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Abstract

Single-cell analysis provides insights into cellular heterogeneity and dynamics of individual cells. 

This feature highlights recent developments in key analytical techniques suited for single-cell 

metabolic analysis with a special focus on mass spectrometry-based analytical platforms and 

RNA-seq, as well as imaging techniques that reveal stochasticity in metabolism.
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Cellular heterogeneity and metabolism

Metabolism is a key physiological process that is involved in cellular maintenance, growth, 

division and contributes to cellular heterogeneity.1,2 Metabolism is an ensemble of 

biochemical reactions that sustain life in a cell. These reactions accomplish three major 

tasks: the provision of energy for biological functions, biosynthesis (anabolism) of the cell’s 

building blocks (lipids, proteins, and nucleic acids) and degradation (catabolism) of cellular 

content. Studies of cellular metabolism aim to characterize the abundance and activity of the 

plethora of enzymes, cofactors and metabolites which form large, complex metabolic 

networks. Metabolic heterogeneity underpins single-cell phenomena such as immune cell 

plasticity, microbial drug tolerance and growth variability.3

Cellular heterogeneity is a phenomenon that is often observed in biology but poorly 

understood. It is caused by various genetic, epigenetic and environmental factors and is 

reflected by differences in morphology, physiology and pathology.4,5 This highlights the 

necessity to study the biochemical and physiological characteristics of individual cells and 

their environment. However, conventional technologies often use bulk population-level 

measurements, ignoring the unique behavior resulting from cell-to-cell variations, including 

cellular metabolism, growth and proliferation.5 Most existing studies on metabolism have 

used population-level measurements, which implicitly assume that the used cell populations 

are homogeneous. Therefore, to understand the link between the genotype and phenotype of 

a single cell a holistic understanding of cell-heterogeneity at all levels of the molecular 

architecture (genome, epigenome transcriptome, proteome and metabolome) is needed.

Only recently advances in bioanalytical technologies have enabled the study of transcripts,6 

proteins,7,8 and metabolites in single cells,9 which in turn empowered the ability to study 

cellular heterogeneity and how this heterogeneity is important to normal and impaired 
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processes. Single-cell transcriptomics examines gene expression levels of individual cells by 

measuring messenger RNA (mRNA) concentrations and offers a comprehensive 

understanding of how transcriptomic cellular states translate into functional phenotypic 

states. How the expressed proteome differs from cell to cell is a question of high interest as 

proteins represent the main machinery of cells, performing a vast array of functions within 

organisms such as catabolizing metabolic reactions (enzymes), DNA replication and 

providing structure to the cell and transport. Single-cell metabolomics offers comprehensive 

profiling of the full complement of small molecular weight compounds and thereby provides 

the most accurate depiction of the cellular reaction network. Finally, single-cell phenotypic 

analysis using imaging-based techniques even allow the study of metabolism and growth 

heterogeneity in live cells.

This feature article provides vignettes of studies that have recently used single-cell analytics 

to study cell heterogeneity. We apologize to anyone whose important work could not be 

included due to size limitations.

Single-cell Transcriptomics

Single-cell transcriptomics is a rapidly evolving field that will play a major role in 

understanding metabolism at the single-cell level. Currently, the most prevalent method for 

transcriptomic studies is RNA-sequencing (RNA-seq). This method is based on reverse 

transcription of mRNA into complementary DNA, followed by subsequent polymerase chain 

reaction (PCR) amplification and deep sequencing.10 In contrast to earlier methods for gene 

expression analysis, RNA-seq allows for the sequencing of the entire transcriptome. Single-

cell RNA-seq (scRNA-seq), which has been developed over the past few years, can obtain 

gene expression profiles of individual cells across cell types, states, and subpopulations (Fig. 

1). This advance was made possible by the ability to capture and sequence very low amounts 

of RNA. Typically, individual cells are captured in sub-microliter droplets using dedicated 

microfluidic devices or sorted into regular multiwell plates. After lysing the cells in these 

small reaction volumes, cells are barcoded during reverse transcription using cell-specific 

DNA primers. During sequencing these barcodes are used to assign sequencing reads to 

individual cells. While some methods, such as Smart-seq11 collect reads from the entire 

transcript (full-length coverage), the majority of methods only capture the 3’ or 5’ ends. For 

example, Drop-seq12 identifies transcripts by their 3’ ends. This and other methods 

incorporate unique molecular identifiers, random transcript-specific barcodes to circumvent 

PCR bias and thereby improve quantification of gene expression. The choice of a particular 

scRNA-seq method largely depends on the scientific question. We refer the reader to recent 

reviews for detailed information about various methods13,14

Despite being around for only a few years, scRNA-seq has already produced a host of 

valuable insights, for example, on the dynamics of embryonic developmental and stem cell 

differentiation,15 the composition of complex tissues,16 and expression differences and 

heterogeneity caused by diseases, such as cancer.17

Several studies have used scRNA-seq to catalog metabolic changes during developmental 

processes. Zeng et al. quantified gene expression in single mouse β cells during postnatal 
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development.18 By collecting cells at different time points and ordering them along a 

common molecular trajectory, the transcriptional dynamics of β cell maturation were 

revealed. In particular, the authors identified the dynamic expression of genes related to 

several important metabolic pathways (regulation of amino acid uptake and metabolism, 

production of reactive oxygen species), as well as a network of nutrient-responsive 

transcription factors. Another scRNA-seq study, by Arris et al., focused on metabolic aspects 

of eye-disc development in Drosophila.19 By comparing wild-type eye disc-cells with Rbf 

(retinoblastoma family protein)-mutant cells, the authors identified a subpopulation of 

mutant cells with higher glycolytic activity. The metabolic state was inferred from the 

expression of the pro-apoptotic gene Hid (cell death protein) in conjunction with an 

upregulation of Ald (Fructose biphosphate aldolase), Ldh (lactate dehydrogenase) and Hif1α 
(Hypoxia-inducible factor 1 alpha). The results were validated by RNA interference and 

immunostaining. A paper by Guo et al. studied the development of human spermatogonial 

stem cells.20 This study discovered four dynamic cellular states (quiescent, proliferating, 

metabolically active, and differentiating), which differ substantially in their metabolism. 

Adult stem cells have also been characterized by scRNA-seq. Dulken et al. quantified the 

heterogeneity and transcriptional dynamics in the adult neural stem cell lineage (NSC) by 

scRNA-seq. They reported a continuum of cell states during the differentiation process and 

identified rare intermediate states with distinct molecular profiles.21

scRNA-seq has also been used extensively to catalog the cell types in complex tissues. For 

example, several recent studies have revealed the cell types in the human developing kidney 

(22-24). These studies revealed a clear divergence from mouse kidney development, arguing 

for caution when using the mouse as a model system for human development. In addition, 

scRNA-seq allowed the identification of several subtypes of renal progenitor cells which 

were distinguished by the expression of metabolism- and stress-related genes.24 

Interestingly, the progenitor subtypes also differed in their proliferation state. These changes 

in metabolism and stress response are likely a consequence of differentiation but they could 

potentially also have a causal role.

Metabolic changes in disease are also increasingly studied with single-cell transcriptomics 

methods. Segerstolpe et al. profiled human pancreatic islets from healthy individuals as well 

as type 2 diabetes patients with scRNA-seq.25 They identified subpopulations within both 

endocrine and exocrine cell types. Clear transcriptional alterations were found in type 2 

diabetes patients compared to healthy subjects. The well-known heterogeneity within or 

between tumors, is another area of application for scRNA-seq (see, for example, ref 17). In a 

recent paper, Xiao et al., have shown that mitochondrial activity is a major driver of the 

heterogeneity among both malignant and non malignant cells.26 In malignant cells the 

authors found a positive pairwise correlation between glycolysis, oxidative phosphorylation 

and hypoxia. The fact that these cells activate both glycolytic and oxidative phosphorylation 

pathways under hypoxic conditions may be an important factor contributing to the high 

proliferation of cancer cells. It will be a major challenge for the future to integrate a large 

number of such studies with the existing knowledge of metabolic networks and achieve a 

consistent view of metabolic changes in tumor tissue. An approach developed by Damiani et 

al.27 extended the well-established Flux Balance Analysis (FBA),28 to infer the flow of 

metabolites in single-cell. Their method allows the translation of single-cell transcriptomes 
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to so-called single-cell fluxomes. Integration of single-cell cancer transcriptomes with bulk 

extracellular fluxes of the same samples revealed differences in growth rates between 

subpopulations captured cell-cell interactions.

scRNA-seq further unraveled the effect of obesity on the quality of oocytes in women 

undergoing fertility treatment29. In this study, single-cell transcriptomics was coupled with 

lipid level measurements in serum and follicular fluid. Some genes related to fat metabolism, 

proinflammatory conditions and oxidative stress were found to be deregulated in oocytes 

from obese women compared to normal weight women. This suggests that obesity might 

compromise the metabolism and thereby integrity and competence of oocytes.

A major limitation of current scRNA-seq modalities is that they provide snapshots of mRNA 

abundance, but cannot quantify RNA turnover dynamics (i.e. transcription and degradation 

rates). This is mainly due to the destruction of the cells in the process of sequencing library 

preparation.30 In a recent study, La Manno et al. partially overcame this limitation by using 

the ‘RNA velocity’ of each gene, i.e. the ratio of unspliced mRNA to spliced mRNA to 

deduce a probabilistic description of expression dynamics.31 Moreover, new approaches 

based on labeling of newly transcribed RNA and biochemical nucleoside conversions 

followed by RNA-seq have been used to study RNA dynamics in mammalian cells.32 These 

methods provide high temporal resolution of short-term changes in gene expression and are 

able to reveal kinetics of RNA processing and even catch the most unstable RNAs. Another 

recent method (NASC-seq) sequences simultaneously pre-existent and newly synthesized 

RNA.33 This method is based on the integration of 4-thiouridine (4sU) into newly 

synthesized RNA during transcription. 4sU-labelled and unlabelled RNA can then be 

distinguished after the reverse transcription step where alkylated 4sU residues triggers the 

misincorporation of guanines instead of adenosines in the complementary DNA.

Although scRNA-seq cannot measure metabolic state directly, the highlighted studies 

revealed the value of the method for studying metabolism. Major metabolic programs can 

often be inferred from the expression of key pathway components.

Single-cell Proteomics

Proteins represent the main machinery of cells, performing a vast array of functions within 

organisms such as catabolizing metabolic reactions (enzymes), DNA replication, providing 

structure to the cell and transport.34 How the expressed proteome differs from cell to cell is, 

therefore, a question of high interest. However, complex correlations between gene 

transcription and protein production in developing systems (see, for example,35) call for 

careful validation of transcriptomics results, one gene at a time (e.g., using antibodies). Only 

recently has mass spectrometry become sensitive enough to enable the direct (un)targeted 

characterization of proteins in single cells. The current state of single-cell mass spectrometry 

has been the focus of several reviews lately (see examples in references36-47); therefore, the 

following discussions are intended to only provide glimpses of developments that showcase 

emerging applications and developmental opportunities in proteomics and metabolomics of 

single cells.
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Mass cytometry (CyTOF)7 has enabled the screening of known proteins among single cells 

in record throughput. This technology leverages heavy-metal conjugated antibodies to 

recognize surface receptors on cells as well as intracellular signaling molecules, which are 

then separated by flow cytometry, atomized and ionized in an inductively coupled plasma, 

and the generated heavy-metal ions are detected in a mass spectrometer with a capability for 

multiplexing (up to ~40 labels currently). Wang et al. revealed three major clusters of beta 

cells within the human endocrine pancreas. From these three clusters, two consisted of 

proliferating cells.48 Additionally, the technology was used to obtain a detailed view of 

immune system regeneration by measuring overall immune cell population variation over 

time in individual patients after allogeneic stem cell transplantation49 to identify early 

reprogramming regulators in induced pluripotent stem cell reprogramming systems 50 and 

for the high-throughput quantitation of inorganic nanoparticle bio-distribution in mouse 

lymph node cells.51 CyTOF presents new directions in single-cell proteomics for studies in 

which known proteins need analysis and functioning, high-fidelity antibodies are available 

for the proteins of interest.

Single-cell Proteomics by Mass Spectrometry

Label-free proteomics provides unbiased and quantitative characterization of large numbers 

of proteins in single cells without a requirement for known proteins or probes (e.g., no 

antibodies needed). Detection of abundant proteins (α and β globulins) in individual 

erythrocytes by capillary electrophoresis (CE)-MS52-54 raised the promise of MS-based 

proteomics for single cells already in the mid-1990s. However, without molecular 

amplification feasible for the whole proteome, label-free detection of hundreds-to-thousands 

of proteins required major leaps in MS sensitivity. To fill these technological gaps, Nemes et 

al. have pioneered custom-built microanalytical CE platforms53,55,56 for identifying proteins 

by high-resolution MS in ultrahigh sensitivity.57 Lombard et al. has identified ~1,709 

different protein groups, including several transcription factors, in identified cells that were 

dissected from 16-cell X. laevis embryos,58 marking the first example of large-scale 

identification of proteins in single cells in MS. The Nemes group has uncovered previously 

unknown proteomic differences between cells that occupy the dorsal-ventral and animal-

vegetal axes of the 16-cell X. laevis embryo,58 which were undetectable at the level of 

transcription, and even found evidence for proteomic differences between cells fated to give 

rise to neural tissue in the frog (intra-cell type heterogeneity).59 Choi et al. has developed 

specialized CE-ESI interfaces60 and microanalytical workflows61 towards detecting proteins 

from single neurons in the mouse brain, opening a door to the molecular characterization of 

cell types in the mammalian brain (unpublished). These developmental milestones 

essentially laid the foundation for single-cell proteomics using MS.57

They also spurred the development of other innovative technologies and methodologies. Sun 

et al. have demonstrated that whole-cell dissection of identified cells in X. laevis (recall 

reference58) can be integrated with conventional liquid chromatography MS to identify 

proteins in frog embryos,62 albeit at lower sensitivity than CE-MS. To minimize peptide 

losses, Shi et al. used abundant (carrier) proteins, thus enhancing protein detection to 

200,000 copies per cell.63 Budnik et al. developed Single Cell ProtEomics by Mass 

Spectrometry (SCoPE-MS) as an alternative, in which peptides from single cells as well as a 
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population of cells (pooled) were individually barcoded and mixed to boost sequence 

coverage for peptides while using the reporter ions for relative quantification of protein 

levels between the dissociated single cells8. The technology has demonstrated a utility in 

quantifying thousands of proteins in single differentiating cells, complementing information 

on gene expression using single-cell transcriptomics. Zhu et al. introduced nanoPOTS 

(nanodroplet processing in one pot for trace samples), a microfabricated platform, capable of 

minimizing peptide losses by miniaturization, enabling the identification of ~1,500–3,000 

protein groups from ~10 cultured mammalian cells.64 Most recently, Lombard et al. have 

integrated subcellular capillary microsampling with CE-ESI-MS to enable, for the first time, 

proteomics in single identified cells directly in complex tissues, including live embryos of X. 
laevis and zebrafish, without necessitating whole-cell dissection.65 Quantification of ~800 

protein groups in subcellular sampling has revealed previously unknown reorganization of 

the single-cell proteome as the midline dorsal-animal cell gave rise to is neural-tissue fated 

cell clone in the live frog embryo.

Next to CE-ESI-MS based plaforms to characterize proteins in single cells, nano-LC-

MS/MS is widely used in proteome analysis. For instance, a combination of fluorescence-

activated cell sorting and ultra sensitive nano-LC-MS/MS was used to identify specific 

protein markers for epithelial and mesenchymal cells in human lung primary cells.66 

Additionally, integrated single HeLa cell proteomic analysis covered a maximum of 328 

proteins by using a recently developed Orbitrap Fusion Tribrid MS. This integrated 

proteomic analysis device (the i-PAD1) clearly demonstrated cellular heterogeneity of the 

proteome at the single-cell level.67

These and ongoing technological developments (see reviews) are heralding a new era of 

systems cell biology by enabling the label-free quantification of large numbers of proteins 

and complementing single-cell transcriptomics.

Single-cell Metabolomics

In order to achieve a comprehensive characterization of single-cell metabolic dynamics, 

analytical techniques are required that perform quantitative analyses with high sensitivity, 

accuracy and precision. In this context, MS emerged as the eminent method of choice in 

single-cell metabolic studies68 (Fig. 2). Recent advances have provided MS with the 

necessary sensitivity to detect many metabolites in single cells, thus providing molecular 

information to complement data from single-cell transcriptomics and single-cell proteomics. 

In this section, we selected representative single-cell MS technologies for metabolomics 

studies.

Matrix- assisted laser desorption / ionization (MALDI)

Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization method used for 

biological mass spectroscopy. It has become well-established in –omics studies as it requires 

low sample consumption, minimal sample handling and fragmentation and offers high 

sensitivity. Fundamentally, MALDI works by incorporating analytes into organic matrices 

and upon irradiation of the sample with a pulsed laser, analytes are ionized and accelerated 

to a mass spectrometer analyzer.69 Typically, a time-of-flight MS (TOF-MS) is used owing 
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to its exceptional acquisition rates and dynamic range. Moreover, these spectrometers offer 

high sensitivity, resolving power and mass accuracy, thus facilitating characterization of 

metabolites. MALDI-MS has previously been used in single-cell analyses as well as 

multidimensional imaging of metabolic dynamics in cellular and sub-cellular space.70-73 For 

instance, the utility of MALDI-MS for tracing intracellular metabolic dynamics was 

investigated by Yukihira et al., who observed a time-dependent (7 minutes) rapid relief of 

glucose limitation in Escherichia coli during environmental carbon source perturbation.74 

Furthermore, Duenas et al. were the first to apply MALDI-MS for 3D chemical imaging of 

single-cell lipid dynamics during the embryonic development of zebrafish. They revealed 

that the dimensional spatial distribution of phospholipids and ceramide containing lipids in 

embryos at the 1-, 2-, 4-, 8-, and 16-cell stage had heterogeneous localization.73 Moreover, 

microarrays for mass spectrometry (MAMS, a type of substrate for MALDI-MS) were used 

to automatically isolate single cells in a spatially organized matrix by using hydrophilic 

reservoirs. This approach enabled the successful monitoring of time-dependent (time scale: 

0, 5 and 10 minutes) glycolytic metabolite change in environmentally (2-deoxy-d-glucose) 

and genetically (ΔPFK2) perturbed Saccharomyces cerevisiae (yeast) cells at the single-cell 

level.75

One of the main limitations of MALDI-MS in single-cell metabolomics is signal 

suppression by low-mass ions (typically, m/z <700) used in matrix preparation such as 2,5-

dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA)), resulting in 

difficulties to reliably measure low-molecular-weight metabolites.76 One potent approach 

proposed to circumvent this limitation is the use of matrix-free ionization methods, 

including laser desorption/ionization, based on nanophotonic effects. Nanostructures such as 

silicon nanopost arrays (NAPAs) substitute conventual matrices and act as nanoantennae that 

harvest light from the laser leading to subsequent ionization of the sample.77 NAPA-MS has 

already been used to detect intra- and interpopulation metabolic differences between stressed 

and control microbial cells.78 A recently developed method that combines fluidic force 

microscopy and MALDI-MS has been shown to be a potent tool for live analysis of the 

single-cell metabolome under physiological conditions.79

Secondary ion mass spectrometry imaging techniques

Secondary ion mass spectrometry (SIMS) has become an increasingly popular technique to 

measure metabolites at single-cell and sub-cellular resolution. In the SIMS modality, a 

focused primary pulsed ion beam is used to bombard a sample, ejecting secondary ions from 

the sample surface that are subsequently measured using a mass spectrometer. SIMS 

imaging modalities offer micrometer to nanometer scale lateral spatial resolution and 

combined with TOF-MS detection make these techniques highly suitable for measuring 

metabolic profiles of endogenous and exogenous species in the sub-cellular space. This was 

demonstrated by Kurczy et al., who followed lipid domain formation in the membrane of the 

unicellular organism Tetrahymena thermophile.80 Moreover, nano-scale SIMS (NanoSIMS), 

which combines high spatial resolution with simultaneous detection of both heavy and light 

elements, was used by Wedlock et al. to image a new group of platinum-based 

chemotherapeutics, triplatin, in MCF7 breast cancer cells. This approach enabled the 

successful monitoring of internalization and nucleolar targeting of the drug in a time span of 
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2 hours.81 Another study used a combination of NanoSIMS with stable isotope monitoring 

to track the proliferation of cardiomyocytes. 15N labeling of thymidine and its incorporation 

into the DNA of young adult transgenic C57Bl/6 male mice revealed that genesis of 

cardiomyocytes occurs at a low rate (approximately 0.76%/year) and that cell division 

originated from pre-existing cardiomyocytes.82

One of the major drawbacks of SIMS-based techniques lies in obtaining structural 

information on analytes. The recently developed commercial parallel imaging MS/MS 

instrument, in which a triple electrostatic sector TOF analyzer for desired mass range 

measurements is coupled to an MS/MS analyzer for target identification, significantly 

improved the acquirement of structural information on analytes.83 Moreover, another recent 

instrument that has greatly facilitated metabolite identification is the MALDI/Buckyball 

TOF-SIMS dual ion source instrument that combines high spatial imaging and a capability 

for intact ion generation with MS/MS cell to image and identify biomolecules (small and 

large) in one single instrument.84 This C60-SIMS/MALDI dual ion source MS revealed the 

spatial distribution of intact biomolecules in mammalian spinal cord samples as well as 

networks of cultured neurons from Aplysia californica.

Direct infusion mass spectrometry analysis

Direct infusion mass spectrometry (DI-MS) analysis is based on the direct injection or 

infusion of sample mixtures into the ionization source of the mass spectrometer without 

prior chromatographic separation. Fundamentally, DI-MS utilizes the electrospray soft 

ionization (ESI) technique to ionize the sample of interest. The ambient conditions with 

minimal prior handling in DI-ESI-MS minimize disruption of the cell and its metabolome, 

which is often not the case in other soft ionization techniques, such as MALDI.85 An 

application of DI-ESI-MS is live single-cell video MS (L-SC-MS), in which sample analytes 

are dispersed into charged droplets followed by subsequent ionization. Recently, this method 

has been used to localize terpenoid indole alkaloids in specific cell types from Catharanthus 
roseus stem tissues86 and for the quantification of amino acids and phospholipids in cheek 

cells.87 Additionally, this method enabled successful detection of heterogeneity in tafluprost 

(drug used for glaucoma) metabolite profiles in primary human hepatocytes at the single-cell 

level.88

Pan et al. recently developed the Single-probe, a miniaturized multifunctional sampling and 

ionization device coupled to an MS. This device is based on a continuous sample extraction 

system through a finely pulled theta-capillary pipette and has successfully been used for the 

absolute, dynamic quantification of lipids, metabolites and anti-cancer drugs in HeLa cells.
89 Another interesting platform involves the integration of microfluidic surface sampling 

with ESI-MS by a dual probe microchip. This platform, which is based on combining a 

sample probe for providing sample extraction buffer with an emitter probe to ionize the 

sample, has substantially improved the analytical performance of ambient MS methods.90

Separation-based MS approaches

Separation aids single-cell metabolomics by improving sensitivity, removing spectral 

interferences, and providing compound-dependent information to aid molecular 
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identifications using MS. For instance, El Azzouny et al. used HPLC-TOF-MS to probe the 

effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) on the synthesis of 

glycerolipids, ceramides, and nucleotides in INS-1 cells (β-cells). They were able to 

measure the change in 66 metabolites in the presence or absence of AICAR using different 

stable isotopic labeled nutrients to probe selected pathways.91 Moreover, a recent study 

identified VOC profiles from single cells that were isolated from lung cancer cell lines using 

GC-MS.92 The study revealed that single cells of lung cancer have unique (volatile) 

molecular prints; of which 18 VOCs showed significant changes in their concentration levels 

in tumor cells versus control.

Capillary electrophoresis (CE) has achieved considerable success in profiling metabolites in 

single cells.93 The Sweedler and Nemes laboratories have custom-built microanalytical CE 

ESI platforms capable of detecting hundreds of metabolites with low tens of attomoles of 

sensitivity (reviewed in Refs.55,94,95) in single identified neurons dissected from the sea slug 

(Aplysia californica)53,96 rat ganglion55, and electrophysiologically identified neurons in the 

rat brain97 as well as single identified embryonic cells isolated from 8-98-100 and 16-cell56 

embryos of the South African clawed frog. The metabolic profiles quantified during these 

studies allowed the researchers to uncover metabolic changes as neurons were exposed to 

culture101 and even discover metabolites capable of altering the normal tissue fates of 

embryonic cells.56 Moreover, a more recent study, for the first time, demonstrated the in situ 
characterization of metabolic cell heterogeneity directly in 8-to-32-cell live Xenopus laevis 
embryos.102

Single-cell phenotypic analysis

Until recently, stochastic variability was considered to have negligible effects due to 

averaging of the myriad biochemical events involved in cellular metabolism. However, a 

recent study by Kiviet et al. showed that fluctuations in the expression of flux-limiting 

catabolic enzymes propagate into fluxes through metabolic pathways/networks, eventually 

inducing changes in a cell’s growth rate103 (Fig. 3a). These changes in cellular growth rate, 

in turn, affect the expression of other genes, many being unrelated. Indeed, the expression of 

genes requires many building blocks such as amino acids and ATP, which are produced by 

the metabolic machinery (Fig. 3b). These results indicate that molecular noise propagated by 

single metabolic enzymes can affect the entire cellular metabolism and expression of genes, 

suggesting that cellular metabolism is inherently stochastic. Such metabolic stochasticity can 

affect many cellular properties such as cell size and the cell cycle, and for instance, require 

compensatory mechanisms to maintain homeostasis.104,105

Thomas et al. developed a stochastic cell model of bacterial dynamics, based on biochemical 

kinetics, to identify the potential sources of fluctuations in cell growth and to understand 

how these fluctuations eventually lead to phenotypic heterogeneity. Their model allowed 

statistical characterization of the macromolecular composition, growth rate and mass of 

single bacterial cells. The model revealed that dynamics of mRNAs coding for nutrient 

transporters and enzymes is a major source of fluctuations occurring in growth rate. 

Fluctuations in growth rate, in turn, propagated noise to other processes such as nutrient 

uptake and catabolism106.
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Detection of fluctuations in metabolic dynamics due to stochastic influences requires 

following single-cell metabolic dynamics in real-time. One of the most common approaches 

to follow single-cell dynamics in real-time is the use of techniques based on the 

measurement of single-cell fluorescent protein markers. For instance, in the Kiviet et al 

study, expression fluctuations of metabolic enzymes were measured by fluorescent labeling, 

while the growth fluctuations were quantified by image analysis of time-lapse movies. 

Zhang et al. developed a method to measure NAD(P)H levels dynamically in single live E. 

coli cells using the autofluorescence of NAD(P)H. The method consists of a microfluidic 

device for culturing E. coli combined with UVA-optimized microscopy equipment, allowing 

the determination of NAD(P)H levels in single E. coli cells at a 10-min resolution for more 

than 20 hours. Using this method, they revealed that intracellular NAD(P)H levels oscillate 

along the bacterial cell division cycle, suggesting fluctuations in metabolic activity during 

E.coli proliferation.107 Besides, advances in genetically encoded ATP biosensors have 

allowed researchers to follow fluctuations in ATP levels in real-time at the single-cell level 

and characterize corresponding effects at the cellular, tissue, and organismal level. Amongst 

others, Arai et al. developed a multicolor palette of ATP single fluorescent proteins, which 

enabled them to simultaneously visualize subcellular ATP dynamics in the cytoplasm and 

mitochondria of mammalian, plant and worm single-cells.108 Depoali et al. utilized Förster 

resonance energy transfer (FRET)-based ATP probes targeted to mitochondria, endoplasmic 

reticulum (ER) and cytosol of cancer cells in order to investigate the dynamics of 

intracellular ATP pools in response to acute glucose depletion, glucose substitution, as well 

as mitochondrial toxins.109 Another example of an advanced fluorescent biosensor, 

PercevalHR, was reported by Tantama et al. which was utilized for real-time measurements 

of the ATP:ADP ratios in neurons and astrocytes. They observed activity-dependent changes 

in neuronal ATP:ADP ratios that could be correlated to potassium ATP single-channel 

activity in the cell-attached configuration.110

Cells can also be cultured on a surface while monitoring variations in the rate of cellular 

growth and gene expression using quantitative fluorescent time-lapse microscopy (QFTM) 

to follow single-cell metabolic dynamics in time. This technique is based on the 

measurement of fluorescent protein markers of gene expression while recording microscopic 

image sequences of cell growth. For instance, a recent study showed significant cell-to-cell 

heterogeneity in the three major processes of metabolism (catabolism, anabolism, nutrient 

uptake) by measuring metabolic activities and growth kinetics of starved E. coli cells subject 

to nutrient upshift at single-cell resolution.111

Jing et al. developed a microfluidic cell volume sensor to measure single-cell phenotypic 

growth heterogeneity in Saccharomyces cerevisiae. This strain of budding yeast that can 

exhibit a high or a low expression state of the PDFR5 gene (coding for a transmembrane 

pump) was used to measure the fitness of individual cells in normal and cytotoxic 

conditions. Their microfluidic platform revealed an inhibited growth response of low PDFR5 

expressing yeasts in a cytotoxic environment whereas the high PDRF5 expressing yeasts 

showed a higher fitness. Therefore, their microfluidic cell volume sensor was successfully 

used for characterizing the growth response and fitness of single cells in different 

environments.112
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A label-free approach was developed by Lombard et al. who did single-cell proteomics on 

live cells in Xenopus embryos to uncover proteomic reorganization as an identified 

embryonic cell gave rise to the neural tissue fated cell clone.65

At last, metabolite abundance can be tracked in time by spectroscopic methods such as 

Raman Spectroscopy.113 For instance, Kang et al. used a combination of Raman 

spectroscopy with fluorescent microscopy to track efficient and localized drug transportation 

in squamous carcinoma cells.114

Outlook

Over the last decade, the interdisciplinary integration of analytical chemistry and biology 

has spurred the development of several technologies to identify heterogeneities in cell 

populations. This Feature provides just a few select examples for such developments in 

bioanalytical NMR, MS, and optical spectroscopy that have enabled the characterization of 

transcripts, proteins, peptides, metabolites and elements in single cells in important models 

of basic biological and translational investigations. Among other developments, we would 

like to point to single-cell metallomics, the studies that determine the trace metals and the 

metal complexes within a cell that are critically important in biological processes including 

metabolic signaling (see e.g. ref. 115,116) and energy-dispersive X-ray analysis electron 

microscopy (EDX-EM) which allows interpretation of macromolecular functionality by 

analyzing endogenous elements, labels (gold and cadmium-based nanoparticles) as well as 

stains at nanometer resolution.117 Other recent developments include NanoString gene 

expression profiling, which provides a highly sensitive alternative to scRNA-seq for 

quantitative transcriptional profiling for a pre-defined set of genes of interest.118,119 and 

cryoelectron microscopy (cryoEM) which has the potential to uncover the dynamics of 

macromolecular machines at the single-cell level120,121. The data resulting from the above 

mentioned studies have already begun to uncover previously unavailable molecular 

information on cell-to-cell differences during states of health and disease, which in turn can 

now be used to design hypothesis-driven studies to test for the functional significance of the 

observed molecular differences between cells. Moreover, We anticipate that automation and 

commercialization (e.g., CyTOF122), as well as development of specialized software 

packages to recognize minuscule signals (e.g., TRACE123), will bring these bioanalytical 

technologies from select laboratories to many investigators, thus promoting a new era of 

interdisciplinary research to understand the basic building block of life: the cell.
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Fig. 1: Single-cell transcriptome analyses of tissues and cell types.
Reproduced with permission from ref10 Copyright (2014) Springer Nature.
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Fig. 2: Common mass spectrometric techniques in single-cell metabolic analysis.
Working principles of MALDI (a), DESI (b) and SIMS (c), their beam diameters (d), mass 

detection ranges (e) and sample preparation times (f). Reproduced with permission from 

ref124 Copyright (2018) ROYAL SOCIETY OF CHEMISTRY.
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Fig. 3. Following metabolic fluctuations in time.
Individual cells display gene expression and growth rates that vary strongly in time, in a 

correlated fashion, by at least two different mechanisms: a) Fluctuations in the expression of 

limiting metabolic enzymes lead to metabolic fluxes that vary in time, which in turn cause 

delayed growth rate fluctuations. Adapted with permission from ref103 Copyright (2014) 

Springer Nature b) Expression itself is also affected by metabolic fluctuations, possibly 

mediated by varying levels of amino acids or ATP. This mechanism also generates 

correlations in expression and growth fluctuations, but without the time delays seen in panel 

a. Adapted with permission from ref125 Copyright (2018) Elsevier.
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