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Abstract

At least one-third of infants born in sub-Saharan Africa have been exposed to the effects of 

maternal HIV infection and antiretroviral treatment. Intrauterine HIV exposure is associated with 

increased rates of morbidity and mortality in children. Although the mechanisms responsible for 

poor infant health with HIV-1 exposure are likely to be multifactorial, we posit that the maternal 

environment during gestation and in the perinatal period results in altered infant immunity and is 

possibly the strongest contributing factor responsible for the disproportionally high infectious 

events among HIV-exposed infants who remain HIV uninfected. This review provides a synthesis 

of studies reporting the impact of intrauterine HIV exposure, feeding practices, and microbiota on 

immune ontogeny in the first year of life in HIV-exposed uninfected infants.
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1 | INTRODUCTION

There are approximately 2.1 million children ≤15 years of age living with HIV infection, of 

which 90% reside in sub-Saharan Africa, a region with the highest burden of infectious 

diseases.1 The majority of HIV cases in children are acquired in utero or perinatally during 

labor, delivery, or postpartum during breastfeeding.2 Prior to implementation of 

antiretroviral (ARV) treatment, the rates of HIV mother-to-child transmission (MTCT) were 

30–40%, but have since been reduced to 1–3% following widespread adoption of programs 
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to prevent MTCT, including in resource-limited settings.3 This has, however, resulted in a 

growing population of infants who are exposed to maternal HIV but remain uninfected.

Although healthier than HIV-infected infants, HIV-exposed uninfected (HEU) infants are 2–

3 times more likely to suffer from severe infections, specifically gastrointestinal and lower 

respiratory tract infections.4,5 Moreover, the incidence of infectious disease among these 

infants is not evenly distributed by age, occurring at a higher rate in the first year of life, and 

being more frequent during the first month of life. Factors contributing to the 

disproportionately higher risk of infectious disease in HEU infants compared to HIV-

unexposed infants include: (i) severity of maternal HIV infection, in which higher mortality 

rates are reported for infants born to mothers with high HIV viral loads and low CD4+ 

lymphocyte count6,7; (ii) increased exposure to maternal bacterial and viral infections; (iii) 

malnutrition8; (iv) breastfeeding avoidance9,10; and (v) ARV treatment, some of which may 

be interrelated. Additionally, mechanisms responsible for increased infections may be due to 

the functional development of the immune system in neonates coinciding with immune 

aberrations mediated by HIV exposure.

Developmental maturation of the infants’ immune system is also dependent on interactions 

with the mucosal microbiota. The gut microbiota in infants, initially influenced by the mode 

of delivery and possibly in utero maternal microbiota,11 is mainly shaped by bacteria in milk 

during breastfeeding and human milk oligosaccharides (HMO) that serve as prebiotics.12,13 

Differences in the gut microbial profiles between HEU and HIV-exposed infants together 

with varying composition of HMO between HIV-infected and HIV-uninfected mothers have 

been recently reported.12,14 Given that formula-fed or mixed-fed HEU infants tend to have 

higher mortality rates compared to age-matched exclusively breastfed HEU infants,15 

immunomodulation by the gut microbiota is a likely mechanism ultimately contributing to 

higher infectious disease burden in HEU infants. In this review, we summarize evidence 

related to immunological development in infants associated with maternal HIV exposure, 

feeding mode, and the corresponding gut microbiota in delineating attributes contributing to 

increased morbidity in HEU infants.

2 | INTRAUTERINE HIV EXPOSURE AND IMMUNOLOGICAL 

DEVELOPMENT

In utero, the fetal immune system develops in an environment largely lacking foreign 

antigens, while mature allogeneic lymphocytes are tolerated by immunomodulatory 

mechanisms. The development of the fetal immune system begins as early as the ninth week 

of gestation primarily occurring in the liver until secondary lymphoid organs are fully 

developed.16,17 During fetal development, immune cells at the maternofetal (MF) interface 

are critical in setting the balance between regulatory and proinflammatory immune 

responses to foster tolerance of the semiallogenic fetus while protecting against invading 

pathogens.18

In early pregnancy, decidual NK (dNK) cells are the most abundant leukocytes within the 

MF interface.19,20 They show distinct functional and phenotypic characteristics, different 

from their peripheral blood counterparts. A great proportion of dNK cells are CD56bright 
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CD16negCD160neg.20 In healthy pregnancies, dNK cells have poor cytolytic activity but have 

great pregnancy-specific functions such as promoting implantation and contributing to MF 

tolerance.21,22 Although very little is known about dNK cell ability to limit local decidual 

viral infections, Siewiera et al.23 reported that cytomegalovirus infection induces a new dNK 

cell effector function suggesting that dNK may possess properties that could aid in 

protection against viral infections.23 There are limited studies that have investigated 

phenotypic and functional changes of dNK in HIV-infected women to adequately inform 

conclusions on the outcome of fetal development and their health implications. Although 

given the essential role of dNK in fetal growth24 and the increased likelihood of delivering 

neonates with low birth weight among HIV-infected women,25 it is possible that maternal 

HIV infection or immune aberrations associated with HIV infection may alter dNKs and 

ultimately impairing their fetal growth promoting properties.

Decidual macrophages are the second most abundant immune cell type at the MF interface. 

Decidual macrophages possess an array of properties at the MF interface, involved in 

placentation, fetal development, and immune regulation to orchestrate the establishment and 

maintenance of normal pregnancy.26,27 Hofbauer cells are also present within the MF 

interface; these are placental macrophages found in the chorionic villi tissue. These cells 

predominantly secrete the regulatory cytokines IL-10 and TGF-β that are crucial for the 

maintenance of immune-homeostatic environment necessary for fetal development.28 

Despite being the main target of HIV infection in the placenta, expressing coreceptors CD4, 

CCR5, CXCR4, and DC-SIGN, the immunoregulatory cytokines secreted by Hofbouer cells 

inhibit HIV replication and transmission. Nonetheless, more studies are still required to 

investigate the impact of aberrant immune activation due to maternal infections and the 

pathophysiology of common pregnancy complications on the function of decidual 

macrophages.

Further tolerance of the growing fetus is maintained by generation or recruitment of Foxp3+ 

CD4+ regulatory T cells (Tregs) that possess immunosuppressive properties.29 Other 

suppressor cells such as myeloid-derived suppressor cells (MDSC) have been identified and 

also contribute in maintaining tolerance.30 Both Tregs and MDSC are found at higher 

frequencies in HIV-infected adults, although their presence and function in HIV-infected 

pregnancies has not been assessed.

The use of combination antiretroviral therapy (cART), and subsequent lowering of HIV viral 

load among HIV-1-infected pregnant women, limits viral interactions with the immune cells 

involved in the regulation of pregnancy. However, prolonged exposure to cART has been 

shown to have detrimental effects on maternal health and birth outcomes among HIV-1-

infected women on cART. We propose that HIV-induced maternal chronic immune 

activation disrupts the cellular milieu involved in regulating pregnancy and results in 

dysregulated MF immune balance and thus altering immunoregulatory mechanism that 

allow healthy fetal development, summarized in Fig. 1. Moreover, exposure to maternal HIV 

and opportunistic infections increases the likelihood of disrupted MF tolerance leading to 

inflammation, which may result in altered neonatal immunity. These possibilities require 

further exploration and study.
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Studies that have investigated the effects of HIV exposure on development of infant 

immunity have reported differences between HEU and HIV-unexposed infants in both the 

innate and adaptive arms of the immune system. These observed differences could possibly 

explain the disproportionate burden of infectious diseases among HEU infants, although 

there is a lack of consensus in the data so far. This could be attributable to differences in 

experimental designs and characteristics of the studied cohorts, including breastfeeding 

practices and maternal ART. Most studies, however, have reported no differences in Ab 

responses to vaccines between HEU and HUU infants.31–33 Transplacental transfer of Abs 

from mother to infants is greatly affected by in utero HIV exposure with HEU newborns 

having significantly less compared to HUU newborns.31,34,35 In a study by Jones et al., HEU 

infants have been shown to have higher antibody responses to vaccines than their HIV-

unexposed counterpart, most likely due to the reduced passive immunity that could interfere 

with vaccine priming.35 What perhaps is less clear is the impact of HIV exposure on innate 

and adaptive cellular immunity, which is the basis of our review.

2.1 | Innate cellular immunity in HEU

The innate immune system is mostly comprised of myeloid-derived cells that function as the 

first line of defense capable of mounting rapid responses against invading pathogens. The 

bridge between innate and adaptive immunity lies in antigen processing and presentation, 

via the MHC on dendritic cells (DC) and macrophages and with immune activation signals 

derived via TLR engagement. Neonatal innate immunity is quantitatively and qualitatively 

different to that of adults, characterized by fewer neutrophils with poor signaling via 

pathogen recognition receptors (PRR), less chemotactic ability, and defective formation of 

neutrophil extracellular traps.36,37 Monocytes and DC at birth express lower levels of TLR, 

MHC-II, and other costimulatory molecules such as CD80/CD86 and CD40, thus resulting 

in poor signaling pathways and inefficient antigen presentation.38–41 Circulating NK cells in 

neonates are marginally higher than those detected in adults. Cord blood NK cells are more 

likely to be CD56bright immunoregulatory cells that are postulated to play a role during MF 

tolerance. Although the level of CD16+ cells are comparable to those in adult peripheral 

blood, neonatal NK cells carry lower levels of cytoplasmic granules and exhibit poor 

degranulation.42 This functional “immaturity” of neonatal innate immunity may be 

responsible for the increased susceptibility to infectious disease in the first year of life. 

Therefore any perturbations mediated by HIV exposure on the developing immune system 

during early infancy could further exacerbate the risk of infections in the affected infants.

One such perturbation is that exposure to HIV in utero is associated with decreased 

neutrophil numbers.43 Neutrophil levels were 2-fold lower among HIV-exposed infants 

compared with unexposed infants. Moreover, earlier studies determined that use of ARV 

during pregnancy suppresses development of myeloid cells in the fetal bone marrow 

resulting in decreased levels of neutrophils and monocytes.44,45 Siawaya and colleagues 

measured neutrophil oxidative burst responses to bacterial antigens of HEU infants and 

observed that 36% of the infants had functionally impaired neutrophil responses. 

Mechanisms for this impairment could be attributed to defective TLR-4 recognition of 

antigens in blood of HEU infants resulting in unresponsive neutrophils.46,47 Reduced level 
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and function of neutrophils in HEU infants could contribute to increased bacterial infection 

observed in these infants.5

Quantitative differences of innate cells between HUU and HEU infants have been reported 

for monocytes and DC from birth up until 20 months of age, although such differences were 

transient with age.43,48 A study by Reikie et al, however, observed no differences in the level 

of monocytes and DC infants between HEU and HUU infants,49 suggesting that alterations 

of antigen presenting cells mediated by in utero HIV exposure could be limited to their 

function.

Indeed, following activation with either LPS or TLR-9 agonist, DC from HEU infants 

expressed higher levels of costimulatory molecules compared to HUU infants.48 This higher 

level of innate activation in HEU paralleled increased inflammatory responsiveness. TLR 

stimulation of monocytes and conventional DC resulted in higher levels of IL-6, IL-12, and 

TNF-α expression among HEU infants at 2 weeks of age compared to HUU infants.49 

Therefore, compared with HIV-unexposed infants, HEU infants tend to exhibit higher 

activation and expression of proinflammatory cytokines, although such differences were 

transient with age. Exposure to maternal HIV antigens and/or opportunistic bacterial and 

viral infections could be responsible for priming innate immunity of HEU infants resulting 

in increased level of activation compared to HUU infants. Whether such alterations of the 

innate immune system account for the immunodeficiencies in the affected infants that are 

associated with higher susceptibility to viral and bacterial infections remain to be confirmed. 

Given that HEU infants are more likely to suffer from infectious diseases, alteration in the 

innate immune system could have detrimental effects on the functional response of adaptive 

immunity and hence leading to increased infectious diseases susceptibility in HEU infants.

There is currently no consensus regarding disparity of NK cells frequencies between HEU 

and HUU infants. At birth and 6 months of age, HEU infants were reported to have lower 

proportion of NK cells compared to HUU infants.50 Similarly, HEU adolescents had lower 

levels of NK cells detected in their peripheral blood compared to HUU controls.51 In 

contrast, no differences in absolute NK cells count were observed between the 2 groups of 

infants, although differences were noted when comparing different NK subsets.52 Activated 

NK cells (CD38+ CD69+) were higher in HEU infants <6 month of age.52 Smith et al. 

observed higher level of cytolytic NK cells at birth in HEU infants as measured by the 

ability to kill human malignant cells and expression of the degranulation molecule CD107a. 

Despite increased cytolytic activity observed from HEU infants, fewer activated NK cells 

were expressing perforin and INF-γ compared to HUU infants mechanisms of which are 

unclear.50 Moreover, the level of NK cells expressing perforin decreased with age among 

HEU infants while there was a positive correlation between perforin-expressing NK cells 

and age in HUU infants.52 These results indicate early priming of NK cells among HEU 

resulting in loss of cytolytic activity of NK cells. Chronic immune activation of NK cells has 

been demonstrated to cause exhaustion of their cytolytic function. Therefore a 

proinflammatory in utero environment may be driving early activation of NK cells, which 

decreases their cytolytic activity over time. Decreased frequency of perforin expressing NK 

cells reported tend to coincides with the period of increased viral infection in HEU infants 

and could be a possible mechanism for enhanced susceptibility to infections.
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2.2 | Adaptive immunity in HEU

Adaptive immunity differs from innate immunity in terms of antigen specificity and the 

generation of specific memory recall responses. Maturation of lymphocytes occurs early in 

gestation, and at birth, the proportion of mature lymphocytes is equitable to those of adults.
16 However, limited antigen exposure in utero to prime adaptive immunity contributes to 

naivety of neonatal immunity. Infants have low numbers of memory effector T cells 

(CD45RA− CD45RO+) and B cells (CD27+) and consequently high proportion of naïve 

lymphocytes. Additionally, a high proportion of neonatal lymphocytes are recent thymic 

emigrants (RTE), which are phenotypically and functionally distinct from mature naïve T 

cells, being less effective in responding to antigen stimulation.53,54 The proportion of 

memory cells gradually increases as infants are exposed to environmental antigens and 

possibly as the gut becomes colonized and reach adult levels at ~2 years of age. During early 

infancy, the adaptive immune system is skewed toward Th2 phenotype resulting in lower 

Th1/Th17 cells, hence poor proinflammatory responses.55 Moreover, RTE CD4+ cells are 

biased toward Th2 cytokines, which further contributes to decreased Th1 and Th17 

responses.54 Further, suppressive cells present during fetal life, such as MDSC and Tregs, 

may persist into infancy, thus actively suppressing lymphocyte function.56 Legrand et al. 

reported high frequency of Tregs (CD4+ CD25+ CD127−) in cord blood of HEU infants 

compared to unexposed controls. However, at 3 and 12 months of age, similar levels of 

Tregs (CD4+ CD25hi Foxp3+) were reported between HEU and HUU infants.57

Important physiological impairments observed in HEU infants are reduced thymic size and 

total lymphocyte counts compared to age-matched HUU controls.58,59 Lymphocytes of HIV-

exposed infants are also phenotypically different from that of HIV-unexposed infants and 

resemble that of HIV-infected infants, being skewed toward memory (CD45RO+) and an 

activated state–increased expression of CD38+ and HLA-DR+.58,60–62 A correlation between 

maternal HIV viral load and activated CD8+ CD38+ HLA-DR+ cells in HEU has been 

reported.63 These results indicate immune experience toward HIV antigens among HEU 

infants as drivers of memory differentiation and immune activation.

2.2.1 | HIV-specific responses—HEU infants have been reported to have HIV-specific 

CD4 and CD8 responses.64–69 Moreover, the removal of suppressive Tregs (CD4+ 

CD127−CD25+) in HEU infants unmasked strong Gag-specific responses highlighting the 

presence of HIV antigen-experienced lymphocytes.68 CD8 cytotoxic T lymphocytes (CTLs) 

are important for clearing viral infections and during HIV infection these cells drastically 

increase. Whether the presence of HIV-specific CTLs play a role in prevention of MTCT of 

HIV is doubtful, since the frequency of HIV-specific CTLs increased with infant age and 

breastfeeding practice,69 but was unrelated to preventing viral transmission.

2.2.2 | Polyclonal activation—Lymphoproliferation and cytokine expression following 

polyclonal activation in HIV-infected infants is significantly reduced compared to that 

observed among HEU infants.70,71 HIV viral load and lymphocyte count strongly influence 

the cellular immune responses in HIV-infected infants. Infants with high HIV viral load and 

very low CD4 cell counts (≤350 cells/mm3) showed severely attenuated immune responses. 

When HEU infants were compared to HUU infants, the proportion of proliferating CD4+ 
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and CD8+ cells following staphylococcal enterotoxin B (SEB) activation were higher in 

HEU infants, although the majority of these proliferating cells did not appear polyfunctional.
72 In other studies, T cell proliferation responses to PHA did not differ between HEU and 

HIV-unexposed infants.73,74

Different studies have reported variations in cytokine responses between HEU and HUU 

infants depending on the mitogen used, assay methods, and infant’s age without consensus. 

Studies by Rich et al. and Borges-Almeida et al. reported significantly less IL-2 and IL-4 

production by CD4+ cells in responses to PHA in HEU compared to HUU infants.60,73 

Whole blood from HEU neonates stimulated with PHA released higher concentration of 

INF-γ than HUU infants. PMA and ionomycin induced strong IL-2 response in CD4 cells of 

HEU infants.58 Dual expression of INF-γ/IL-2 or INF-γ/TNF-α were also higher for CD4 

and CD8 cells following stimulation with SEB in HEU infants compared to HUU infants at 

3 months of age, these responses however dissipated by 12 months of age.57 A 

proinflammatory maternal environment, due to chronic immune activation by HIV infection, 

may be priming the immune system of HEU infants resulting in elevated cytokine responses 

to polyclonal activation. Whether cellular immune responses to vaccination with in utero 

HIV-exposure are compromised is therefore controversial.

2.2.3 | Vaccine responses—The Expanded Program on Immunization (EPI) to control 

vaccine-preventable diseases during early childhood has been the most cost-effective 

strategy in reducing child mortality. Cellular immune responses of HIV-infected infants to 

vaccination are severely compromised, and this increases their risk of infectious diseases.
71,75 Whether in utero HIV exposure in the absence of infection compromises cellular 

immune responses to EPI vaccines is still unclear. Studies on cell-mediated immunity to 

vaccination are confounded by differences in the type of cellular read-out, assay conditions, 

vaccine antigens, the cohort settings including degree of maternal immune compromise, and 

the age at which vaccine responses are measured, making it difficult to interpret the results.

Mazzola et al. reported reduced frequency of proliferating T cells following 6 days of in 

vitro bacillus Calmette-Guérin (BCG) stimulation of PBMCs from HEU infants compared to 

those of HUU infants at 6–8 months of age.74 Similarly, in vitro culture of PBMCs with 

PPD or BCG induced poor proliferation of CD4+ and CD8+ T cells in HEU infants.76 The 

reduced proliferative responses to BCG stimulation among HEU infants may be supported 

by the finding that a higher proportion of their CD4+ cells express markers of immune 

exhaustion (CD57 and PD-1) compared to their unexposed counterparts.76 Moreover, 

significantly lower IFN-γ and IL-13 BCG responses were measured in whole blood of HEU 

infants at 6 weeks of age,72,77 and by 14 weeks of age proliferating CD4+ and CD8+ cells 

were higher in HEU, albeit these responding cells were less polyfunctional compared to 

HUU infants.72 In contrast, other studies have observed no differences in the magnitude or 

polyfunctional responses to BCG stimulation between HEU and HUU infants.57,78 In 

addition, effects of HIV exposure on acellular pertussis, tetanus, and influenza vaccine 

specific T cell responses were not detected.57,67,72 Nevertheless, immunogenicity to BCG 

vaccine could be partially restored by delaying vaccination for up to 8 weeks.79
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3 | RELATIONSHIP OF BREASTFEEDING AND MICROBIOTA 

COMPOSITION OF HIV-EXPOSED INFANTS

3.1 | Breastfeeding

Following the recommendation that HIV-infected women should avoid breastfeeding to limit 

HIV MTCT via breast milk, the rates of infant mortality drastically increased, especially 

among those residing in low-income countries.3 Higher infant mortality among nonbreastfed 

infants were driven in part by malnutrition and an increase in infectious diseases.10,80 

Therefore, to assuage the increased risk of infant morbidity while restricting HIV MTCT, 

other feeding practices were explored including early or abrupt cessation of breastfeeding or 

mixed feeding.2 Of the studies that compared adverse infectious events between breastfed 

and formula fed or nonbreastfed HEU infants, exclusive breastfeeding was associated with 

lower relative risk of infectious disease and hospitalization in <12 months old infants.80–83 

Risk of malaria infection was lower in breastfed HEU infants of 6–15 month of age 

compared to nonbreastfed infants; however, among HUU infants, the incidence of malaria 

was not influenced by the differences in feeding modes. Shapiro et al. demonstrated that 

despite lack of differences in maternal immunological profiles including pathogen-specific 

IgG and IgA titers, rates of mortality in HEU infants (6.7%) were higher than HIV-

unexposed infants (1.6%), with lack of breastfeeding being the strongest predictor of infant 

morbidity and mortality.84 Mechanisms responsible for this outcome are primarily due to 

breast milk being inherently rich in maternal Abs and antimicrobial compounds capable of 

conferring protection against gastrointestinal infections to immunological naïve infants. 

Breast milk from HIV-infected mothers also contains high concentration of soluble TLR that 

may inhibit HIV-infection and result in immunomodulatory effects on the infant gut.85

3.2 | Gut microbiota

In addition to nutritional benefits and passive immunity, mothers’ breast milk consists of 

commensal bacteria that colonizes and modulates microbial communities in the gut of the 

growing infant.13 Gut microbes of breastfed infants differ to those of nonbreastfed 

infants13,86,87 and are dependent on the delivery mode, duration of breastfeeding, lactation 

period, and maternal health including HIV-infection status.12,14,87,88 Therefore, because 

exclusively breastfed infants tend to be healthier than other infants who are initiated on 

different feeding modalities, maternally derived microbiota serve as probiotics that influence 

the maturation of the infants’ gut microbiota and may be crucial in protecting against 

infectious diseases.

The link between establishment of a healthy microbiota during infancy and protection 

against infectious disease rests on the critical interactions of the gut microbiota and immune 

system.89 Early microbial communities colonizing the infants gut promote the development 

and maturation of the immune system that determines their response to commensal microbes 

and invading pathogens. This has been well demonstrated in murine models, where germ-

free mice exhibit an impaired development of lymphoid structures such as the spleen, payers 

patches, mesenteric lymph nodes, and isolated lymphoid follicles.90,91 The composition of 

the microbiota is also important in educating the immune system with infants lacking 

specific microbial species prone to having higher risk of infectious diseases. The presence of 
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specific microbial species promote different immunological pathways and polarization of 

CD4+ T cells into specific subsets that are subsequently important in maintaining a symbiont 

relationship with the commensal microbes.92–96 In addition to modulating polarization of 

the immune system, the absence of segmented filamentous bacteria in the gut tends to 

dampen antibody responses to influenza vaccines.97 In humans, the Phylum Actinobacteria 
in infants’ stool was more abundant among infants who responded well to BCG, tetanus, and 

oral polio vaccines when measured by vaccine-specific T cell proliferation or increase 

vaccine specific IgG.98 Abundance of Firmicutes particularly those belonging to Clostridium 
cluster XI and Proteobacteria positively correlated with IgA responses to rotavirus vaccine.
99 The importance of breast milk-derived commensal bacteria has been well demonstrated in 

clinical trials testing supplementation of formula milk with microbial species and association 

with vaccine responses.

The impact of microbiota on shaping immunity is strongest during early infancy and is likely 

due to a critical window during which microbiota can influence immunity.89,100 Breastfed 

rhesus macaques had distinct microbial profiles compared to formula-fed macaques that 

persisted up until 12 months of age. Lower diversity, richness, and evenness were observed 

in the microbiota of formula-fed macaques compared to breastfed. These differences 

promoted varying immune phenotypes with breastfed macaques characterized by having 

higher levels of Th17 and memory CD4+ cells.101 Similarly, exclusively breastfed HEU 

infants tend to have less diverse microbial communities compared to formula or mix-fed 

HEU infants.102 In turn, the low microbial diversity in nonexclusively breastfed infants was 

associated with higher gut-homing (α4β7+) immune activated lymphocytes (CCR5+ HLA-

DR+ CD25+).102,103 Additionally, changes in microbial profiles in the gut of HEU infants 

are independent of feeding choice but appear to be influenced by maternal HIV status. 

Compared with HIV-unexposed infants, gut microbiota of breastfed HEU infants have lower 

α-diversity at 6 weeks of life.12 HUU infants show an abundance of Bacteriodes fragilis, 

bacterial species associated with promotion of T cell immune development in the gut.12,90 

These results illustrate how the effects of in utero HIV exposure and breastfeeding impact on 

the composition of the infant’s gut microbiota, which we posit has a large impact on the 

developing infant immune system. Together these factors potentially determine the 

inflammatory status of the newborn infant (Fig. 1).

The imparity of gut microbiota between HEU and HUU breastfed infants may possibly be 

due to varying oligosaccharide composition of the breast milk. Maternal breast milk contains 

complex carbohydrates referred to as HMO that are indigestible by the infants. HMO are 

glycans of highly diverse structural composition including sialylated and fucosylated 

moieties. HMO are an essential nutrient source for gut microbiota, thus acting as prebiotics 

that influences the composition of gut microbiota.104 In addition, HMO are capable of 

preventing infection by directly binding to pathogens, blocking toxins or pathogen receptors 

expressed on epithelial cells. HMO also pose immune modulatory properties such as 

affecting immune gene expression of epithelial cells or indirectly through promoting specific 

microbial species. These findings highlight the important role of HMO in preventing HIV 

transmission, reducing diarrheal diseases, and promoting maturation of immune system in 

infants. HMO composition in HIV-infected breast milk differs from that of HIV-uninfected 

mothers’ milk and this difference influences the infant gut microbiota.12,105 Mortality in <2 
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year old HEU infants was associated with the composition of HMOs, with milk containing 

higher concentration of fucosylated HMO associated with reduced infant mortality.106 The 

inclusion of HMO in artificial milk has been documented to provide similar health benefits 

as maternal breast milk making it an alternative feeding option for infants.107 However, 

these results should be taken with caution because a combination of factors together with 

breast milk HMOs, such as exposure to antibiotics, maternal antibodies, and the inherited 

gut virome, is likely to influence gut microbiota of HEU and ultimately impact on health 

outcomes.

4 | CONCLUDING REMARKS

HEU infants tend to exhibit activated innate immunity that responds strongly to stimulation 

with PRR agonists; secreting higher levels of proinflammatory cytokines compared to HIV-

unexposed controls. Inflammatory cytokines passively transferred from HIV infected 

mothers may be having an adjuvant effect on infant innate immunity and possibly shifting 

adaptive cellular responses to a more exhausted state. The function of adaptive immune 

system in infants seems to be minimally influenced by in utero HIV-exposure itself, with 

attenuated cellular immunity among HEU infants restricted to Th1 responses. However, 

different studies report conflicting or no differences between HEU and HUU infants 

following vaccination. More attention is required to quantify the phenotypic and functional 

differences between HEU and HUU innate and adaptive immunity.

In addition to intrauterine HIV exposure, breastfeeding avoidance or mixed feeding 

increases the rates of mortality among HEU infants. Lack of beneficial nutrients, 

antimicrobial components, and maternal Abs are the main contributors to higher mortality in 

these infants. Recent studies have also highlighted differential seeding and maturation of the 

gut microbiota between infants born to HIV-infected and HIV-uninfected mothers. 

Differences in gut microbiota between HEU and HIV-unexposed infants may be linked with 

altered immunological development that consequently impacts infants’ susceptibility to 

infections. Exact mechanisms responsible for these alterations are still under investigation, 

and more studies are required to investigate their clinical relevance in increasing the 

vulnerably of HIV-exposed infants.

Abbreviations:

ARV antiretroviral

BCG bacillus Calmette-Guérin

cART combination antiretroviral therapy

CTL cytotoxic T lymphocyte

DC dendritic cells

EPI Expanded Program on Immunization

dNK decidual NK
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HEU HIV-exposed uninfected

HMO human milk oligosaccharides

MDSC myeloid-derived suppressor cells

MF maternofetal

MTCT mother-to-child transmission

PPR pathogen recognition receptors

RTE recent thymic emigrants

SEB staphylococcal enterotoxin B

Tregs regulatory T cells
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FIGURE 1. Schematic representation of the suggested model illustrating the link among in utero 
HIV exposure, breastfeeding, and microbiota on the developing immune system.
The left panel shows in a healthy pregnancy, the MF balance is maintained by Hofbauer 

cells, dNK, and Tregs in the placenta. Abs are efficiently transferred from mother to child 

via the placenta and breast milk provide protection against invading pathogens. 

Breastfeeding infants receive a plethora of bioactive compounds in breast milk including 

HMO that influences establishment of beneficial microbiota and promotes development of 

the infant’s immune system. In HIV-infected mothers, who may be invariably taking ARV 

drugs, chronic immune activation in the mother creates an inflammatory environment 

resulting in likely dysregulation of MF immune balance. Mother to child transfer of 

proinflammatory cytokines and chemokines occurs via placenta and/or breast milk activating 

innate cells in infants and promoting an expansion of inflammatory T cells (Th17 for 

example). Transplacental passage of maternal Abs is also impaired resulting in few 

protective antibodies in the infant circulation. Furthermore, less fucosylated and 

glycosylated HMOs are passed via maternal breast milk resulting in lower gut microbiota 

diversity.
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