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ABSTRACT

Background: Current guidelines recommend surgical resection as the first-line option for patients with soli-
tary hepatocellular carcinoma (HCC); unfortunately, postoperative recurrence rate remains high and there is
no reliable prediction tool. We explored the potential of radiomics coupled with machine-learning algo-
rithms to improve the predictive accuracy for HCC recurrence.
Methods: A total of 470 patients who underwent contrast-enhanced CT and curative resection for solitary
HCC were recruited from 3 independent institutions. In the training phase of 210 patients from Institution 1,
a radiomics-derived signature was generated based on 3384 engineered features extracted from primary
tumor and its periphery using aggregated machine-learning framework. We employed Cox modeling to build
predictive models. The models were then validated using an internal dataset of 107 patients and an external
dataset of 153 patients from Institution 2 and 3.
Findings: Using the machine-learning framework, we identified a three-feature signature that demonstrated
favorable prediction of HCC recurrence across all datasets, with C-index of 0.633—0.699. Serum alpha-feto-
protein, albumin-bilirubin grade, liver cirrhosis, tumor margin, and radiomics signature were selected for
preoperative model; postoperative model incorporated satellite nodules into above-mentioned predictors.
The two models showed superior prognostic performance, with C-index of 0.733-0.801 and integrated Brier
score of 0.147-0.165, compared with rival models without radiomics and widely used staging systems (all
P < 0.05); they also gave three risk strata for recurrence with distinct recurrence patterns.
Interpretation: When integrated with clinical data sources, our three-feature radiomics signature promises to
accurately predict individual recurrence risk that may facilitate personalized HCC management.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abbreviations: HCC, hepatocellular carcinoma; LT, liver transplantation; BCLC, Barcelona Clinic Liver Cancer; HKLC, Hong Kong Liver Cancer; CLIP, Cancer of the Liver Italian Program;
AJCC, American Joint Committee on Cancer; TNM, tumor-node-metastasis; ERASL, Early Recurrence After Surgery for Liver tumor; ML, machine learning; CT, computed tomography;
RO, region of interest; ICC, intraclass correlation coefficient; MRMR, maximum relevance minimum redundancy; MI, mutual information; RSF, random survival forest; VIMP, variable
importance; LASSO, least absolute shrinkage and selection operator; AIC, Akaike information criteria; AFP, alpha-fetoprotein; MRI, magnetic resonance imaging; RFS, recurrence-free
survival; C-index, concordance index; ROC, receiver operating characteristic; IBS, integrated Brier score; IQR, interquartile range
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Research in context

Evidence before this study

The ideal candidates for resection are patients with a solitary
hepatocellular carcinoma (HCC) at an early stage, regardless of
tumor size, and preserved liver function; unfortunately, disease
recurrence rate remains high and there is no reliable prediction
tool. Radiomics is a nascent technique that quantifies imaging
phenotypes using automated and high-throughput method.
Only a few studies have employed radiomics to predict the like-
lihood of HCC recurrence, with most solely extracting engi-
neered features from tumor; however, peritumoral area
harbors highly invasive tumor cells. In addition, to the best of
our knowledge, no multi-institutional studies on the use of
radiomics to predict recurrence after surgical resection of
early-stage HCC have been reported to date.

Added value of this study

We identified a three-feature radiomics signature using aggre-
gated machine-learning framework. The signature coupled
with clinical sources accurately predicted HCC recurrence
either before or after surgery and showed superior prognostic
performance compared with rival models without radiomics as
well as widely used staging systems. Moreover, the two models
could give three risk strata with low, intermediate, or high risks
of recurrence and distinct recurrence patterns, backed by inter-
nal and external validations.

Implications of all the available evidence

This study highlights the complementary nature of radiomics
and existing variables. Our results suggest that the three-fea-
ture signature may serve as an early detector of aggressive dis-
ease in patients with solitary HCC. When integrated with
clinical data sources, the radiomics signature promises to accu-
rately predict individual recurrence risk that may facilitate per-
sonalized HCC management.

1. Introduction

Hepatocellular carcinoma (HCC) ranks number four among the
most common causes of cancer-related death globally, with progno-
sis predominantly driven by tumor burden and liver dysfunction
[1,2]. In selected patients diagnosed at early stages, surgical resection
and liver transplantation (LT) are potentially curative and can achieve
5-year survival rates of 60—80% [2,3]. LT offers definite advantages of
oncologic cure but demand for organs far exceeds supply. Surgical
resection is accepted as the first-line treatment option for a solitary
HCC at an early stage, regardless of tumor size, in patients with pre-
served liver function; unfortunately, 50%—70% of cases present with
disease recurrence within 5 years, reflecting either disseminative or
de novo recurrence [1—4].

Patients with HCC do not recur through the evolutionary stages of
this disease after curative therapies [1]. Although several staging sys-
tems - such as Barcelona Clinic Liver Cancer (BCLC), Hong Kong Liver
Cancer (HKLC), Cancer of the Liver Italian Program (CLIP), and Ameri-
can Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM)
systems - have been proposed for prognostic prediction and treat-
ment allocation, they are not derived from surgically treated patients
and therefore inadequate for predicting recurrence after resection
[1-5]. Recently, two Early Recurrence After Surgery for Liver tumor
(ERASL) models have been developed specifically to predict HCC
recurrence; however, their discriminatory ability is barely

satisfactory and none of them has been specifically validated in
patients with solitary lesion, who are the ideal candidates for resec-
tion [5]. Genomic investigation may provide prognostic information,
but this approach has not been used in routine clinical care [2,6]. By
contrast, medical imaging is an indispensable tool in oncology.

A rapidly evolving field named “Radiomics” that quantifies imag-
ing phenotypes using automated and high-throughput method
promises to make great strides in precision medicine [7—-9]. This
new paradigm, as an extension of traditional imaging semantics, is
mined with machine-learning (ML) algorithms to select robust fea-
tures and develop models that may potentially improve outcome
prediction. Recently, a few studies have employed radiomics to pre-
dict early recurrence of HCC after resection; however, the outcome
of interest was transformed to a dichotomized endpoint (early ver-
sus late or no recurrence) that incurs the risk of biasing prediction
accuracy in these studies while few attempts have been made to
assess recurrence risk based on continuous time-to-event survival
data [10—-12]. In addition, most previous studies solely extracted
engineered features from within tumor annotations; however, peri-
tumoral area harbors highly invasive tumor cells on pathology and
peritumoral changes captured by radiomic analysis of HCC may
hold prognostic information [11—15]. To our knowledge, no multi-
institutional studies on the use of radiomics to predict recurrence
after surgical resection of early-stage HCC have been reported to
date.

This study aimed to investigate whether radiomic analysis of con-
trast-enhanced computed tomography (CT) coupled with ML-based
algorithms could improve the prediction of HCC recurrence for
patients with solitary lesion in clinical settings, backed by internal
and external validations. We benchmarked the performance of estab-
lished models against that achieved by rival models and staging sys-
tems to determine the added value of radiomics.

2. Materials and methods
2.1. Study population

The institutional review boards of all participating institutions
approved this retrospective study, and all boards waived patient
written informed consent. A total of 1037 patients with patholog-
ically-confirmed solitary HCC treated by curative resection between
January 2009 and December 2016 were received from 3 independent
institutions. Among these, 470 patients were included in the final
analysis according to the study criteria shown in Fig 1. We randomly
assigned the 317 patients recruited from Institution 1 (The First Affili-
ated Hospital of Nanjing Medical University, Nanjing, China) in a two-
to-one ratio into training (n=210) and internal validation (n=107)
datasets. The external validation set consisted of 153 patients treated
at 2 independent institutions [Institution 2 (n=94): Wuxi People's
Hospital, Wuxi, China; Institution 3 (n=59): Nanjing First Hospital,
Nanjing, Chinal].

2.2. Image analysis

CT protocols are detailed in Table S1. Two abdominal radiologists
with 10 years (reader 1: F.P.Z) and 20 years (reader 2: Q.X) of experi-
ence in liver imaging blinded to all clinical data independently
reviewed the baseline CT images to evaluate the following traits: (a)
tumor size; (b) liver cirrhosis; (c) arterial rim enhancement; (d) arte-
rial peritumoral enhancement; (e) tumor margin; (f) radiological cap-
sule; (g) intratumoral necrosis; (h) radiogenomic venous invasion.
Diagnostic criteria are introduced in Supplementary Methods. Tumor
size was recorded as mean value. Discordant annotations were
resolved through consensus review in a third session and inter-
reader variation was measured by Kappa statistics.
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Patients with solitary HCC who underwent curative
resection from January 2009 to December 2016
at 3 independent institutions (n = 1037)

567 patients excluded:

O Unavailable contrast-enhanced CT scans (n = 385)

O CT imaging over 1 month before surgery (n = 32)

O Previous treatment history of hepatectomy (n = 33),
TACE (n = 56), or ablation (n = 6)

O Resection for ruptured tumor (n = 5)

O Unavailable serum AFP concentration (n = 2)

O Macrovascular invasion on CT scans (n = 48)
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Fig. 1. Flowchart of study design. HCC, hepatocellular carcinoma; CT, computed tomography; TACE, transcatheter arterial chemoembolization; AFP, alpha-fetoprotein; ROI, region of

interest.

2.3. Radiomic analysis

The radiomics workflow is summarized in Fig 1. Regions of inter-
est (ROIs) were semiautomatically delineated on each transverse slice
at arterial and portal venous phases using Fast GrowCut algorithm
implemented in 3D Slicer (version 4.9.0; www. slicer.org). Annotated
lesion within tumor was termed intratumoral ROI; peritumoral ROI
was generated with automated dilatation and shrinkage of tumor
boundary by 2 mm on each side, resulting in a 4mm-wide band. All
images were resampled to a voxel size of 1 x 1 x 1 mm and voxel
intensities were discretized using a bin-width of 25 Hounsfield units
[16,17]. We extracted 846 radiomic features from each three-dimen-
sional ROI using open-source Pyradiomics package (version: 2.12;
https://pyradiomics.readthedocs.io/en/2.1.2/), including 19 first-
order statistics, 75 textual features, and 752 wavelet features.
Accounting for biphasic radiomics from the tumor and its periphery
analyzed, a total of 3384 features were obtained per patient. Feature
extraction algorithms are provided in Supplementary Methods and
feature values were standardized with Z-scores derived from the
training set. All segmentations were completed by reader 1. To test
feature stability, reader 1 and reader 2 repeated feature extraction
independently in a one-week period on 30 randomly chosen patients.
The stability was calculated by using intraclass correlation coefficient
(ICC). Features with excellent stability (ICC>0.90) in both test-retest
and inter-reader settings were included in subsequent analysis.

2.4. Machine learning framework

Two most commonly used ML algorithms were implemented for
feature filtering and selection without involvement of the model: (i)
maximum relevance minimum redundancy (MRMR) and (ii) random
survival forest (RSF) consist in computing feature importance associ-
ated with time-to-event outcomes. MRMR ranks the input features
by maximizing the mutual information (MI) with outcome and mini-
mizing the average MI with all higher ranked features [18]. RSF ranks

candidate features based on the variable importance (VIMP), which is
calculated by comparing out-of-bag prediction performance for the
permuted feature to the original feature [19]. A forest of 1000 trees
was grown using log-rank splitting, and VIMP for each feature was
recorded. The analysis was repeated 100 times independently, and
VIMP was averaged over the runs.

We then aggregated the top 20 engineered features from either
MRMR or RSF algorithm, and employed least absolute shrinkage and
selection operator (LASSO) Cox regression algorithm [20] with pen-
alty parameter tuning conducted by 10-fold cross-validation to com-
pile a radiomics signature. Unsupervised hierarchical clustering was
done to identify similar expression patterns of candidate features
using Pearson correlation-based distance and complete linkage.

2.5. Model development and validation

Predictors of HCC recurrence that achieved statistical significance
in univariate analysis were included in the multivariate analysis. The
final model was formulated based on the results of multivariate Cox
regression by using backward step wise elimination with Akaike
information criteria (AIC) as the stopping rule, and Cox regression
coefficients were utilized to generate the nomogram. The propor-
tional hazards assumption was tested by scaled Schoenfeld residuals.
Two radiomics-based models were constructed: the preoperative
model (model-pre) included radiomics-derived signature and param-
eters available before surgery; the post-operative model (model-
post) included aforementioned parameters plus pathological results.
Correspondingly, two clinical models were generated without radio-
mics. Proposed models were validated in independent internal and
external datasets.

2.6. Follow-up surveillance

All patients underwent surveillance after resection with alpha-
fetoprotein (AFP), liver function, contrast-enhanced CT or magnetic
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resonance imaging (MRI) of abdomen and chest every 3 months in
the first 2 years and every 6 months thereafter. The primary endpoint
was recurrence-free survival (RFS), which was calculated from the
date of surgery to the date of first detected disease recurrence or
metastasis by dynamic CT or MRI studies, censoring recurrence-free
patients at the date of last follow-up and those who died of other
causes. We also recorded the details at the time of first recurrence,
including site of recurrence (intrahepatic only vs extrahepatic only vs
intra-and extrahepatic), number of recurrent tumor (single vs multi-
ple), and primary treatment modality. This study was censored on
January 15, 2019.

2.7. Statistical analysis

Recurrence and survival probabilities were estimated using the
Kaplan-Meier method and compared by the log-rank test. Serum AFP
level was normalized with a natural logarithm transformation to
reduce the effect of small differences. Model discrimination was mea-
sured by the concordance index (C-index) and compared using the
method previously described [21]. Model fit was assessed by calibra-
tion plots via 1000 bootstrap resamples. Time-dependent receiver
operating characteristic (ROC) curve and corresponding AUC were
employed to investigate the performance at different time points.
The integrated Brier score (IBS) that represents the differences
between actual events and predicted probabilities was evaluated
using “Boot632plus” split method with 1000 iterations [22]. Clinical
utility of models was evaluated by decision curve analysis. Statistical
analysis was undertaken using R software (version 3.4.4; www.r-proj
ect.org) with R packages listed in Supplementary Methods. We used
X-tile software (version 3.6.1; Yale University School of Medicine,
New Haven, CT, USA) in the training dataset to determine the optimal
cutoff points for risk scores outputted from the prediction model
against RFS; the selected thresholds were used to separate patients
into low-, intermediate-, and high-risk groups [23]. The predictive
ability of prediction model was further evaluated in subgroups of all
patients defined by three well-established prognostic factors: tumor
size (<5vs > 5cm), serum AFP level (<400vs > 400 ng/mL), and
microvascular invasion (absent vs present) [3—5]. Statistical signifi-
cance was set at P<0.05.

2.8. Data sharing statement

Research data are not available for public access due to patient
privacy concerns but can be obtained from the corresponding author
on reasonable request approved by the institutional review boards of
all participating institutions.

Table 1

3. Results
3.1. Patient characteristics

Baseline characteristics of the training, internal validation, and
external validation sets are summarized in Table S2. The median fol-
low-up was 56.0 months (interquartile range [IQR], 39.0-74.4) for
the training set, 41.6 months (IQR, 33.5-53.1) for the internal valida-
tion set, and 59.5 months (IQR, 37.0—79.8) for the external validation
set. Compared with the training set, the external validation set had
significantly longer prothrombin times; other characteristics and RSF
were comparable between the training and validation sets.

3.2. Radiomic analysis

Among the 3384 extracted radiomic features, a total of 2422 with
high stability (ICC > 0.90) in both test-retest and inter-reader settings
were preliminarily selected. After combining the top 20 engineered
features ranked by MRMR and RSF algorithms, 34 features were iden-
tified from the training set, with 6 features selected simultaneously
by two algorithms (Fig 2A). Unsupervised clustering of filtered fea-
tures highlighted clusters of highly correlated features with compara-
ble performance (Fig 2B). LASSO Cox regression algorithm further
narrowed down a fusion signature that retained three archetypal fea-
tures (Fig 2C, Fig S1, and Table S3). The resulting signature was for-
mulated as follows:

Rad—score = (0.23 x AT_wavelet.LHH_first order_Maximum)
+(0.21 x VT_wavelet.LLH_glszm_Large Area Low Gray Level Emphasis)
—(0.12 x VP_wavelet.LLL_glcm_Informational Measure of Correction 1)

This fusion signature indicated favorable prediction of HCC recur-
rence, with C-index values of 0.633, 0.699 and 0.645 in the training,
internal validation and external validation sets, respectively.

3.3. Model development and validation

Among the 25 candidate variables, 12 significant predictors of
HCC recurrence were identified by univariate analysis in the training
set (Fig S2). Stepwise multivariate analysis with the lowest AIC score
retained independent predictors for radiomics model-pre and
model-post; their formulas and nomograms are shown in Table 1
and Fig 3. The validity of proportional hazards assumption for radio-
mics models was verified by Schoenfeld residual plots (Fig S3). Simi-
larly, clinical model-pre and model-post were built according to the
formulas shown in Table S4.

Multivariate Cox regression analysis of predictors of HCC recurrence using stepwise backward selection method in the training set.

Variable Radiomics model - pre Radiomics model - post

B HR (95% CI) Pvalue B HR (95% CI) Pvalue
In (Serum AFP) 0.095 1.099 (1.015-1.191) 0.020 0.099 1.104 (1.019-1.196) 0.016
ALBI grade 0.475 1.608 (1.102-2.347) 0.014 0.412 1.511(1.026-2.224) 0.037
Liver cirrhosis 0.639 1.894 (1.281-2.801) 0.001 0.606 1.833(1.236-2.718) 0.003
Tumor margin 0.676 1.967 (1.339-2.889) <0.001 0.582 1.789(1.203-2.662) 0.004
Radiomics signature 1.043 2.837 (1.875-4.293) <0.001 1.004 2.729(1.805-4.126) < 0.001
Satellite nodules NA NA NA 0.515 1.674 (1.046-2.679) 0.032
C-index (SE) 0.748 (0.028) 0.752 (0.028)
AIC 1075.78 1073.46

Radiomics model - pre: risk score = 0.095 x In (Serum AFP) + 0.475 x ALBI grade (0: Grade 1; 1: Grade 2 or 3) +0.639 x Liver cirrhosis (0: Absent; 1: Present) + 0.676 x Tumor

margin (0: Smooth; 1: Nonsmooth) + 0.887 x Radiomics signature

Radiomics model - post: risk score = 0.099 x In (Serum AFP)+0.412 x ALBI grade (0: Grade 1; 1: Grade 2 or 3) +0.606 x Liver cirrhosis (0: Absent; 1: Present) + 0.582 x Tumor
margin (0: Smooth; 1: Nonsmooth) + 1.004 x Radiomics signature +0.515 x Satellite nodules (0: Absent; 1: Present)

Abbreviations: HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein; ALBI, albumin-bilirubin; HR, hazard ratio; CI, confidence interval; C-index, concordance index; SE, standard

error; AIC, Akaike information criteria; NA, not applicable.
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Fig. 3. Calibration and performance of predictive models in the training, internal validation, and external validation sets. Two radiomics models were developed and presented as
nomograms to predict the risk of recurrence before (A) and after (B) resection. (C) Plots depict the calibration of each model in each dataset. (D) Time-dependent AUCs for predictive
models and staging systems. (E) Comparison of prediction error estimates for established models and staging systems. AFP, alpha-fetoprotein; ALBI, albumin-bilirubin; RFS, recur-
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The resulting radiomics model-pre and model-post yielded
respective C-indexes of 0.748 and 0.752 in the training set, 0.781 and
0.801 in the internal validation set, 0.733 and 0.741 in the external
validation set; their performance was clearly superior (all P<0.05) to
that of clinical models, ERASL models, and commonly used staging
systems (Table 2). The radiomics model-predicted RFS was well cali-
brated with the Kaplan-Meier-observed RFS at 2 and 5 years (Fig 3C).
Time-dependent ROC analysis also confirmed that radiomics models
improved prediction of HCC recurrence compared with rival models
and staging systems at various time points (Fig 3D). Detailed data of

time-dependent AUCs are reported in Table S5. Using the prediction
error, we found that radiomics model-pre and model-post yielded
respective IBSs of 0.165 and 0.162 in the training set, 0.152 and 0.147
in the internal validation set, 0.162 and 0.162 in the external valida-
tion set, indicating better performance than rival models and staging
systems (Table 2 and Fig 3E). By decision curve analysis, radiomics
models provided larger net benefit across a reasonable range of
threshold probabilities compared with rival models, staging systems,
and simple strategies (ie, follow-up of all patients or no patients)
across all datasets (Fig S4).
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Table 2

Prognostic performance of radiomics models compared with rival models and staging systems.

Model Training set Internal validation set External validation set
C-index (SE) tdAUC  IBS Pvalue C-index (SE) tdAUC  IBS Pvalue C-index (SE) tdAUC  IBS Pvalue

Radiomics model-pre 0.748 (0.019) 0.813 0.165 Ref 0.781 (0.028) 0.840 0.152 Ref 0.733 (0.026) 0.803 0.162 Ref
Radiomics model-post 0.752 (0.019) 0.821 0.162 Ref 0.801 (0.027) 0.859 0.147 Ref 0.741 (0.025) 0.813 0.161 Ref
Clinical model-pre 0.716 (0.022)  0.770 0.180  <0.001*  0.707 (0.036) 0.754 0.180 <0.001*  0.696 (0.028) 0.762 0173  <0.001*
Clinical model-post 0.727 (0.022) 0.787 0.176 <0.001f 0.739 (0.036) 0.779 0.172 <0.001f 0.716 (0.025) 0.786 0.172 <0.001f
ERASL-pre model 0.622 (0.027) 0.653 0.205 < 0.001* 0.647 (0.040) 0.686 0.195 < 0.001* 0.609 (0.033) 0.635 0.206 <0.001*
ERASL-post model 0.622 (0.027)  0.661 0204 <0.001"  0.624(0.041) 0.667 0.198 <0.001"  0.621(0.032) 0.652 0207 <0.001f
BCLC stage 0.582 (0.085) 0.518 0.219 0.024* 0.617 (0.072) 0.496 0.215 0.015* 0.568 (0.097) 0.519 0.213 0.039*
HKLC stage 0.599 (0.047) 0.572 0.216 < 0.001* 0.626 (0.070) 0.592 0.209 0.018* 0.632 (0.056) 0.584 0.210 0.038*
CLIP classification 0.668 (0.039) 0.624 0.207 0.012* 0.659 (0.059) 0.637 0.209 0.016* 0.650 (0.049) 0.610 0.204 0.033*
AJCC TNM (8th) 0.649 (0.055) 0.575 0.215 0.027¢ 0.652 (0.092) 0.565 0.214 0.048" 0.641 (0.060) 0.564 0.215 0.0481

NOTE. The tdAUC represented the median value of AUCs at various time points and all P values were obtained from analyses comparing the C-indices of various models using the
“survcomp” package in R software. * P value vs radiomics model-pre; ' P value vs radiomics model-post.

Abbreviations: C-index, concordance index; SE, standard error; tdAUC, time-dependent area under the receiver operating characteristic curve; IBS, integrated Brier score; ERASL,
Early Recurrence After Surgery for Liver tumor; BCLC, Barcelona Clinic Liver Cancer; HKLC, Hong Kong Liver Cancer; CLIP, Cancer of the Liver Italian Program; AJCC, American Joint

Committee on Cancer; TNM, tumor-node-metastasis.

Inter-reader agreement for the two semantic features that were
incorporated into predictive models was excellent (x¥=0.906 for liver
cirrhosis and 0.880 for tumor margin).

3.4. Radiomics models for prognostic stratification

By using X-tile plots of the training set (Fig S5), risk scores of 1.1 and
2.0 (correspond to total points of 52 and 83 in nomogram, respectively)
were selected as the optimal cut-points for radiomics model-pre that
stratified patients into three risk categories of recurrence (median time
to recurrence, 98.7 months, 28.3 months, and 6.4 months for low-risk
vs intermediate-risk vs high-risk patients in the training set, respec-
tively; P<0.001). Similar results were achieved for radiomics model-
post using 1.0 (51 points) and 2.1 (91 points) as cutoff values derived
from X-tile analysis. Powerful prognostic stratification by both radio-
mics models (P < 0.001 for all) was confirmed in the internal and exter-
nal validation sets (Table 3 and Fig 4).

3.5. Subgroup analysis of radiomics models

Subgroup analysis according to predefined factors (tumor size,
serum AFP level, and microvascular invasion) suggested that radio-
mics model-pre and model-post remained statistically significant
prognostic tools for prediction of RFS (all P < 0.001), and achieved

better prognostic accuracy compared with rival models and staging
systems (all P < 0.05) across all subgroups (Table S6 and Fig S6).
Kaplan-Meier curves for HCC recurrence also revealed three distinct
prognostic strata across all subgroups by using the cutoff values
established in the training set (P < 0.001 for all).

3.6. Recurrence pattern and treatment

Of the 470 patients, 247 (52.6%) developed documented recurrence.
Recurrence patterns and corresponding treatments were significantly
different among three risk categories predicted by radiomics models
(Table S7). Briefly, multiple and extrahepatic recurrences were more fre-
quently detected in intermediate-and high-risk groups compared with
low-risk group; a higher proportion of low-risk patients received poten-
tially curative therapy (LT, repeat resection, or ablation) for recurrent
HCC compared with intermediate-to high-risk patients.

Fig 5 provides two representative cases with similar tumor size,
where the proposed radiomics models correctly predicted their
recurrence risk and pattern.

4. Discussion

This study demonstrated that three archetypal features on con-
trast-enhanced CT radiomics, selected via integrated ML framework

Table 3
Median TTR and cumulative recurrence rate according to each risk group defined by radiomics models.
Model Set Riskgroup N  Median TTR, months (95% CI) 2-year TRR,% (95% CI) 5-year TRR,% (95% CI) HR (95% CI) Pvalue
Radiomics model-pre Training Low 98 98.7(95.1-NA) 7.1(1.9-12.1) 26.5(16.6-35.2) 1
Intermediate 75 28.3(21.5-46.6) 41.6 (29.3-51.8) 72.5(58.8-81.6) 3.64(2.32-571)  <0.001
High 37 6.4(4.0-189) 76.2(57.3-86.7) 94.1(77.4-98.4) 9.75(5.88-16.16) < 0.001
Internal validation Low 53 NA(82.4-NA) 5.7 (0.0-11.7) 25.5(8.3-39.6) 1
Intermediate 38  27.9 (20.5-NA) 42.1(24.1-55.9) 69.4 (42.0-83.9) 4.63(2.28-9.41)  <0.001
High 16 14.8(5.8-25.9) 68.8 (35.4-84.9) 100.0 (NA-NA) 16.56 (7.40—37.07) < 0.001
External validation Low 73  NA(95.1-NA) 6.8(0.9-12.5) 24.0(12.9-33.7) 1
Intermediate 58  39.6 (22.2-56.9) 39.7(25.7-51.0) 73.2(55.5-83.9) 3.71(217-6.32) < 0.001
High 22 11.2(5.1-332) 59.1(32.4-75.2) 93.2(57.5-98.9) 9.25(4.87-17.60) < 0.001
Radiomics model-post Training Low 92 98.7(95.1-NA) 4.3(0.1-8.4) 24.9(14.8-33.8) 1
Intermediate 89  28.3(21.5-46.0) 40.6 (29.5-50.1) 70.4(51.9-79.0) 4.07 (2.57-6.44)  <0.001
High 29 6.4(4.0-16.6) 89.7 (69.8-96.5) 100.0 (NA-NA) 15.53 (8.86-27.24) < 0.001
Internal validation Low 48 NA(95.1-NA) 2.1(0.0-6.0) 21.5(4.1-35.8) 1
Intermediate 43  31.6 (23.6-NA) 37.2(21.0-50.1) 72.6 (45.2-86.3) 4.63(2.28-941) < 0.001
High 16 10.2(5.8-24.2) 81.3(48.0-93.2) 100.0 (NA-NA) 16.56 (7.40-37.07) < 0.001
External validation Low 69 NA(95.1-NA) 5.8(0.1-11.2) 25.4(13.7-35.6) 1
Intermediate 64  38.3(25.5-58.1) 39.1(25.9-49.9) 68.3(52.0-79.1) 3.71(2.17-6.32) < 0.001
High 20 17.1(6.4-NA) 89.1(31.6-76.6) 100.0 (NA-NA) 9.25(4.87-17.60) < 0.001

Abbreviations: TTR, time to recurrence; TRR, tumor recurrence rate; HR, hazard ratio; CI, confidence interval; NA, not applicable.
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Fig. 4. Cumulative rates of tumor recurrence according to three risk strata defined by radiomics model-pre (A) and model-post (B) in the training, internal validation, and external

validation sets.

and converted into a fusion signature, can complement existing prog-
nostic sources and improve HCC recurrence prediction. Specifically,
we developed and validated two new models that incorporate radio-
mics to predict HCC recurrence before and after resection. The radio-
mics models exhibited superior prognostic performance, with

C-index of 0.733-0.801 and IBS of 0.147—0.165, compared with rival
models and widely used staging systems. Both models could stratify
surgery patients into three categories of distinct recurrence risk and
pattern, suggesting that our findings potentially offer clinical value in
HCC management.
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Fig. 5. Two representative cases to show the clinical translation of radiomics-derived models. (A) A 52-year-old man with hepatitis B-related liver cirrhosis and a 4.8-cm liver mass
was at a high predicted risk of recurrence. Multiple metastases occurred in the liver 14.5 months after curative resection. (B) A 48-year-old man with non-cirrhotic liver and a 5.7-
cm liver mass was at a low predicted risk of recurrence. He remained recurrence-free during 95.0 months of follow-up period after curative resection. AFP, alpha-fetoprotein; ALBI,

albumin-bilirubin.

Radiomics is a nascent technique that quantifies tumor heterogene-
ity by the spatial arrangement of imaging voxels with signal-intensity
variations and has major implications for personalized oncology [7—9].
Nevertheless, the pros and cons of radiomics warrant mention. First,
although the reproducibility has been addressed from the inter-
observer standpoint, engineered features are critically dependent on
image acquisition settings that may vary across institutions and opera-
tors. We therefore employed voxel intensity discretization and voxel
size resampling for feature extraction to reduce the dependency of dif-
ferences in image specifications and validated the radiomic panel in a
multi-institutional dataset. Second, most engineered hard-coded fea-
tures are difficult to comprehend by clinicians. Our radiomic signature
was compiled with three key features that describe voxel intensity
information (statistics) and patterns (textures) within tumor and its
adjacent region. An intuitive interpretation of this signature is that
higher intratumoral peak attenuation value (firstorder_Maximum) in
arterial phase and larger proportion of intratumoral necrosis
(glszm_LargeArealowGrayLevelEmphasis) with relatively heteroge-
neous peripheral tissue (glcm_InformationalMeasureofCorrelation 1) in
portal venous phase are associated with high risk of HCC recurrence
after curative resection, backed by the evidence that HCC hemodynam-
ics and microenvironment implicate in aggressive biological behavior
[24]. Note that all three features relate to discrete wavelet filters, which
decompose the original image in three different directions using a coif-
let wavelet transformation and may further reflect the spatial heteroge-
neity of tumor and its periphery at multiple scales [17]. Third,
radiomics-derived data is not a panacea for computerized clinical deci-
sion-support system. In addition to radiomics, increased AFP, non-
smooth tumor margin, and satellite lesions that reflect tumor burden
were incorporated to achieve holistic models. Our models also
highlighted the impact of liver cirrhosis on HCC recurrence through the
integration of cirrhosis imaging and albumin-bilirubin grade, which
echoes previous investigations [3-5,25]. Interestingly, in subgroup anal-
ysis, we found that radiomics models exhibited superior performance
in patients with favorable characteristics, such as tumor diameter
<5 cm, AFP value <400 ng/mL, and no microvascular invasion, com-
pared to those with established risk factors. These results suggest a pos-
sible role for our models as an early detector of aggressive disease.

In the field of radiomics data mining, different ML-based dimension-
ality reduction techniques have distinct mathematical senses and inher-
ent limitations; therefore, multiple learning algorithms should be

combined to select robust features [8]. Two of three features in the sig-
nature were selected by the union of two filter methods, which
increases the reliability of each component. The Cox model, despite its
simplicity, was implemented as the baseline predictive model in our
study to sustain its reproducibility and generalizability. Leger et al. [10]
reported that Cox model could achieve comparable performance to
complex ML models for time-to-event survival data. Although advances
in ML-based modeling offer promise in numerous clinical predictions,
the interpretability of complex statistical algorithms represents a major
bottleneck in attempting to learn any black-box-like model in the clinic
[26]. Unlike the Cox model, sophisticated learning algorithms involve
hyper-parameter tuning to optimize model performance and may be
irreproducible by independent researchers without raw data. Besides,
recent studies have addressed that feature selection is more vital for
radiomic analysis compared with modeling methodology [10,27].

Although no accepted adjuvant therapies have been demon-
strated to reduce recurrence, patients at high risk of recurrence are
potential candidates for clinical trials of adjuvant therapy, such as
adjuvant chemotherapy, molecular targeted therapy, and immuno-
therapy [1-5]. The most effective treatment to prevent HCC recur-
rence is LT while enlistment of patients at high risk of recurrence
after resection prior to the appearance of recurrence permits an opti-
mal use of scarce organs and provides excellent long-term outcomes
[1,28,29]. Promisingly, our radiomics models provide individualized
estimation of recurrence risk as well as three risk profiles that may
affect both the use of adjuvant treatment and the LT strategy. Addi-
tionally, choice of surveillance program should balance sensitivity to
optimize early detection of recurrence, specificity to minimize harms
from follow-up tests, and costs to remain cost-effective. Our radio-
mics models may therefore facilitate individualized surveillance pol-
icy. Specifically, low-risk patients may receive a less intensive
surveillance regimen, even within the first 2 years after surgery,
given their 2-year cumulative recurrence rate of less than 10%,
whereas intermediate-to high-risk patients may need intensive sur-
veillance lasting for 5 years; high-risk patients should also receive
intensive screening for distant metastasis since up to 30% of recurrent
tumors involved extrahepatic sites in this study.

Several limitations should be noted. First, this study was based on
data from China and most patients had hepatitis B-related HCC. Sec-
ond, this retrospective study suffers from inherent biases. Third, eval-
uation of solitary HCC by gadoxetate-enhanced MRI has recently
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been reported to detect additional lesions and therefore improve
long-term outcomes [30]. However, recent meta-analysis has pre-
cluded support for exclusive use of MRI over CT [31,32]. Fourth, deep
learning is a promising method that can automatically learn feature
representations from images according to clinical goals and has been
widely used in oncology researches [7], but was not explored in this
study. Finally, the association between genomic profiles and radiomic
phenotypes was not studied.

In conclusion, we demonstrated the complementary nature of
engineered radiomics and existing prognostic parameters. When
integrated with clinical data sources, a three-feature fusion signature
generated by aggregated ML-based framework promises to accu-
rately predict individual recurrence risk that enables appropriate
management and surveillance of HCC.
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