Skip to main content
. 2019 Dec 16;3(1):628–636. doi: 10.1089/heq.2019.0083

Table 2.

Characteristics by Discharge Locations of Total Hip Replacement Recipients (N=93,493)

Variable, n (%) Home self-care (n=23,533) HHC (n=34,263) SNF (n=13,202) IRF (n=22,495) pa
Race
 White 22,189 (94.3) 31,764 (92.7) 12,193 (92.4) 20,867 (92.8) ***
 AA 1344 (5.71) 2499 (7.29) 1009 (7.64) 1628 (7.24)  
Sex
 Female 11,296 (48.0) 19,343 (56.5) 7480 (56.7) 12,751 (56.7) ***
 Male 12,237 (52.0) 14,920 (43.5) 5722 (43.3) 9744 (43.3)  
Age group
 Years <65 13,867 (58.9) 15,047 (43.9) 5837 (44.2) 9896 (44.0) ***
 Years ≥65 9666 (41.1) 19216 (56.1) 7365 (55.8) 12,599 (56.0)  
Metro area
 Metro 21,124 (89.8) 32,458 (94.7) 12,507 (94.7) 21,304 (94.7)  
 Nonmetro 2409 (10.2) 1805 (5.27) 695 (5.26) 1191 (5.29)  
Insurance
 Unknown/uninsured 225 (0.96) 207 (0.60) 76 (0.58) 118 (0.52) ***
 Medicare 8961 (38.1) 19,092 (55.7) 7324 (55.5) 12,536 (55.7)  
 Medicaid 926 (3.93) 1575 (4.60) 629 (4.76) 996 (4.43)  
 Commercial 13,223 (56.2) 13,203 (38.5) 5085 (38.5) 8707 (38.7)  
 Government 198 (0.84) 186 (0.54) 88 (0.67) 138 (0.61)  
Volume of cases (by facility and year)
 <100/year 2231 (9.48) 5976 (17.4) 2378 (18.0) 3968 (17.6)  
 100–199/year 4155 (17.7) 9254 (27.0) 3313 (25.1) 6108 (27.2)  
 200+/year 17,147 (72.9) 19,033 (55.5) 7511 (56.9) 12,419 (55.2)  
90-day readmission 1476 (6.27) 3766 (11.0) 1424 (10.8) 2475 (11.0) ***
90-day mortality 25 (0.11) 184 (0.54) 63 (0.48) 111 (0.49) ***
Elixhauser Indexb
 0 4203 (17.9) 6006 (17.5) 2317 (17.6) 3926 (17.5)  
 1–4 17,852 (75.9) 26,096 (76.2) 10,061 (76.2) 17,170 (76.3)  
 ≥5 1478 (6.28) 2161 (6.31) 824 (6.24) 1399 (6.22)  
Surgery complications
 Myocardial infarction 12 (0.05) 69 (0.20) 28 (0.21) 45 (0.20) ***
 Prosthetic device complication 21 (0.09) 81 (0.24) 28 (0.21) 46 (0.20) ***
 Surgical wound infection 7 (0.03) 18 (0.05) 5 (0.04) 5 (0.02)  
 Venous thromboembolism 3 (0.01) 48 (0.14) 14 (0.11) 15 (0.07) ***
a

Variables are compared by discharge destination using Wald χ2 test from unadjusted binary or multinomial logistic regression models that account for clustering by facility. Significance levels: ***p<0.001.

b

Clinical comorbidities were identified based on coding algorithms developed by Quan et al. (enhanced Elixhauser version), using either the ICD-9-CM or the ICD-10 coding system, as appropriate. The Elixhauser comorbidity index score is calculated based on the cumulative number of comorbidity conditions.