Skip to main content
. 2019 Dec 19;9:19411. doi: 10.1038/s41598-019-55922-0

Table 3.

Accuracies, sensitivities, specificities, and area under the curve (AUC) values of prediction models in a leave-one-out cross-validation (LOOCV) of the primary dataset.

Machine learning algorithm Accuracy Sensitivity Specificity AUC
LR 0.834 0.833 0.836 0.915
SVM 0.866 0.902 0.800 0.932
SNN 0.796 0.833 0.727 0.896
RF 0.815 0.892 0.673 0.902
NB 0.809 0.853 0.727 0.867
Mean ± SD 0.824 ± 0.027 0.863 ± 0.033 0.753 ± 0.065 0.902 ± 0.024
95% CI 0.790–0.858 0.822–0.903 0.672–0.833 0.873–0.932

LR: logistic regression, SVM: support vector machine, SNN: standard neural network, RF: random forest, NB: naïve Bayes.