Table 5.
Prediction performances for malignant glioma grade identification using a radiomic approach in the proposed framework and in previous studies.
Study | No. of data | MRI sequence | Feature type | Filtering | Feature selection | ML algorithm | Data augmentation | Validation method | Accuracy | Sensitivity | Specificity | AUC value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proposed framework |
Primary dataset: 157 (III: 55, IV: 102) |
•CE-T1 •T2 |
•Shape/size •Intensity •Histogram •GLCM •GLRLM •GLSZM •NGLDM •NGTDM |
Wavelet transform high-pass and low-pass filters for all feature types excluding the shape/size | WMW test & LASSO-LR | SVM (rbf kernel) | No | LOOCV | 0.866 | 0.902 | 0.800 | 0.932 |
Entire dataset: 224 (Primary dataset: 157 & Validation dataset: 67 (III: 22, IV: 45)) |
Using the selected radiomic features for all folds in the LOOCV of the primary dataset | RF | No | Independent validation | 0.806 | 0.822 | 0.773 | 0.800 | ||||
Zacharaki et al.20 | 52 (III: 18, IV: 34) |
•CE-T1 •T1 •T2 •FLAIR •rCBV |
•Shape •Intensity •Rotation invariant texture |
Gabor filter for rotation invariant texture features | SVM-RFE | SVM (rbf kernel) | No | LOOCV | 0.904 | 1.000 | 0.722 | 0.985 |
t-test with bagging | 0.942 | NR | NR | 1.000 | ||||||||
Tian et al.21 | 111 (III: 33, IV: 78) |
•CE-T1 •T1 •T2 •Diffusion •3D pCASL |
•GLCM •GLGCM |
No | SVM-RFE | SVM (rbf kernel) | No | 100-times 10-fold CV | 0.937 | 0.942 | 0.927 | 0.982 |
SMOTE | 0.981 | 0.987 | 0.974 | 0.992 |
CE-T1: contrast-enhanced T1, FLAIR: fluid attenuated inversion recovery, rCBV: relative blood volume, 3D-pCASL: three-dimensional pseudo-continuous arterial spin labeling, GLCM: gray-level co-occurrence matrix, GLRLM: gray-level run length matrix, GLSZM: gray-level size zone matrix, NGLDM: neighboring gray-level dependence matrix, NGTDM: neighborhood gray-tone difference matrix, GLGCM: gray-level gradient co-occurrence matrix, WMW: Wilcoxon-Mann-Whitney, LASSO-LR: least absolute shrinkage and selection operator logistic regression, RFE: recursive feature elimination, SMOTE: synthetic minority over sampling technique, SVM: support vector machine, rbf: radial basis function, RF: random forest, LOOCV: leave-one-out cross validation, AUC: area under the curve, NR: not reported.