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ABSTRACT
Background: Obesity is closely associated with bone health.
Although diet and weight loss produce many metabolic benefits,
studies of weight loss diets on bone health are conflicting. Genetic
variations, such as vitamin D levels, may partly account for these
conflicting observations by regulating bone metabolism.
Objective: We investigated whether the genetic variation associated
with vitamin D concentration affected changes in bone mineral
density (BMD) in response to a weight-loss diet intervention.
Design: In the 2-y Preventing Overweight Using Novel Dietary
Strategies (POUNDS Lost) trial, BMD was measured for 424
participants who were randomly assigned to 1 of 4 diets varying in
macronutrient intakes. A genetic risk score (GRS) was calculated
based on 3 genetic variants [i.e., 7-dehydrocholesterol reductase
(DHCR7) rs12785878, cytochrome P450 2R1 (CYP2R1) rs10741657
and group-specific component globulin (GC) rs2282679] related to
circulating vitamin D levels. A dual-energy X-ray absorptiometry
scan was performed to assess changes in whole-body BMD over 2
y. The final analysis included 370 participants at baseline.
Results: We found a significant interaction between dietary fat
intake and vitamin D GRS on 2-y changes in whole-body BMD
(P-interaction = 0.02). In the high-fat diet group, participants with
higher GRS showed significantly less reduction in whole-body BMD
than those with lower GRS, whereas the genetic associations were
not significant in the low-fat diet group. We also found a significant
interaction between dietary fat intake and the GRS on 6-mo change
in femur neck BMD (P-interaction = 0.02); however, the interaction
became nonsignificant at 2 y.
Conclusion: Our data indicate that dietary fat intake may modify the
effect of vitamin D–related genetic variation on changes in BMD.
Overweight or obese patients predisposed to sufficient vitamin D
may benefit more in maintaining BMD along with weight loss by
eating a low-fat diet. This trial was registered at clinicaltrials.gov as
NCT03258203. Am J Clin Nutr 2018;108:1129–1134.
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INTRODUCTION

Body mass has been linked to bone health (1–4). Weight-
loss diets have shown metabolic benefits, but the data relating
weight loss to bone health are controversial (5). Several studies
have shown that a low BMI is a risk factor for osteoporosis
(6, 7). Diet-induced weight loss has been linked to a decrease
in bone mineral density (BMD) in some studies (8, 9); however,
inconsistent results were also reported (10). We hypothesized that
such inconsistent observations might be partly due to genetic
variations.

Vitamin D is closely related to bone health (11–13), by
promoting calcium absorption and acting on osteoblasts and
osteoclasts to modulate calcium metabolism (13). Circulating
25-hydroxyvitamin D [25(OH)D] is the most suitable indicator
of vitamin D status. Three serum vitamin D–associated genetic
variants, 7-dehydrocholesterol reductase (DHCR7) rs12785878,
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cytochrome P450 2R1 (CYP2R1) rs10741657, and group-specific
component globulin (GC) rs2282679, were identified in a recent
genome-wide association study (14). The genetic variants have
been also related to BMD (15, 16). However, no study has
assessed whether vitamin D genetic variations affect changes in
BMD in weight-loss intervention trials.

In this study, we examined the relations between vitamin D
genetic variations and changes in BMD in a 2-y dietary weight-
loss intervention trial, called Preventing Overweight Using
Novel Dietary Strategies Trial (POUNDS Lost) (17). Because
intervention studies suggest that dietary factors produce different
effects on bone health (18, 19), we examined in particular the
potential interactions between vitamin D genetic variants and
dietary interventions on BMD.

METHODS

Study participants

Information on study design and methods has been given
elsewhere (Supplemental Figure 1) (17). In brief, a total of 811
overweight and obese participants were randomly assigned to 1
of 4 weight-loss diets that varied in macronutrient composition
for 2 y. The percentages of energy derived from fat, protein, and
carbohydrates in the 4 diets were 20%, 15%, and 65% (low-fat,
average-protein diet); 20%, 25%, and 55% (low-fat, high-protein
diet); 40%, 15%, and 45% (high-fat, average-protein diet); and
40%, 25% and 35% (high-fat, high-protein diet), respectively.
Thus 2 diets were low fat (20%) and 2 diets were high fat (40%),
and 2 diets were average protein (15%) and 2 diets were high
protein (25%). A total of 370 participants with both BMD mea-
surement and genotyping data were included in the final analysis.

The study was approved by the human participants committee
at the Harvard TH Chan School of Public Health and Brigham and
Women’s Hospital, Boston, MA, and the Pennington Biomedical
Research Center, Baton Rouge, LA, and by a data and safety
monitoring board appointed by the National Heart, Lung, and
Blood Institute. Written informed consent was obtained from all
participants.

Measurements of BMD and covariates

The primary outcome of the study was the change in body
weight, and the secondary outcome was the change in BMD.
The details of bone measurements have been described in full
elsewhere (20). Briefly, a random sample of 50% of the 811
enrolled participants (n = 424) in the POUNDS Lost trial were
selected to undergo repeated BMD measurement by dual-energy
X-ray absorptiometry (Hologic QDR-4500A bone densitometer;
Hologic, Inc.). The BMDs of whole-body, femoral neck, total hip,
and spine were measured at baseline, 6 mo (n = 296), and 2 y
(n = 213). Measurements were carried out by investigators and
staff who were unaware of the diet assignment of the participants.
Body weight was measured with the use of calibrated hospital
scales in the morning before breakfast and after urinating, with
participants wearing a hospital gown (17). Body weight was
measured in the morning before breakfast on 2 nonconsecutive
days at baseline, 6 mo, and 2 y. Height was measured at baseline.
BMI was calculated as the weight in kilograms divided by
the square of the height in meters (kg/m2). Dietary intake was

assessed in a random sample of 50% of the participants; at
baseline from 5-d diet records and at 6 and 24 mo from 24-h
recalls collected by telephone on 3 nonconsecutive days. The
average daily intake over each period was calculated (21).

Genotyping

DNA was extracted from the buffy coat fraction of centrifuged
blood with the use of a QIAmp Blood Kit (Qiagen). Genotyping
was performed among all 811 participants with the OpenAr-
ray SNP Genotyping System (BioTrove, Woburn, MA). The
genotype success rates were ∼99% in available DNA samples.
Replicated quality-control samples (10%) were included in every
genotyping plate with >99% concordance (22). The genotype
frequencies in all participants were consistent with Hardy-
Weinberg equilibrium (P > 0.05).

Three single-nucleotide polymorpisms (SNPs) from a previous
large-scale genome-wide association study for serum 25(OH)D
levels were selected, including rs2282679, rs12785878,
and rs10741657, located in the GC, DHCR7, and CYP2R1
genes, respectively (14). The SNP data were available for
370 of the 424 participants for whom BMD measurements
were available. Genetic risk score (GRS) was calculated by
(β1 × SNP1 + β2 × SNP2 + β3 × SNP3) × (3/sum of the
β coefficients) (14). A higher GRS indicates a lower serum
25(OH)D level.

Statistical analyses

At baseline, general linear models for continuous variables
and chi-square test for categoric variables were performed for
comparison of characteristics by tertiles of vitamin D GRS.
We used a generalized linear model to test changes in BMD,
nutrient intakes, and biomarkers of adherence across vitamin
D GRS tertiles. Generalized linear model was also used to test
gene × diet intervention interactions by including the GRS-by-
diet intervention interaction term, adjusted for age, sex, ethnicity,
baseline values of the respective outcomes, baseline BMI, and
weight loss at each intervention time. We also performed a
sensitivity analysis in white participants. Statistical analyses were
performed with SAS version 9.4 (SAS Institute, Inc., Cary, NC).
All reported P values were 2-sided. P < 0.05 was used as
the significance level. Power calculations were performed with
Quanto1.2.4 (http://biostats.usc.edu/Quanto.html). The study had
80% power to detect a gene-diet interaction effect size of
0.021 g/cm2 in whole-body BMD change under an additive
model.

RESULTS

The baseline characteristics of participants are shown in
Table 1. The distribution of GRS (in tertiles) was marginally
significant across ethnicity and gender. No significant difference
was observed for age, BMI, height, dietary intervention, baseline
whole-body BMD, and femoral neck BMD across the tertiles of
GRS. The nutrient intakes or biomarkers of adherence did not
differ according to the GRS. (Table 2).

At 2 y, the change of whole-body BMD was 0.001 g/cm2

(P = 0.51). No significant differences in BMD changes were

http://biostats.usc.edu/Quanto.html
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TABLE 1
Baseline characteristics according to the vitamin D GRS1

Tertile1 Tertile 2 Tertile 3 P

n 66 171 133
Age, y 53 ± 9 53 ± 8 52 ± 10 0.82
Female, % 30 (45) 104 (61) 69 (52) 0.07
Race/ethnicity 0.05

Black, % 4 (6) 30 (18) 15 (11)
White, % 62 (94) 141 (82) 118 (89)

BMI, kg/m2 32 ± 4 33 ± 4 33 ± 4 0.99
Height, cm 171 ± 10 169 ± 8 170 ± 8 0.64
Weight, kg 94 ± 15 94 ± 16 94 ± 16 0.99
Femoral neck BMD, g/cm2 0.83 ± 0.13 0.85 ± 0.13 0.84 ± 0.12 0.562

Whole-body BMD, g/cm2 1.15 ± 0.11 1.12 ± 0.11 1.14 ± 0.11 0.622

Dietary intake/d
Energy, kcal 2058 ± 592 1941 ± 541 2005 ± 539 0.80
Carbohydrate, % 45 ± 8 45 ± 8 44 ± 7 0.17
Fat, % 36 ± 6 37 ± 6 38 ± 5 0.12
Protein, % 18 ± 3 18 ± 3 18 ± 3 0.93
Urinary nitrogen, g 12.7 ± 5.0 12.3 ± 4.2 12.6 ± 4.3 0.62
Respiratory quotient 0.84 ± 0.05 0.84 ± 0.04 0.84 ± 0.05 0.53

1Values are means ± SDs unless otherwise indicated. Vitamin D GRSs were treated as continuous variables to calculate the P values. BMD, bone
mineral density; GRS, genetic risk score.

2Adjusted for age, sex, ethnicity, and BMI.

observed between diet groups (high fat compared with low fat;
high protein compared with average protein) (all P > 0.05). We
did not find a significant main effect of the GRS on change in
whole-body BMD during the 2-y intervention after adjustment
for age, sex, ethnicity, BMI at baseline, weight change, fat diet
group, and baseline value for the respective outcome (Table 3).

We then analyzed the interactions between vitamin D GRS
and diet interventions on changes in BMD. We found that the
GRS significantly interacted with dietary fat intake on change in
whole-body BMD (P = 0.02) at 2 y after adjustment for age, sex,
ethnicity, baseline BMI, weight change, and baseline values for

whole-body BMD. In the high-fat diet group, participants in the
highest tertile of GRS showed a more significant improvement
in whole-body BMD than those in other tertiles, whereas
participants showed no significant difference across the tertiles
of GRS when assigned to a low-fat diet (Figure 1). We also
found a similar interaction between GRS and dietary fat intake
on change in femoral neck BMD at 6 mo (P = 0.02). However,
the interaction attenuated and was not significant at 2 y.

In addition, we did not find any interaction between the GRS
and dietary protein intake on change in BMD. From the results
of a sensitivity analysis, we found similar interactions in white

TABLE 2
Nutrient intake and biomarkers of adherence according to vitamin D GRS at 2 y1

Tertile 1 (n = 41) Tertile 2 (n = 96) Tertile 3 (n = 76) P

Low-fat group
n 22 46 38
Energy, kcal 1576 ± 525 1527 ± 436 1612 ± 495 0.72
Carbohydrate, % 55 ± 12 53 ± 9 51 ± 10 0.18
Fat, % 26 ± 8 26 ± 5 30 ± 10 0.07
Protein, % 20 ± 4 20 ± 4 20 ± 4 0.96
Biomarkers of adherence
Urinary nitrogen, g 12.6 ± 4.6 11.3 ± 4.2 12.3 ± 4.1 0.98
Respiratory quotient 0.85 ± 0.04 0.83 ± 0.04 0.84 ± 0.04 0.21

High-fat group
n 19 50 38
Energy, kcal 1498 ± 499 1442 ± 499 1503 ± 494 0.86
Carbohydrate, % 42 ± 9 46 ± 8 48 ± 12 0.09
Fat, % 34 ± 6 35 ± 7 33 ± 10 0.41
Protein, % 22 ± 6 20 ± 6 20 ± 5 0.16
Biomarkers of adherence
Urinary nitrogen, g 14.3 ± 5.8 10.9 ± 4.6 11.6 ± 4.8 0.14
Respiratory quotient 0.82 ± 0.05 0.83 ± 0.04 0.82 ± 0.04 0.58

1Values are means ± SDs. General linear models (PROC GLM) were applied for the comparison according to groups. GRS, genetic risk score.
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TABLE 3
Effect of dietary groups and GRS on change in whole-body BMD at 2 y1

�BMD, g/cm2 P

All 0.001 ± 0.028 0.51
Fat — 0.112

Low fat (n = 106) 0.005 ± 0.030
High fat (n = 107) − 0.002 ± 0.026

Protein — 0.122

Average protein (n = 93) − 0.002 ± 0.028
High protein (n = 120) 0.004 ± 0.028

GRS — 0.752

Tertile 1 (n = 41) 0.002 ± 0.038
Tertile 2 (n = 96) − 0.001 ± 0.026
Tertile 3 (n = 76) 0.003 ± 0.025

1t Test was used to calculate the P value. BMD, bone mineral density;
GRS, genetic risk score.

2General linear models (PROC GLM) were applied to test the effect of
diet intake and GRS on BMD change.

participants. No significant interaction was found in total hip and
spine BMD.

DISCUSSION

In this 2-y randomized, weight-loss intervention trial, we
found that genetic variations related to vitamin D levels, assessed
as a GRS, showed a significant interaction with dietary fat
intake in relation to changes in whole-body BMD (P = 0.02).
Participants in the highest tertile of the GRS showed more
significant improvements in whole-body BMD than those in other
tertiles when assigned to a high-fat diet. Our findings indicate that
dietary fat intake might modify the effect of vitamin D–related
genetic variation on changes in BMD, providing evidence for
the benefits of personalized dietary intervention to improve bone
health in weight-loss interventions.

Similar changes in whole-body BMD were observed among
different dietary intervention groups, consistent with previous
findings (20).

FIGURE 1 Effect of vitamin D GRS and dietary fat on whole-body BMD
change during the 2-y intervention. General linear models (PROC GLM) were
applied to test the effect of diet intake and GRS on BMD change. Values were
expressed as adjusted least square means ± 95% CIs for changes in BMD. P
values were adjusted for age, sex, ethnicity, baseline BMI, weight change, and
baseline values for respective phenotypes. The lowest tertile (T1) represents
the highest serum 25-hydroxyvitamin D level. For the low-fat group: T1,
n = 22; T2, n = 46; T3, n = 38. For the high-fat group: T1, n = 19; T2,
n = 50; T3, n = 38. BMD, bone mineral density; GRS, genetic risk score; T,
tertile.

Weight-loss diets showed favorable metabolic effects, such as
improved lipid profile and glycemic status (23, 24); however,
several (9, 25, 26) studies have shown that weight-loss diets were
associated with a decrease in BMD, though other studies did not
find such effects (27, 28). Bone mineral content is determined
by environmental and genetic factors, and ∼70–80% of peak
bone mass is genetically determined (29). We selected 3 genetic
variants and calculated a GRS as a predictor of serum vitamin
D levels. The DHCR7 gene encodes 7-dehydrocholesterol
reductase, which converts 7-dehydrocholesterol, a precursor for
both vitamin D and cholesterol, into cholesterol, thus reducing
the availability of this precursor to synthesize vitamin D in the
skin (30). The enzyme encoded by CYP2R1 is a key vitamin D
25-hydroxylase affecting vitamin D metabolism (31). The GC
gene encodes vitamin-binding protein, which plays a major role
in vitamin D transport and storage (32). Our data suggest that
genetic variation may partly account for the diverse response in
BMD in response to dietary weight-loss interventions.

We found that the vitamin D GRS significantly modified the
effect of fat intake on BMD changes; the highest tertile was
related to a lower reduction in BMD in response to a high-fat diet.
Vitamin D plays a central role in determining bone health (11),
and vitamin D deficiency causes secondary hyperparathyroidism
that mobilizes calcium from the skeleton and decreases BMD.
Vitamin D is a fat-soluble nutrient, and dietary fat may promote
vitamin D absorption (33, 34). Moreover, dietary fat supplies
essential fatty acids, which may affect bone health by enhancing
the effect of vitamin D activity and increasing calcium absorption
in the gut (35).

There is evidence that a high-fat diet may be detrimental to
bone health when combined with a sufficient calcium intake (36–
38). Thus, our results suggest that a high-fat diet may balance
its negative effect on BMD by improving vitamin D absorption
and metabolism when the vitamin D is insufficient. However,
once the benefit of vitamin D has been realized, a high-fat diet
may adversely affect bone strength. Because direct evidence is
limited, further studies are warranted to unravel the biological
basis underlying the observed interaction between the vitamin D–
related GRS and dietary fat intake.

Our study has several strengths. To our knowledge, this is the
first study to investigate the interactions between the vitamin
D–associated GRS and dietary fat on change in BMD in this,
the largest and longest weight-loss diet-intervention trial yet
reported. Our findings provide new insights into the potential
role of genetic variation in modifying the change in BMD
in weight-loss intervention trials. In addition, compared with
observational studies, our study design allowed for controlling
potential confounders to minimize the possibility of bias and
provide a biologically plausible mechanism. Several limitations
also need to be considered when interpreting our findings. First,
the relatively small sample size of the subgroups might have
limited power to detect moderate gene-diet interactions. Second,
we did not assess the serum concentration of 25(OH)D, which
limited our ability to explore potential underlying mechanisms.
Third, we tested the interaction between the GRS and BMD
changes, leading to multiple statistical comparisons. However,
the a priori hypothesis-driven examination was based on the
effects of vitamin D concentration on bone health, which is
biologically plausible. Fourth, information about vitamin D and
calcium intake was not available in our study. Last, because this is
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a not an a priori–registered endpoint, our results are preliminary
and require verification.

In conclusion, our results indicated that dietary fat may modify
the effect of vitamin D–related genetic variation. Participants
with a genetic predisposition to insufficient vitamin D might have
better bone health when eating a high-fat diet in a long-term
weight-loss diet. And for those predisposed to adequate vitamin
D, avoiding a high-fat diet might be a good choice.

The authors’ responsibilities were as follows—TZ, FMS, and LQ:
designed the research; TZ, GAB, FMS, and LQ: conducted the research;
TZ, DS, YH, and LQ: analyzed the data or performed statistical analysis;
TZ and LQ: wrote the manuscript; LQ: had primary responsibility for the
final content; and all authors: critically reviewed the manuscript and approved
submission. The authors have no competing interests or conflicts of interest
related to this study.
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