words. This finding is critical as it links word2vec to traditional count-based methods that 

are based on co-occurrence statistics.

GloVe was originally presented in terms of explicit matrix factorization and provides an 

algorithm to perform this factorization (stochastic gradient descent to minimize sum-of-

squared error). Thus, under this unified framework the starting point for both word2vec and 

GloVe is the construction of a term-term co-occurrence matrix. This insight is what allows 

us to use these algorithms on problems which may contain non-textual data sources, as we 

can materialize a co-occurrence matrix using any data where such co-occurrences can be 

computed. Then we simply use the GloVe algorithm to directly factor this matrix or use 

SVD to factor the SSMPI matrix to create word2vec style embeddings.

2.4. Overview of cui2vec

Medical data are multi-modal by nature and come in many forms including free text (in 

medical publications and clinical notes) and billing codes for diagnoses and procedures in 

the electronic healthcare record (EHR). The cui2vec system works by first mapping all of 

these concepts into a common concept unique identifier space (CUI) using a thesaurus from 

the Unified Medical Language System (UMLS). Next, a CUI-CUI co-occurrence matrix is 

constructed, but the way a co-occurrence is counted depends on the source data. For non-

clinical text data (e.g., journal articles), it is first preprocessed (see Section 3) and chunked 

into fixed length windows of 10 words, and a co-occurrence is counted as the appearance of 

a CUI-CUI pair in the same window. For claims data, ICD-9 codes are mapped to UMLS 
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CUIs and a co-occurrence is counted as the number of patients in which two CUIs appear in 

any 30-day period. Finally, for the clinical notes, we counted a co-occurrence as two CUIs 

appearing in the same 30-day ‘bin’ in a similar fashion to previous work,18 but see the 

original publication19 for the precise definition. Once the master co-occurence matrix is 

created, it can be directly factored by GloVe or transformed into a SSPMI matrix and 

factored using SVD to create word2vec embeddings.

Related Work—There is a long history of machine learning and natural language 

processing for clinical uses, but for the purposes of this paper we confine our review to 

papers that are directly seeking to create low dimensional representations of clinical 

concepts, in the spirit of word2vec and GloVe. The first investigations20–22 using word2vec 
for medical concepts were performed shortly after the original word2vec paper appeared in 

2013 and reported mixed results, though De Vine et al.21 reported state-of-the-art 

performance with respect to human assessments of concept similarity and relatedness. 

Recently, transformer based models23–26 have demonstrated state of the art performance on 

many NLP tasks. Alsentzer et al.26 used clinical notes to fine-tune BERT.

Liu et al.27 used embeddings jointly trained on Wikipedia and ICU notes to perform 

automatic expansion of abbreviations which are common in clinical notes. Lastly, Choi et al.
18 performed the work that is most comparable to this study, which used similar sources of 

data to create embeddings for UMLS CUIs. Choi et al. used a claims database of 4 million 

patients and a novel methodology to create a set of clinical embeddings as well as the notes 

from Finlayson et al.19

2.5. Contributions of this work

The work presented here differs in several important ways from existing works. First, we 

have access to a much larger claims database of 60 million patients and a larger set of 1.7 

million full text articles (not restricted to abstracts), which should enable both a much larger 

and higher quality set of embeddings. Secondly, the embeddings produced by Choi et al. are 

different for each data source, whereas we map all concepts into a common co-occurrence 

space to produce a single set of embeddings that can be used on tasks with different kinds of 

clinical data. This co-occurrence space mapping also allows us to use multimodal data that 

would be difficult to integrate using transformer-based models. We also present a new and 

expanded evaluation methodology that is both more interpretable and, we believe, a more 

natural way to benchmark sets of clinical embeddings that will be of general use for future 

medical embedding work. Finally, we believe that our approach incorporates many of the 

best practices with respect to tuning parameters (see Section 3) which also results in 

increased performance. In summary, this work presents results in a new set of embeddings 

for 108,477 medical concepts, the largest ever such collection, which are derived from three 

sources of clinical data and are equal to or exceed the existing state of the art on nearly all 

benchmarks.
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3. Materials and Methods

3.1. Data Sources

The data come from the following three independent sources: an un-identifiable claims 

database from a nationwide US health insurance plan with 60 million members over the 

period of 2008–2015, a dataset of concept co-occurrences from 20 million notes at Stanford,
19 and an open access collection of 1.7 million full text journal articles obtained from 

PubMed Central. For the purposes of this study, the insurer has asked not to be named.

3.2. Text Normalization and Preprocessing

For text data it is important to first normalize against some standard vocabulary or thesaurus. 

Word embeddings operate on tokens, and many medical concepts can span multiple tokens. 

To collapse multi-word concepts into a single token, we used the Narrative Information 

Linear Extraction (NILE)28 system normalized against the Systematized Nomenclature of 

Medicine-Clinical Terms (SNOMED-CT)29 reference thesaurus. SNOMED-CT IDs were 

then mapped to concept unique identifiers (CUIs) from the UMLS.30 The pipeline converts 

all letters to lowercase, removes punctuation, and replaces all medical concepts with their 

CUI representation (e.g., ‘bronchopulmonary dysplasia’ with C0006287 and ‘resulting from’ 

with C0678226). For example, our pipeline would transform the following sentence (taken 

from previous work31):

Bronchopulmonary Dysplasia was first described by Northway and colleagues in 

1967 as a lung injury in a preterm infant resulting from oxygen and mechanical 

ventilation.

into the following normalized representation:

C0006287 was first described by northway and colleagues in 1967 as a C0024109 

C3263722 in a C0021294 C0678226 C0030054 and C0199470

Benchmarks and Evaluation—The benchmarking strategy leverages previously 

published ‘known’ relationships between medical concepts. We compare how similar the 

embeddings for a pair of concepts are by computing the cosine similarity of their 

corresponding vectors, and use this similarity to assess whether or not the two concepts are 

related. Cosine similarity between word vectors w 1, w 2 is given by:

cos w 1, w 2 =
w1w2

T

w1 2 w2 2

and is 1 if the vectors are identical and 0 if they are orthogonal. One approach would be to 

rank the cosine similarity for a known relationship against all others via a ranking metric 

such as mean-precision or discounted cumulative gain. However, such a strategy has several 

limitations. The primary issue is that many concepts may correctly be ranked higher than the 

query concept, but they may not be part of the database of known relationships. Thus, a 

ranking metric may incorrectly penalize a set of embeddings simply because some true 

relationships were ranked higher but were not included in the list of ‘known’ relationships.
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Instead, we present a new approach based on the notion of statistical power. For a known 

relationship pair (x, y), we first compute the null distribution of scores by drawing 10,000 

bootstrap samples (x∗, y∗) where x∗ and y∗ belong to the same category as x and y, 

respectively. For example, when assessing whether ‘preterm infant’ (which is a disease or 

syndrome) is associated with ‘bronchopulmonary dysplasia’ (also a disease or syndrome), 

we would randomly sample two concepts from the “disease or syndrom” class and compute 

their cosine similarity, and then repeat this procedure 10,000 times to create the bootstrap 

null distribution. We then compare the observed score between x and y and declare it 

statistically significant if it is greater than the 95th percentile of the bootstrap distribution 

(e.g., p < 0.05 for a one-sided test). Applying this procedure to the collection of known 

relationships, we calculate the statistical power to reject the null of no relationship which is 

the quantity we report in all experiments, except for the comparison to human assessments 

of similarity. This metric has the added benefit of being easy to interpret, as it is an estimate 

of the fraction true relationships discovered given a tolerance for a 5% false positive rate.

Below is a list of the benchmarks used in this study, along with details that are specific to 

each. We provide an example of a known relationship from each category to help the reader 

understand the types of relationships captured by each benchmark.

• Comorbid Conditions: A comorbidity is a disease or condition that frequently 

accompanies a primary diagnosis. We created a curated set of comorbid 

conditions for Addison’s disease, autism, heart disease, obesity, schizophrenia, 

type 1 diabetes and type 2 diabetes. These comorbidities were extracted from the 

Mayo Clinic’s Encyclopedia of Diseases and Conditions,32 Wikipedia, and the 

Merck Manuals.33

– Example: Primary condition: premature infant (CUI: C0021294) Comorbidity: 

bronchopulmonary dysplasia (CUI: C0006287)

• Causative Relationships: The UMLS contains a table (MRREL) of entities 

known to be the cause of a certain result. We extracted known instances of the 

relationships cause of and causative agent, and induces from the MRREL table. 

We computed the null distribution for these relationships by computing the 

similarity of randomly sampled concepts with the same semantic type as the 

cause and randomly sampled concepts with the same semantic type as the result.

– Example: Cause: Jellyfish sting (CUI: C0241955) Result: Irukandji syndrome 

(CUI: C1655386)

• National Drug File Reference Terminology (NDF-RT): The NDF-RT was 

created by the U.S. Department of Veterans Affairs, Veterans Health 

Administration. We extracted drug-condition relationships using the may prevent 
and may treat relationships. We assessed power to detect may treat and may 
prevent relationships using bootstrap scores of random drug-disease pairs.

– Example: Drug: abciximab (CUI: C0288672) May Treat: Myocardial Ischemia 

(CUI: C0151744)
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• UMLS Semantic Type: Semantic types are meta-information about which 

category a concept belongs to, and these categories are arranged in a hierarchy. 

We extracted the most specific semantic type available for each concept from the 

MRSTY file provided by UMLS. To assess power to detect if two concepts 

belonged to the same semantic type, we randomly sampled concepts from 

different semantic type classes and computed a marginal null distribution of 

scores.

– Example: Concept: Metronidazole (CUI: C0025872, Semantic Type: 

Pharmacologic Substance) Concept: Clofazimine (CUI: C0008996, Semantic 

Type: Pharmacologic Substance)

• Human Assessment of Concept Similarity: Previous work34 has assessed how 

resident physicians perceive relationships among 566 pairs of UMLS concepts. 

Each concept pair has an average measure of how similar or related two concepts 

are to be as judged by resident physicians. We report Spearman correlation 

between human assessment scores and cosine similarity from the embeddings for 

this benchmark.

3.3. Implementation Details

There are many hyper-parameters associated with both word2vec and GloVe that can have a 

dramatic effect on performance. In word2vec parameters such as the number of negative 

samples, the size of the context window, the amount of smoothing for the context singleton-

frequencies, and whether or not the context vectors are used to construct the final 

embeddings are all options that the practitioner must choose. Levy and Goldberg35 

conducted a systematic set of experiments on the effects of these hyper-parameters on the 

performance of word2vec, and we follow their recommendations in this work. Specifically, 

we used the following settings for all word2vec experiments that are based on a singular 

value decomposition (SVD):

• Smoothing of singleton frequencies by a constant exponential term. Instead of 

using p(w) in (4), we instead use p(w)α, where α is set to 0.75. In Levy and 

Goldberg, they recommend only smoothing the context singleton frequencies, 

but our co-occurrence matrices are symmetric so there is no difference in the 

singleton frequency when it is a ‘word’ and when it is a ‘context’.

• We set k = 1 in the SPPMI transformation (i.e., no shift).

• We construct the final embeddings using a symmetrically scaled sum of the word 

and context vectors resulting from the singular value decomposition. Given the 

first d singular vectors and singular values resulting from the SVD of a SPPMI 

matrix X, SVDd(X) = UdΣdVd, the d-dimensional word embeddings W are 

constructed as follows:

W = Ud Σd
C = Vd Σd
W = W + C
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• The SVD of the sparse SPPMI matrix was performed using the augmented 
implicitly restarted Lanczos bidiagonalization algorithm with the irlba 

package36,37 in the R programming language.

For the comparison to the traditional word2vec algorithm on the articles from PubMed, we 

used the implementation available in the gensim python package.38 We used the skip-gram 

algorithm, hierarchical softmax, 10 negative samples, and a window size of 10. We used the 

implementation of GloVe available in the R package text2vec.39 We used the sum of target 

word and context vectors as the final embedding and set the ymax = 100. As a baseline, we 

performed a SVD on the raw co-occurence matrix, and we report these results as PCA.

4. Results

4.1. Benchmark Results

We compared embeddings created by GloVe, word2vec, and PCA on our benchmarks to 

determine which algorithm and embedding dimension produced the best results across each 

individual dataset and on the combined data. These results are shown in Table 1. The best 

configuration was word2vec with an embedding dimension of 500, as it achieved the highest 

performance across nearly all benchmarks. Interestingly, we saw only a modest effect of 

embedding dimension on the benchmarks based on power (see Supplement). Also of note, 

the most direct comparison we could make to the original word2vec algorithm was using 

PubMed articles. On this dataset, word2vec based on a SVD was better than the original 

algorithm, as shown in the second row group in Table 1.

The 500-dimensional word2vec style embeddings using the combined data are referred to as 

the cui2vec embeddings in all subsequent experiments.

4.2. Comparison to previous results

In total we were able to estimate embeddings for 108,477 unique concepts using the 

combined set of data, making this the largest set of embeddings for medical concepts to date. 

Figure 1 shows a visualization of the various intersections of the 108,477 concepts found 

across the different sources of data using the UpSet visualization method.40,41

Most of the concepts appear in only one corpus, however 16,299 (14%) appeared in multiple 

sources. We evaluated previously published embeddings obtained through the clinicalml 
github repository (https://github.com/clinicalml/embeddings) for comparison to our cui2vec 
embeddings. Note that all three of the comparison embeddings come from different data 

sources and have very few concepts in common, so we were forced to perform pairwise 

comparisons between cui2vec and each set of embeddings.

The first comparison was against 300-dimensional embeddings for 15,905 concepts (of 

which 12,568 were in common with cui2vec) derived from a claims database of 4 million 

patients. The results are shown in Table 2. We observed that cui2vec outperformed the 

reference embeddings in most tasks, in some instances by a substantial margin, though the 

embeddings from Choi et al. had the edge in the human assessment benchmark. Next, we 

compared 300-dimension embeddings for 28,394 concepts derived from the same set of 
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clinical notes in Finlayson et al.19 published as part of Choi et al.18 In total, there were 

21,789 concepts in common between cui2vec and this set of embeddings. Here cui2vec was 

again better in most benchmarks, in some cases by a large margin. Finally, we compared 

cui2vec against 200-dimensional embeddings for 59,266 concepts derived from 348,566 

PubMed abstracts, first published in De Vine et al.42 There were 33,376 concepts in 

common that were used for benchmarking. On this dataset we observed a huge relative 

improvement and cui2vec was uniformly better across all benchmarks, as shown in Table 2.

4.3. Discussion

In this study we have created the most comprehensive set of 108,299 clinical embeddings to 

date using extremely large and multi-modal sources of medical data. When compared to 

previous results, the cui2vec embeddings achieve state-of-the-art performance in many 

instances. Even though there is more healthcare data than ever, most of it is either unlabeled 

or weakly labeled, so the ability to extract meaningful structure in an unsupervised manner 

is extremely important. Another potential obstacle is that most sources of healthcare data are 

not easily shareable, which limits some researchers to small sources of local data. We hope 

to reduce both of these barriers by providing our cui2vec embeddings that were created 

using large and national sources of healthcare data. We believe that these embeddings will 

be generally useful for a variety of clinically oriented machine learning tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Upset visualization of the intersection of medical concepts found in the insurance claims, 

clinical notes, and biomedical journal articles (PMC).
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Table 1:

Comparison of GloVe, PCA, and word2vec for an embedding dimension of 500. Columns 1–4 report power to 

detect known relationships and column 5 reports the Spearman correlation between human assessments of 

concept similarity and cosine similarity from the embeddings. The best result for each each benchmark/dataset 

combination is shown in bold. The claims dataset contained only diagnosis codes and no drugs and so did not 

report results for the NDFRT benchmark.

Data Source Algorithm Causative Comorbidity Semantic Type NDFRT Human Assessment

Claims

GloVe 0.56 0.73 0.29 - 0.45

PCA 0.40 0.15 0.32 - 0.19

word2vec (SVD) 0.54 0.50 0.40 - 0.45

PMC Articles

GloVe 0.59 0.57 0.28 0.54 0.60

PCA 0.30 0.24 0.24 0.29 0.29

word2vec (SVD) 0.83 0.59 0.49 0.84 0.67

word2vec (original) 0.75 0.51 0.48 0.74 0.59

Clinical Notes

GloVe 0.39 0.73 0.51 0.11 0.34

PCA 0.36 0.31 0.47 0.14 0.53

word2vec (SVD) 0.75 0.52 0.74 0.49 0.59

Combined Data

GloVe 0.40 0.80 0.37 0.50 0.39

PCA 0.24 0.23 0.30 0.37 0.47

word2vec (SVD) 0.46 0.52 0.53 0.57 0.47
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Table 2:

Comparison of the performance of cui2vec to previously published embeddings. Columns 1–4 report power to 

detect known relationships and column 5 reports the Spearman correlation between human assessments of 

concept similarity and cosine similarity from the embeddings. The best result for each each comparison is 

shown in bold.

Source Causative Comorbidity NDFRT Semantic Type Human Assessment

Choi et al. (claims) 0.25 0.37 0.63 0.24 0.47

cui2vec 0.55 0.31 0.73 0.43 0.35

Choi et al. (notes) 0.29 0.23 0.52 0.15 0.43

cui2vec 0.42 0.25 0.42 0.36 0.51

Devine et al. (PMC abstracts) 0.29 0.05 0.18 0.22 0.45

cui2vec 0.48 0.31 0.46 0.48 0.50
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