Table 4.
Machine learning algorithm | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
LR | 0.746 | 0.756 | 0.727 | 0.755 |
SVM | 0.746 | 0.844 | 0.545 | 0.731 |
SNN | 0.716 | 0.867 | 0.409 | 0.707 |
RF | 0.806 | 0.822 | 0.773 | 0.800 |
NB | 0.776 | 0.822 | 0.682 | 0.743 |
Mean ± SD | 0.758 ± 0.034 | 0.822 ± 0.042 | 0.627 ± 0.149 | 0.747 ± 0.034 |
95% CI | 0.716–0.800 | 0.771–0.874 | 0.443–0.812 | 0.705–0.790 |
LR: logistic regression, SVM: support vector machine, SNN: standard neural network, RF: random forest, NB: naïve Bayes.