Skip to main content
. 2019 Dec 19;9:19411. doi: 10.1038/s41598-019-55922-0

Table 5.

Prediction performances for malignant glioma grade identification using a radiomic approach in the proposed framework and in previous studies.

Study No. of data MRI sequence Feature type Filtering Feature selection ML algorithm Data augmentation Validation method Accuracy Sensitivity Specificity AUC value
Proposed framework

Primary dataset: 157

(III: 55, IV: 102)

•CE-T1

•T2

•Shape/size

•Intensity

•Histogram

•GLCM

•GLRLM

•GLSZM

•NGLDM

•NGTDM

Wavelet transform high-pass and low-pass filters for all feature types excluding the shape/size WMW test & LASSO-LR SVM (rbf kernel) No LOOCV 0.866 0.902 0.800 0.932

Entire dataset: 224

(Primary dataset: 157 & Validation dataset: 67

(III: 22, IV: 45))

Using the selected radiomic features for all folds in the LOOCV of the primary dataset RF No Independent validation 0.806 0.822 0.773 0.800
Zacharaki et al.20 52 (III: 18, IV: 34)

•CE-T1

•T1

•T2

•FLAIR

•rCBV

•Shape

•Intensity

•Rotation invariant texture

Gabor filter for rotation invariant texture features SVM-RFE SVM (rbf kernel) No LOOCV 0.904 1.000 0.722 0.985
t-test with bagging 0.942 NR NR 1.000
Tian et al.21 111 (III: 33, IV: 78)

•CE-T1

•T1

•T2

•Diffusion

•3D pCASL

•GLCM

•GLGCM

No SVM-RFE SVM (rbf kernel) No 100-times 10-fold CV 0.937 0.942 0.927 0.982
SMOTE 0.981 0.987 0.974 0.992

CE-T1: contrast-enhanced T1, FLAIR: fluid attenuated inversion recovery, rCBV: relative blood volume, 3D-pCASL: three-dimensional pseudo-continuous arterial spin labeling, GLCM: gray-level co-occurrence matrix, GLRLM: gray-level run length matrix, GLSZM: gray-level size zone matrix, NGLDM: neighboring gray-level dependence matrix, NGTDM: neighborhood gray-tone difference matrix, GLGCM: gray-level gradient co-occurrence matrix, WMW: Wilcoxon-Mann-Whitney, LASSO-LR: least absolute shrinkage and selection operator logistic regression, RFE: recursive feature elimination, SMOTE: synthetic minority over sampling technique, SVM: support vector machine, rbf: radial basis function, RF: random forest, LOOCV: leave-one-out cross validation, AUC: area under the curve, NR: not reported.