
RESEARCH ARTICLE

DUSTBot: A duplex and stealthy P2P-based

botnet in the Bitcoin network

Yi ZhongID
1, Anmin Zhou1, Lei Zhang1, Fan Jing1, Zheng ZuoID

2*

1 College of Cybersecurity, Sichuan University, Chengdu, Sichuan, China, 2 College of Electronics and

Information Engineering, Sichuan University, Chengdu, Sichuan, China

* leftzheng@gmail.com

Abstract

As the root cause of illegal cyber activities, botnets are evolving continuously over the last

two decades. Current researches on botnet command and control mechanism based on

blockchain network suffer from high economic cost, single point of failure, and limited scal-

ability. In this paper, we present DUSTBot, a novel P2P botnet model based on Bitcoin

transactions to prepare for new cyber threats. Specifically, a covert, duplex, and low-cost

command and control (C&C) channel in the Bitcoin network is presented in our work. DUST-

Bot uses the Bitcoin main network as the downstream channel while using the Bitcoin test-

net as the upstream channel. Furthermore, the peer list exchange algorithm based on the

Ethereum block hash proposed in this paper is effective against routing table poisoning

attack and P2P botnet crawling. The robustness of DUSTBot against node removal is stud-

ied through constructing the botnet with a P2P simulator. We deploy the implementation of

DUSTBot on cloud platforms to test its feasibility and performance. Moreover, the stealthi-

ness of DUSTBot and the effectiveness of the proposed peer list exchange algorithm are

evaluated. The results demonstrate the feasibility, performance, stealthiness, and robust-

ness of DUSTBot. In the end, possible countermeasures are discussed to mitigate similar

threats in the future.

1. Introduction

With the fast development of the Internet, the number of devices accessing the network, espe-

cially the Internet-of-Things (IoT) devices grows continually. Gartner [1] forecasts that up to

20 billion network devices will be connected to the Internet by 2020. Thus, cybersecurity is

becoming more and more critical. As the main cyber threat, botnet consists of a network of

compromised computers (personal computer, mobile phones, or smart devices) controlled by

a remote attacker (“botmaster”) [2]. Botnets may be the source of many cyber-attacks, includ-

ing data exfiltration, E-mail spam, phishing, distributed denial-of-service (DDoS) attack [3],

extortion [4], and cryptocurrency mining [5].

Compared to other Internet malware, the feature of command-and-control (C&C) commu-

nication makes the botnet unique. A covert and reliable C&C channel ensures the robustness

of a botnet. Once the centralized C&C server is taken down, the botnet will also be shut down.

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhong Y, Zhou A, Zhang L, Jing F, Zuo Z

(2019) DUSTBot: A duplex and stealthy P2P-based

botnet in the Bitcoin network. PLoS ONE 14(12):

e0226594. https://doi.org/10.1371/journal.

pone.0226594

Editor: Jun Huang, Chongqing University of Posts

and Telecommunications, CHINA

Received: June 11, 2019

Accepted: December 2, 2019

Published: December 20, 2019

Copyright: © 2019 Zhong et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the National

Key Technology R&D Program of China under

Grant 2017YFB0802900.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-9012-3359
http://orcid.org/0000-0002-1780-9362
https://doi.org/10.1371/journal.pone.0226594
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226594&domain=pdf&date_stamp=2019-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226594&domain=pdf&date_stamp=2019-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226594&domain=pdf&date_stamp=2019-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226594&domain=pdf&date_stamp=2019-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226594&domain=pdf&date_stamp=2019-12-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226594&domain=pdf&date_stamp=2019-12-20
https://doi.org/10.1371/journal.pone.0226594
https://doi.org/10.1371/journal.pone.0226594
http://creativecommons.org/licenses/by/4.0/

Defenders usually analyze a botnet through network traffic [6,7], reverse engineering and tech-

niques of honeypot [2,8]. After capturing the traces of a botnet from network traffic and ana-

lyze the captured bot through reverse engineering, the defenders can deploy honeypots to

monitor the botnet and develop strategies to disrupt the botnet. [9,10].

Traditional C&C channels like IRC networks and HTTP-based communications may cause

single-point-of-failure [11] because of centralized C&C architectures. The C&C server of a bot-

net is exposed once a bot is captured and reverse engineered by defenders, then the botmaster

could be traced.

Additionally, the botmasters tried to construct their botnet based on some abnormal C&C

channels, including darknets, social media, and cloud services. Sanatinia et al. [12] proposed

OnionBot, a botnet model based on Tor services. Nappa et al. [13] proposed a novel botnet

model that exploits an overlay network such as Skype to build a parasitic overlay. Pantic et al.
[14] presented a steganographic system that demonstrates the feasibility of the social network-

ing website Twitter as a botnet C&C center. Nagaraja et al. proposed Stegobot [15], which also

uses Twitter for its C&C system. However, the C&C channels of these botnets are still central-

ized. Skype is a centralized cloud-based architecture after the Microsoft takeover in 2011 [16].

Defenders could effectively shut down these botnets cooperating with the network service

providers.

Compared to centralized botnet architecture, a more robust decentralized P2P C&C archi-

tecture comes out. P2P botnets without centralized C&C servers avoid single-point-of-failure.

Botnets such as Conficker [17], Nugache [18], and Storm Worm [19] have implemented differ-

ent kinds of P2P architectures. However, P2P botnets may be vulnerable to routing table poi-

soning or Sybil attack [20]. Moreover, the bootstrap procedure of P2P bootstrap may also

cause single-point-of-failure. Nugache botnet relies on a hardcoded bootstrap peer list con-

tained 22 IP addresses.

To solve the problems mentioned above, concrete solutions to apply blockchain technology

to build infrastructure for botnets are proposed. Some public blockchain networks [21] (Bit-

coin [22], Ethereum [23], et al.) are ideal choices for botnet C&C communication because they

are decentralized, public, anonymous, and robust.

Ali et al. proposed ZombieCoin [24,25], a botnet command and control (C&C) mechanism

utilizing the Bitcoin network. ZombieCoin regularly indicates web server address as rendez-

vous points where bots can direct upstream data through the Bitcoin network, which make it

vulnerable to traditional botnet takedown methods. Pirozzi [26] proposed BOTCHAIN, a fully

functional and duplex botnet built upon the Bitcoin protocol. However, the scalability of

BOTCHAIN is limited by the unbearable economic cost because of the transaction fee of Bit-

coin. Malaika [27] proposed Botract, which deploys its C&C logic on the functions in smart

contracts to the Ethereum blockchain. The botmaster sends and receives commands and keep-

ing track of the state of bots through the functions of the smart contract. However, this pro-

posal needs to download a full Ethereum blockchain on every single infected host. Up to April

2019, the size of full Ethereum blockchain exceeds 217GB [28]. Using Light Ethereum Client,

the disk storage could be decreased to about 10MB. However, Ethereum Light client protocol

is still under development [29]. UnblockableChains [30] is a POC project of a fully functional

C&C infrastructure on top of the public Ethereum network. UnblockableChains provides

secure communications, larger bandwidth, and less cost of data transfer. However, to set up a

client of UnblockableChains on an infected host, 290 MB of disk space and 300MB of memory

are required. It is much easier to be detected if an unknown program is consuming that much

system resources.

Considering the challenges encountered by using blockchain technology as an infrastruc-

ture for a botnet, in order to deploy a duplex, cost-effective and large-scale botnet in the

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 2 / 27

https://doi.org/10.1371/journal.pone.0226594

Bitcoin network, we present DUSTBot, a duplex and stealthy P2P-based botnet model utilizing

the Bitcoin testnet [31] as the upstream channel. The testnet is a global platform to experiment

with the Bitcoin protocol and its scripting capabilities. The reason why we choose Bitcoin test-

net is that Bitcoin is the most stable cryptocurrency. The Bitcoin testnet uses a separate, dis-

tinct Bitcoin blockchain, and so-called faucets [32–34] to provide anyone with coins for free

[35]. Therefore, the economic cost of upstream communication is negligible. We make the fol-

lowing significant contributions:

1. To overcome the weakness of current solution to apply blockchain technology to botnet

communication (high economic cost, single point of failure and limited scalability), we

proposed DUSTBot, a novel botnet model that uses Bitcoin network as its C&C channel.

DUSTBot receives commands from the Bitcoin main network and sends data back to the

Botmaster via the Bitcoin testnet.

2. We exploit a Bitcoin message to disguise a DUSTBot as a genuine Bitcoin node. The net-

work behavior between bots is similar to genuine Bitcoin nodes, and communication data

is embedded into illegitimate transactions.

3. To defend against routing table poisoning attack and P2P botnet crawling, we proposed a

peer list exchange algorithm which utilizes the randomness and frequency of the latest

Ethereum block hash as salt value.

4. We construct a simulated botnet with a P2P simulator to evaluate its properties and robust-

ness. We also evaluate the effectiveness of the proposed peer list exchange algorithm. More-

over, we implement a prototype of DUSTBot with a Bitcoin API and deploy a small botnet

on cloud platforms to test its feasibility and performance.

The rest of this paper is organized as follows. Section 2 states the related works in novel bot-

net C&C mechanisms research. Section 3 describes the methods used in this work, including

the botnet architecture, the detailed C&C mechanism of DUSTBot, and the proposed peer list

exchange algorithm. Section 4 presents the results of the experiments. Robustness, feasibility,

performance, and stealthiness of DUSTBot are evaluated in this section. In addition, the effec-

tiveness of the proposed peer list exchange algorithm is evaluated in this section. Section 5 and

section 6 discusses countermeasures, economic cost, and robustness of the proposed C&C

channel. Finally, we conclude this paper and present our future work in Section 7.

2. Related work

There are lots of studies on novel botnets with different C&C mechanisms to enhance the

stealthiness, invulnerability and communication efficiency before botnets are evolved. We

summarize several of them as follows:

Starnberger et al. [36] present Overbot, a botnet protocol based on Kademlia distributed

hash table for stealth C&C communication. Queries generated by Overbot are similar to legiti-

mate queries, which makes it hard to be distinguished from other queries. However, the com-

munication efficiency of Overbot is unbearable for a botnet. An implementation which is

capable of issuing 600 get_peers requests per second would require 5.3 hours for a 90% proba-

bility of hitting a type of nodes which collect data from bots in the Kademlia P2P network. The

probable round trip time of a message of DUSTBot is less than 10 seconds. Besides, a single

node which is issuing a large number of requests might be detected as a bot node in a botnet.

Lee and Kim [37] explore a new botnet with alias flux that use USSes (URL shorting service)

to hide their C&C channels. The basic idea of alias flux is changing the shortened URLs associ-

ated with the obfuscated IP address of C&C servers, similar to the domain flux. A traffic

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 3 / 27

https://doi.org/10.1371/journal.pone.0226594

monitor cannot capture the retrieved aliases and obfuscated IP address when a bot uses USSes

which support HTTPS. However, to prevent abuse use, user authentication is required by

some USS service providers, such as API keys or CAPTCHAs solving before shortening URLs.

Besides, cooperate with companies providing USS service, the main C&C server might be

tracked by defenders.

Chen et al. [38] propose CloudBot, which uses multiple cloud services (Baidu, Box, Dbank,

Dropbox, Google Drive, and OneDrive.) as its C&C channel. The botmaster efficiently issues

commands to bots through cloud-based push services and collects the data upload by Cloud-

Bots through cloud-based storage services. This solution is practical, with no limitations in

terms of bandwidth, latency, and security. However, cloud service providers require user iden-

tification, including ID number or credit card number. With the information above, the bot-

master is easily tracked by law enforcement. Furthermore, the botmaster might be tracked

cooperating with cloud service providers if defenders capture one or more CloudBots. Since

the Bitcoin network is designed to withstand these very kinds of attacks, DUSTBot cannot be

shut down by regulatory processes.

Other studies towards novel C&C mechanism can be referred to in further research on

botnet communication: Wang et al. [39] propose a stealthy email-based P2P-like botnet that

exploits the excellent reputation of email servers and a considerable amount of benign email

communication in the same channel to combat the detecting method based on machine learn-

ing algorithms. Desimone et al. [40] suggest creating covert channels in BitTorrent protocol

messages. Wu et al. [41] propose a serverless C&C channel model using a novel strategy

named Service Flux, which contains multiple subchannels. These studies present more possible

threat models of botnets. However, the limitations of them are non-negligible for the botmas-

ter in terms of invulnerability, communication efficiency, and stealthiness.

Inspired by the ideas in [24,25], we proposed DUSTBot, which enhances the upstream

channel with the Bitcoin testnet to overcome the vulnerability of collecting upstream data with

web servers. Since testnet Bitcoin is free to get, the scalability of DUSTBot is not limited by the

price of Bitcoin. Upstream data are collected and sent back to the Botmaster by sensor bots in

the proposed P2P network efficiently. The class of a single bot is decided by the Botmaster at

any time via the downstream channel.

3. Methods

3.1 Botnet architecture

The proposed botnet is a bot-only P2P botnet without benign peers, which is flexible to scale.

Bots in the proposed botnet are classified into two classes: sensor bot and regular bot. Each

sensor bot i possesses two key pairs (ski, pki) and the derived addresses to send and receive Bit-

coins. There are unspent transaction outputs (UTXO) on the Bitcoin addresses possessed by

the first class of bots. Thus this class of bots is capable of sending legitimate Bitcoin transac-

tions. The botmaster is capable of fetching the transactions sent by these bots and extract the

upstream data. Thus the first class of DUSTBot is called sensor bot. The second class of DUST-

Bot is called regular bot since there are no Bitcoin credentials (key pairs) possessed by them.

There are no differences between sensor bots and normal bots during the peer list exchange

procedure and botnet propagation. Bots individually connect to the Bitcoin network and fetch

the broadcast transactions in order to wait and receive the downstream data sent by the bot-

master. The botmaster can easily upgrade any regular bot into a sensor bot through the down-

stream channel.

Fig 1 shows the C&C architecture of DUSTBot. The proposed P2P botnet consists of sensor

bots and regular bots. All bots individually connect to the Bitcoin main network, waiting and

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 4 / 27

https://doi.org/10.1371/journal.pone.0226594

receiving commands. The botmaster embeds commands into transactions. Bots identify these

transactions by verifying the signature with the public key of the botmaster, which is hard-

coded into the bot binary file. DUSTBot forwards messages from one bot to other bots until

the TTL (time to live) values of the broadcast messages decrease to zero. Sensor bots collect

messages from other bots, periodically issue upstream data and embed them into testnet trans-

actions. Public keys possessed by sensor bots are known to the botmaster. Therefore, the trans-

actions sent by sensor bots could be identified by the botmaster. Based on this, upstream data

from bots could be received by the botmaster.

3.2 Botnet C&C mechanism

3.2.1 Embedding metadata into bitcoin transactions. Utilizing the OP_RETURN output

script function [31], any data could be embedded in the output script of a Bitcoin transaction

[25]. This function is available after 0.9.0 version of Bitcoin Core client. Up to 83 bytes of meta-

data can be inserted in a single transaction. This bandwidth is sufficient for communication

between botmaster and botnet as well as messages among the botnet.

3.2.2 Communication between each role. 3.2.2.1 Downstream communication. The bot-

master issues instructions via legitimate Bitcoin transactions. A DUSTBot tries fetching trans-

actions sent by the botmaster to receive commands. The botmaster generates a key pair (sk,

pk) as a set of Bitcoin credentials. The public key, pk, is hardcoded into the DUSTBot binary

file. A transaction with the embedded command data is signed using the private key, sk, and

then the transaction is sent. A transaction is verified as legitimate and then propagated in the

Fig 1. C&C architecture of the proposed P2P botnet model.

https://doi.org/10.1371/journal.pone.0226594.g001

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 5 / 27

https://doi.org/10.1371/journal.pone.0226594.g001
https://doi.org/10.1371/journal.pone.0226594

Bitcoin P2P network. A DUSTBot connects to genuine Bitcoin nodes to receive the broadcast

transactions, then authenticate communication from the botmaster by verifying signatures of

broadcast Bitcoin transactions, then decode the instructions and execute them. The process of

downstream communication is shown in Fig 2.

3.2.2.2 Upstream communication. Each sensor bot i possesses two key pairs (ski1, pki1,

ski2, pki2) distributed by the botmaster. And two corresponding Bitcoin testnet addresses are

then derived. A sensor bot embedded upstream data into a testnet transaction, then send the

transaction from one of the two addresses possessed by it to another address. The botmaster

connects to the Bitcoin testnet, identifies transactions sent by sensor bots, and extract the

upstream data. The process of upstream communication is shown in Fig 3.

3.2.2.3 Communication among bots. Genuine Bitcoin nodes communicate with each other

via Bitcoin messages [31], i.e., version, verack, ping, tx. Version Handshake is processed first in

Fig 2. The process of downstream communication.

https://doi.org/10.1371/journal.pone.0226594.g002

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 6 / 27

https://doi.org/10.1371/journal.pone.0226594.g002
https://doi.org/10.1371/journal.pone.0226594

a single communication between two genuine Bitcoin nodes. Similarly, there is a disguised

Version Handshake before the communication between two bots in order to check if the other

bot is available and obfuscate the network traffic. Communication data is embedded into ille-

gitimate transactions. A DUSTBot extracts communication data from the illegitimate receiving

transactions. The process of a disguised Version Handshake is shown in Fig 4.

3.2.3 Ethereum-block-hash-based peer list exchange algorithm. In general, botnet moni-

toring is crucial to execute effective takedown operations, including making an accurate botnet

topology snapshot and revealing identities of bots. This is usually done by P2P botnet crawling.

3.2.3.1 State of the art. Countermeasures against monitoring aim to make it difficult for the

defenders to enumerate and monitor the botnets. There are some existing anti-crawling tech-

niques in both theoretical botnets and real-world case scenarios.

• Sality [42]: In Sality, bots return one randomly chosen peer from their peer list. However, by

returning random peer for each query, a considerable portion of the neighbor list can be eas-

ily obtained using repeated queries.

Fig 3. The process of upstream communication.

https://doi.org/10.1371/journal.pone.0226594.g003

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 7 / 27

https://doi.org/10.1371/journal.pone.0226594.g003
https://doi.org/10.1371/journal.pone.0226594

• ZeroAccess [43,44]: In ZeroAccess, the primary peer list of bots is sorted by most-recently
responsive peers. A bot returns the first-16 nodes (the capacity of the peer list of a bot is 256)

from its peer list in a resulting reply message.

• P2P Zeus [45]: A bot of P2P Zeus limits the size of the returned subset to 1/5 of the capacity

of its peer list. Besides, the returned subset is selected by minimal Kademlia-like XOR dis-

tance to the identifier of the requesting bot. However, this anti-monitoring countermeasure

is effectively circumvented by the ZeusMilker[46] algorithm.

3.2.3.2 The proposed anti-crawling countermeasure. Karuppayah et al. [46] proposed a

Bit-XOR+ algorithm which adds additional randomness at the side of the queried node. The

queried node generates a random key uniformly for each IP address it receives a request

from and stores it. The returned subset is biased towards a specific XOR-ed key generated by

the random key corresponding to the IP address of the requesting bot. The algorithm pro-

posed in [46] is effective against crawling strategies which deterministically reveal the com-

plete peer list of a single bot and hence can efficiently provide a reliable topology snapshot of

a P2P botnet. Inspired by this algorithm, we propose an Ethereum-block-hash-based peer

list exchange algorithm in this subsection, which utilizes the randomness and efficiency of

the latest Ethereum block hash. The detailed procedures of peer list query and reply are

described in Algorithm 1 and Algorithm 2. The purpose of Algorithm 1 is to defend against

routing table poisoning, and the purpose of Algorithm 2 is to mitigate the efficiency of exist-

ing crawling strategies.

Fig 4. The disguised Version Handshake.

https://doi.org/10.1371/journal.pone.0226594.g004

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 8 / 27

https://doi.org/10.1371/journal.pone.0226594.g004
https://doi.org/10.1371/journal.pone.0226594

Algorithm 1 Peer list request algorithm
Input: PLreq
Output: Lret
1. Nneed M − GetSize(PLreq)
2. if Nneed = = 0 then
3. return ;

// Initialization
4. Lret ;
5. if | PLreq | = = 0 then
6. Lseed GetSeedFromBitcoinBlockchain()
7. for i = 0; i < Lseed; i + + do
8. request(Lseed[i])
9. else
10. for i = 0; i < LB; i + + do
11. request(PLreq[i])
12. Ltemp WaitForAllResponse()
13. HEthereum GetEthereumBlockHash()
14. if Ltemp 6¼ ; then
15. for i = 0; i < Ltemp; i + + do
16. Hi SHA-256Hash(Ltemp[i]+HEthereum)
17. Lhash Lhash[{(Ltemp[i], Hi)}
18. SortByHash(Lhash)
19. while | Lret | < Nneed && | Lhash | > 0 do
20. Lret Lret[GetIP(Lhash[0])
21. Lhash Lhash − Lhash[0]
22. return Lret

Algorithm 2 Peer list response algorithm
Input: PLres, IPreq
Output: Lres
1. Lres ;
2. if IPInKeyList(Lk, IPreq) then
3. Kreq GetKey(Lk, IPreq)
4. else
5. HEthereum GetEthereumBlockHash()
6. s1 SHA-256Hash(IPreq+HEthereum)
7. s2 SHA-256Hash(IPreq)
8. Kreq XOR(s1, s2)
9. for i = 0; i < Sreturn && i <| PLres |; i + + do
10. Lres[i] PLres[i]
11. for i = Sreturn; i < | PLres |; i + + do
12. for j = 0; j < Sreturn; j + + do
13. stemp1 SHA-256Hash(PLres[i])
14. stemp2 SHA-256Hash(Lres[j])
15. if XOR(stemp1, Kreq) < XOR(stemp2, Kreq) then
16. Lres[j] PLres[i]
17. break
18. return Lres

When a requesting bot is going to request peers to fulfill its peer list, the requesting bot first

calculates the number of peers Nneed to be added into its peer list by subtracting current peer

list size from the capacity of a peer list M (Line 1). If Nneed is 0, an empty set is returned (Line 2

and Line 3). Then, if there are no peers in its peer list, it would try sniffing the Bitcoin block-

chain to get seed peers and retrieve peers to fulfill its peer list (Line 5 to Line 8). Seed peers are

released and periodically updated to the Bitcoin blockchain via transactions corresponding to

a specific Bitcoin address.

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 9 / 27

https://doi.org/10.1371/journal.pone.0226594

Otherwise, it retrieves peer from existing peers in its peer list (Line 10 to Line 11). After col-

lecting all the responses into a temporary IP list Ltemp, candidates to be added into the peer list

are selected by a filtering procedure. It first tries sniffing the Ethereum blockchain to get the

latest Ethereum block hash HEthereum (Line 13). We use Ethereum instead of Bitcoin because

Ethereum is much faster to generate a new block. The average time of generating a new Ether-

eum block is about 20 seconds, while the average time of generating a Bitcoin block is about 10

minutes [28]. Then the SHA-256 hash value Hi of every single IP address Ltemp[i] in Ltemp com-

bined with HEthereum is generated (Line 16). The IP address Ltemp[i] and the corresponding

hash value Hi are then collected into a result list Lhash (Line 17). After that, Lhash is sorted in

ascending or descending order, and the first Nneed results are added to the return list Lret (Line

18 to Line 21). This may resort to a biased peer list since peers with either the highest or lowest

hash value would be preferably returned. The bias will be evaluated through an experiment in

Section 4.4.

When the queried node receives a request from another node, the queried node will return

a biased subset of size Sreturn. This is an effective countermeasure to restrict the efficiency of

P2P botnet crawling. Inspired by [46], we employ a similar way in Algorithm 2 at the side of

the queried node, which adds additional randomness for the queried node to return peers. The

queried node generates a SHA-256 hash value of the requesting IP address IPreq combined

with the latest Ethereum block hash HEthereum as the unique key s1 (Line 5 to Line 6). Then

the key is XOR-ed with the SHA-256 hash value s2 of the requesting IP address IPreq and the

unique resulting key Kreq is stored (Line 7 to Line 8). After that, the returned peers are selected

by minimal XOR distance to Kreq. It first constructs a list Lres containing up to the first Sreturn
peers in its peer list PLres (Line 9 to Line 10). Then it iterates over PLres (Line 11). The XOR dis-

tance of the SHA-256 hash value of each PLres[i] to Kreq is compared to the XOR distance of

the SHA-256 hash value of each Lres[j] to Kreq (Line 15). Once a PLres[i] with smaller XOR dis-

tance to Kreq than Lres[j] is found, Lres[j] is replaced with PLres[i] (Line 16).

The proposed peer list exchange algorithm is effective against routing table poisoning attack

and P2P botnet crawling. First, utilizing the randomness the latest Ethereum block hash in

Algorithm 1, each element in Ltemp has an equal likelihood to be added into the peer list of the

requesting node. This countermeasure provides more challenges for defenders to inject nodes

into peer lists of bots unless the defenders are capable of realizing a 51% attack [47] towards a

blockchain network. However, theoretically, the cost of a 51% attack on Ethereum network is

unbearable for individuals [48]. Second, the returned subset of the queried node is biased to

the specific XOR-ed key corresponding to the IP address of the requesting node. Hence, a

fixed subset is returned to the same requesting IP address. The efficiency of botnet crawling

against the DUSTBot is restricted. Moreover, defenders are not able to work out a further anal-

ysis through the results of peer list exchange.

3.2.4 Seed peers on the bitcoin blockchain. Seed peers are released and periodically

updated on the Bitcoin blockchain via transactions corresponding to a specific address. A bot

without peers in its peer list tries sniffing the Bitcoin blockchain and retrieves entries into the

DUSTBot P2P network. After that, it requests more peers from bootstrap nodes to fill the peer

list until it reaches its capacity M. It is hard for defenders to block Bitcoin transactions even if

they work out the Bitcoin address possessed by the botmaster since it is hard to reach a consen-

sus over numerous miners.

4. Experiments and results

To proof the concepts we proposed in Section 3, several experiments are carried out in this sec-

tion. In Section 4.1 and Section 4.2, we first construct a botnet through a P2P simulator, then a

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 10 / 27

https://doi.org/10.1371/journal.pone.0226594

real P2P botnet which consists of prototypes is deployed on cloud platforms based on the

results of the simulation. As metrics, we measure the feasibility and performance by the round-
trip time (RTT) over the DUSTBot network between the botmaster and DUSTBot. In Section

4.3, we measure the robustness of DUSTBot by calculating the connected ratio after removing

a different fraction of sensor bots.

4.1 Botnet construction

In this subsection, we first construct the botnet according to the properties defined in Table 1

with a P2P simulator. We measure the success of botnet construction by network properties

we observed, which is presented in Table 2.

4.1.1 Network properties definition. We define the properties of DUSTBot in Table 1.

4.1.2 Construction procedure. We construct a botnet with PeerSim [49], an open source

P2P simulator. There is no bootstrap procedure for DUSTBot. This avoids the bootstrap vul-

nerability. Wang et al. [50] and Liu et al. [51] employ the new infection and reinfection mecha-

nism to propagate botnet. We use a similar mechanism to construct peer lists. Assume that

the capacity of the peer list of a DUSTBot is M. If a vulnerable host B is infected by a bot A, A
passes its peer list to the newly infected host B, and B will also add A into its peer list. When

bot B is reinfected by bot A, R (R<M) randomly selected peers in the peer list of B are replaced

Table 2. Properties of the constructed P2P botnet.

Property Value

N 20000

Nsensor 4947

μout-degree 9.9

μpeer 19.9

μsensor 6.1

D 5

μpathlen 0.9

https://doi.org/10.1371/journal.pone.0226594.t002

Table 1. The definition of network properties.

Property Description

Nh Total number of hosts

J(t) Number of infectious hosts at time t
β The infection rate of botnet propagation in each time interval

N The population of the current botnet

M The capacity of the peer list of a bot

μout-degree The average number of the out-degree of a bot

D The diameter of the simulated botnet (the maximum path length from a regular bot to a sensor bot)

μpathlen The average path length from a regular bot to a sensor bot

pinit Initial proportion of sensor bots

psensor The current proportion of sensor bots

Nsensor The current number of sensor bots

TTLup The hop limit of a broadcast message

Speer The number of peers that a peer list currently contains

μpeer The average number of peers that a peer list currently contains

Ssensor The number of sensor bots that a peer list currently contains

μsensor The average number of sensor bots that a peer list currently contains

https://doi.org/10.1371/journal.pone.0226594.t001

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 11 / 27

https://doi.org/10.1371/journal.pone.0226594.t002
https://doi.org/10.1371/journal.pone.0226594.t001
https://doi.org/10.1371/journal.pone.0226594

by R peers in the peer list passed by A. Also, A and B will add each other into their peer lists.

The reinfection procedure can effectively interconnect different infection paths together, mak-

ing a botnet evenly connected.

Scanning and vulnerability exploit is the dominant infection mechanism. Thus the simula-

tion of our botnet construction is similar to worm propagation. Epidemic models are applied

to model computer virus, and worm propagation since the propagation of worms is similar to

the biological infectious diseases.

Classical simple epidemic model [52] is employed in our botnet construction. In this

model, each host stays in one of two states: susceptible or infectious. Hosts that are vulnerable

to be infected are called susceptible hosts; hosts that have been infected and can infect other

hosts are called infectious hosts. We assume that a host will stay in the infectious state forever

once it is infected by an infectious host. The classical simple epidemic model for a finite, vul-

nerable population is Eq (1).

dJðtÞ
dt
¼ bJðtÞ½Nh � JðtÞ� ð1Þ

where J(t) is the number of infectious hosts at time t; Nh is the sum of infectious and suscepti-

ble hosts, and β is the infection rate.

4.1.3 Initialization. As indicated in [50], botnets kept their populations to an average of

20000. In Eq (1), when t = 0, J(0) hosts are infectious, and the other Nh − J(0) hosts are all sus-

ceptible. Suppose the size of Nh is 20000, N stops growing after all the susceptible are infected.

β is defined by a parameter k where k = βNh. In this paper, J(0) is configured to 21, and k is

configured 1.8 as what used in [50] and [52]. Besides, we assume that all the initial infectious

hosts are sensor bots. We set M to 20 for comparison to [50]. Then the population of the con-

structed botnet grows to 20000 continuously during the simulated botnet propagation. Regular

bots are also updated to sensor bots continuously to keep the value of psensor to about 0.25.

After initialization, μsensor is defined as Eq (2).

msensor ¼
1

N

XN

i¼1

Ssensori ð2Þ

Where Ssensori is the number of sensor bots contained in the peer list of bot i. The summary of

the simulated P2P network is provided in Table 2.

The value of μsensor we observed in the simulated network is 6.1. During the botnet propaga-

tion, overall, about 180000 reinfections occurred. Fig 5 shows the distribution of Ssensor in the

simulated botnet. The value of Ssensor distributes from 4 to 8 over 80% of bots. The distribution

of Ssensor roughly follows a normal distribution. Hence, the connectivity of the simulated botnet

is well-balanced. To study the dispersion degree of Ssensor, we calculate the standard deviation

of Ssensor. Assume the standard deviation of Ssensor is denoted by σ, σ is defined as Eq (3).

s ¼

ffi
1

N � 1

XN

i¼1

ðSsensori � msensorÞ
2

s

ð3Þ

The value of σ we observed in the simulated network is 2.012, which indicates that there is

a dispersion among Ssensor. This may affect the maximum and the average path length D and

μpathlen from a regular bot to a sensor bot. The value of D is 4, and the value of μpathlen is 0.9. D
and μpathlen represent the connectivity between the regular bots and the sensor bots. This may

affect the reachable ratio of the constructed botnet. The reachable ratio represents the probabil-

ity that a communication message reaches an available sensor bot after the broadcast through

TTLup hops. The reachable ratio would be studied in Section 4.3. Fig 6 shows the network

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 12 / 27

https://doi.org/10.1371/journal.pone.0226594

Fig 6. A network overview of the simulated botnet.

https://doi.org/10.1371/journal.pone.0226594.g006

Fig 5. The distribution of the current number of sensor bots in peer lists.

https://doi.org/10.1371/journal.pone.0226594.g005

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 13 / 27

https://doi.org/10.1371/journal.pone.0226594.g006
https://doi.org/10.1371/journal.pone.0226594.g005
https://doi.org/10.1371/journal.pone.0226594

overview of the simulated botnet, red dots represent sensor bots, and blue dots represent regu-

lar bots. Fig 6 shows that all the bots are uniformly distributed.

4.2 DUSTBot on cloud platforms

4.2.1 Experimental setup. To implement the solution we proposed, we use the BitcoinJ

library [53], an open source Java API (Application Programming Interface) of the Bitcoin pro-

tocol. The executable of DUSTBot prototype is 12.9MB in size. Inspired by [24,25], we deploy

a similar pre-constructed P2P network on Microsoft Azure cloud platform and Amazon Web

Service to test the feasibility and performance of DUSTBot. Due to the restriction of cloud plat-

forms, only 54 nodes are deployed, including 40 nodes on Amazon Web Service and 14 nodes

on Microsoft Azure. For every single node, the system is Ubuntu Server 18.04 LTS, the RAM

(Random Access Memory) is 1GB, and the number of virtual CPU (Central Processing Unit)

is 1. Network bandwidth of these nodes is not provided by the cloud platforms. Bots connect

to the Bitcoin main network, try identifying transactions from the botmaster in the broadcast

transactions, and then extract the metadata embedded in the identified transactions. Refer to

the parameters of the simulation, 14 of all 54 nodes are deployed as sensor bots. Fig 7 shows

the network overview of the pre-constructed P2P botnet deployed on cloud platforms, red

dots represent sensor bots, and blue dots represent regular bots.

4.2.2 Metrics. As metrics, we measure the feasibility and performance by the round-
trip time (RTT) over DUSTBot network between the botmaster and DUSTBot. The RTT

includes the delay of 1) a DUSTBot captures transaction from the botmaster; 2) the broad-

cast of upstream data in DUSTBot P2P network; 3) the botmaster captures transaction from

a sensor bot. In order to test the feasibility and performance of the proposed C&C channel,

modules which may lead to peer discard are removed in the executable we deployed in this

experiment. Besides, we use the Bitcoin testnet as the downstream channel under the con-

sideration of the economic cost in this experiment (there is not much difference in the

Fig 7. A network overview of the pre-constructed P2P botnet deployed on cloud platforms.

https://doi.org/10.1371/journal.pone.0226594.g007

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 14 / 27

https://doi.org/10.1371/journal.pone.0226594.g007
https://doi.org/10.1371/journal.pone.0226594

efficiency of transaction broadcast). To avoid too many redundant responses, the TTL value

is set to 1 in this experiment.

4.2.3 Results. According to Fig 7, the average number of sensor bots in a single peer list of

regular bots is 2.5. 100 responses are expected to be received in a single command issue, and

the redundant responses from the same regular bot are filtered. We send data through Bitcoin

transactions every 40 minutes for over 48 hours. 73 transactions are sent totally. Fig 8 shows

the data structure of communication messages.

When bots capture the transaction, they send the data and their identities back through the

upstream channel except for sensor bots. 7293 of 7300 responses are received in this experi-

ment. The response rate is 99.904%. Besides, all 2920 valid responses are received in this

experiment. The RTTs of all bots varies from 2.169 to 23.367s with an average of 6.8298 and

standard deviation of 2.4718. Due to the connectivity of the Bitcoin P2P network, about 50%

of the commands, the bots respond within 6s, and 90% of the commands within 10s. In

[24,25], 50% of the bots of ZombieCoin respond within 5s, and 90% of the commands within

10s. However, the upstream channel of ZombieCoin is not the Bitcoin P2P network, but a tra-

ditional web server owned by the botmaster. Hence, the RTT of DUSTBot is expected to be

larger than ZombieCoin. In [30], the average RTT of UnblockableChains is about 4s. The

C&C infrastructure of BOTCHAIN [26] is similar to DUSTBot except for the upstream chan-

nel. Thus, the RTT of BOTCHAIN is expected to be close to DUSTBot. Therefore, the network

latency of the proposed C&C channel is similar to existing solutions which build their C&C

channels on public blockchains. And the latency of the proposed C&C channel is acceptable

for a botnet. The detailed experimental data in this subsection is given in the Table A in S1

Appendix, including the Bitcoin testnet addresses we used, the first and final transaction id

and index in the Bitcoin testnet blockchain.

4.3 Botnet robustness evaluation

In this subsection, we will evaluate the robustness of the proposed botnet model. Many factors

affect the robustness of a botnet, i.e., removal of sensor bots, DDoS attack, Sybil attack, routing

table poisoning, and peer off-line. Those factors have the same impact on the connectivity of a

botnet.

Fig 8. The data structure of the upstream message.

https://doi.org/10.1371/journal.pone.0226594.g008

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 15 / 27

https://doi.org/10.1371/journal.pone.0226594.g008
https://doi.org/10.1371/journal.pone.0226594

4.3.1 Metrics. 4.3.1.1 Robustness Metric Function. Botnet connectivity is a considerable

measure to express the botnet robustness. We use the following metric function presented in

[50]. C(pr) denotes the connected ratio of bots to available sensor bots after removing pr frac-

tion of sensor bots in the constructed botnet, which represents the connectivity of the pro-

posed botnet. C(pr) is defined as Eq (4).

CðprÞ ¼
Nconnected

Nremaining
ð4Þ

where Nconnected denotes the number of bots which is connected to at least an available sensor

bot, Nremaining denotes the number of remaining bots. C(pr) represents the connectivity of the

current botnet.

4.3.1.2 Robustness Mathematical Analysis. We also provide an analytical study of the botnet

robustness. The formula of C(pr) when randomly removing pr fraction of sensor bots is pro-

vided. The connected ratio of the proposed botnet is the probability that an upstream message

from a regular bot can reach an available sensor bot after broadcast. To provide a formula of C
(pr), we need to calculate two parameters first: μpeer and psensor. μpeer denotes the average num-

ber of peers that a peer list currently contains. psensor denotes the current proportion of sensor

bots in the constructed botnet. μpeer is defined as Eq (5).

mpeer ¼
1

N

XN

i¼1

Speeri ð5Þ

where N is the population of the current botnet, Speeri is the number of peers that the peer list of

bot i currently contains. psensor decreases when sensor bots are removed. psensor is defined as Eq

(6).

psensor ¼
pinitð1 � prÞ
1 � pinit � pr

ð6Þ

Now we discuss the probability of whether an upstream message from a regular bot will

reach an available sensor bot or not. The calculation value of C(pr) could be calculated by sub-

tracting the probability that a message cannot reach an available sensor bot from 1. First, the

probability that a DUSTBot is not an available sensor bot is (1 − psensor), and the probability

that all the peers contained in the peer list of the DUSTBot are not available sensor bots is

ð1 � psensorÞ
mpeer . Therefore, the calculation value of C(pr) is 1 � ð1 � psensorÞ � ð1 � psensorÞ

mpeer

when TTLup is 1. According to this, the C(pr) can be defined as Eq (7):

CðprÞ ¼ 1 � ð1 � psensorÞ

PTTLup

j¼0

mpeer
j

ð7Þ

4.3.2 Results. Eq (7) indicates that TTLup has a decisive impact on C(pr) because of the

exponential explosion. When M is 20, pinit is 0.25, C(pr) is close to 1 as the value of TTLup
increases. Thus, we need to select the optimal value of TTLup through a simulation to avoid

creating a broadcast storm.

The peak in the path length from a regular bot to a sensor bot would be instrumental in

guiding the choice of TTLup. Hence, the optimal choice of TTLup would be the path length

value that most frequently occurs in the constructed botnet.

Next, we remove sensor bots in the constructed botnet with different fraction and observe

the changes in the peak values of the path length. We assume that all sensor bots are available

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 16 / 27

https://doi.org/10.1371/journal.pone.0226594

before they are removed. The random removal experiments are deployed to the simulated bot-

net we constructed in Section 4.1. The range of pr is 0 to 0.95, with an interval of 0.05. Table 3

shows the peak value of the path length and its fraction among all the bots under different pr.
According to Table 3, as the fraction of sensor bots in the constructed botnet decreases,

the peak value of the path length from a regular bot to a sensor bot increases from 1 to 3. The

fraction of each peak value decreases as pr increases. Besides, the diameter of the constructed

botnet also increases from 5 to 18.

Next, we remove sensor bots with different fraction and observe the changes of C(pr) calcu-

lated by the Eq (4) to evaluate the impact of the hop limit of an upstream message to C(pr). The

range of TTLup is 1 to 2, with an interval of 1. The range of pr is 0 to 1, with an interval of 0.05.

Fig 9 shows the results calculated by Eq (7) in the constructed botnet, compared with the

simulation result C(pr) of the random removal experiment under different values of TTLup.
The subfigure of Fig 9 in the center is a partial enlargement of Fig 9. In Fig 9, the simulation

results are slightly lower than the calculated values, since we use μpeer in Eq (7), and there is a

dispersion degree among all the Ssensor, as we have discussed in Section 4.1. There is an experi-

mental error between the calculation result and the simulation result. Although we cannot

accurately evaluate the robustness of the proposed botnet via Eq (7), it provides an approxi-

mate estimate without monitoring the proposed botnet.

Fig 9 shows that the connected ratio is close to 1 when TTLup is 2, and the range of pr is 0 to

0.85. Besides, the simulation result of C(pr) is over 0.9 after removing 90% of sensor bots when

TTLup is 2. Hence, over 90% of the bots are still capable of communicating with the botmaster

after 90% of the sensor bots are removed when TTLup is 2. When the hop limit of the upstream

messages is 2, the proposed botnet shows outstanding robustness after most of the sensor bots

is removed. So we select 2 as the optimal value of TTLup. The detailed experimental configura-

tion for this subsection is provided in S1 Appendix.

Table 3. Peak value and max value of the path length from a regular bot to a sensor bot under different pr.

pr Peak Value Fraction D
0.0 1 61.8% 5

0.05 1 61.0% 5

0.10 1 60.3% 5

0.15 1 59.6% 6

0.20 1 58.5% 6

0.25 1 57.6% 6

0.30 1 55.4% 6

0.35 1 54.5% 6

0.40 1 53.7% 6

0.45 1 51.6% 6

0.50 1 49.8% 6

0.55 1 47.5% 7

0.60 1 43.0% 7

0.65 1 42.8% 7

0.70 1 39.1% 8

0.75 1 34.3% 9

0.80 1 28.1% 9

0.85 2 27.4% 10

0.90 2 25.3% 12

0.95 2 23.5% 14

https://doi.org/10.1371/journal.pone.0226594.t003

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 17 / 27

https://doi.org/10.1371/journal.pone.0226594.t003
https://doi.org/10.1371/journal.pone.0226594

4.4 Evaluation of the proposed peer list exchange algorithm

In this subsection, we will evaluate the performance of the proposed peer list exchange algo-

rithm against P2P botnet crawling and routing table poisoning attack. The detailed experimen-

tal configuration for this subsection is provided in S1 Appendix.

4.4.1 Churn effects. A botnet overlay experiences high churn rate of nodes joining and

leaving the network at high frequency [44]. Crawlers that crawl bots with a low frequency or

a long duration may introduce a significant network bias. Moreover, bots considered to be

online may have already gone offline. In addition, newly infected hosts might be missed by the

crawler [44]. Accuracy of botnet snapshots produced by crawlers suffers from churn effects.

To avoid the churn effect in the evaluation of proposed peer list exchange algorithm, we

assume that no new bots would join or leave the constructed botnet during crawling.

Fig 9. Comparison of the Eq (7) and simulation results with different TTLup.

https://doi.org/10.1371/journal.pone.0226594.g009

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 18 / 27

https://doi.org/10.1371/journal.pone.0226594.g009
https://doi.org/10.1371/journal.pone.0226594

4.4.2 Effectiveness against botnet crawling. A P2P botnet is effectively taken down if a

complete snapshot is produced by botnet crawling. To reduce the efficiency of P2P botnet

crawling, we propose a specific peer list exchange mechanism in Section 2. We will evaluate

the performance of the proposed peer list exchange algorithm against botnet crawling from

two aspects.

4.4.2.1 Full crawl. The target of a full crawl is to discover all contactable nodes in the

network.

4.4.2.1.1 State of the art. The following crawling techniques have been utilized in crawling

real unstructured P2P botnets or file-sharing systems. Most of the existing crawling techniques

usually implemented either a DFS (Depth-First Search) or BFS (Breadth-First Search)-based

queue implementation as a node selection strategy [54].

• BFS-based crawler: Holz et al. [19] enumerate the Storm botnet with a BFS-based crawler

that iteratively queries each peer starting from a seed list. Rossow et al. [55] implement a

BFS-based crawler which aims at P2P Zeus botnet. It starts the crawling from a seed node

and appends undiscovered nodes at the end of a queue.

• DFS-based crawler: Dittrich et al. [56] enumerate the Nugache botnet with a DFS-based

crawler which conducts pre-crawls and utilizes that information as an input for their prior-

ity-queue.

• Less Invasive Crawling Algorithm (LICA) [54]: LICA is a generic crawling algorithm that

aims to effectively enumerate the whole botnet population with queries as few as possible.

4.4.2.1.2 Metrics. To measure the performance of the anti-crawling countermeasures, we

use discovery ratio as what used in [46] and [54]. It is defined by the fraction of peers discov-

ered during the P2P botnet crawling. The discovery ratio is a metric for both the efficiency of

the crawling algorithm as well as the effectiveness of the botnet’s countermeasures. Different

crawling and anti-monitoring strategies could be compared via the discovery ratio.

4.4.2.1.3 Experimental Setup. As a bot in P2P Zeus usually restricts the size of the returned

peer list to 10 when the size of its peer list is 50 [46]. The size of returned subset Sreturn is

restricted to M/5 in our experiments.

We compare the effectiveness of the proposed anti-crawling countermeasure to the existing

countermeasures we stated in Section 3.2.3 by crawling the constructed botnet with BFS, DFS,

and LICA. A bot returns peers with different anti-crawling strategies when it receives a peer

list request. Overall, 12 experiments are carried out. Every single experiment repeats for 50

times by choosing 50 different seed peers, and the results are averaged. Only one seed peer is

chosen during each trial. We assume that all the requests are sent by the same node, and all the

peer list does not change while crawling.

For LICA, we choose the same parameters as used in [54]. Parameter r is the maximum

number of requests allowed to be sent to the same seed peer. Parameter w is the number of

subsequent requests for which gain is calculated. After every w requests, the accumulated gain

within the past w requests is checked. If observed gain per request drops below the threshold t,
LICA may repeat another iteration of the crawl. The value of r is configured to 2, the value of w
is configured to 300, and the value of t is configured to 0.1 in this experiment refer to [54].

Besides, to deploy the anti-crawling strategy of ZeroAccess for comparison, we construct a

specific botnet of ZeroAccess, since a ZeroAccess bot sorts its peer list by most-recently respon-

sive peers after inserting a new peer into its peer list [44].

4.4.2.1.4 Results. Fig 10 shows the performance of existing crawling methods on DUSTBot

and other existing botnets. It is expected that Sality and ZeroAccess perform worse than P2P
Zeus and DUSTBot since the returned peers are biased towards the unchanged requesting

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 19 / 27

https://doi.org/10.1371/journal.pone.0226594

node. DUSTBot is expected to perform similar to P2P Zeus. LICA performs better than BFS
and DFS since it prioritizes popular nodes during the crawling [54].

As indicated in Fig 10(a), 10(b) and 10(c), P2P Zeus and DUSTBot are more effective than

Sality and ZeroAccess against existing crawling strategies. DUSTBot performs slightly better

than P2P Zeus. For the proposed anti-crawling strategy, about 67% coverage of the peers in the

constructed botnet is obtained by LICA after 20000 requests, while 78% of the peers is obtained

for Sality. Fig 10(a) shows that only 51% coverage of the peers is discovered by DFS when the

anti-crawling strategy of DUSTBot is deployed.

The discovery ratio of LICA grows much slower after a large number of requests, since the

researchers who proposed LICA assume that the complete peer list can always be obtained in

each response. However, only M/5 of the peers in a peer list would be returned in a single peer

list response. Hence, LICA would not be effective for the botnet proposed in this paper.

4.4.2.2 Crawling the complete peer list of a single bot. Some existing crawling approaches

aim at retrieving a complete peer list of every single bot and hence can efficiently provide a

reliable topology snapshot of P2P botnets.

4.4.2.2.1 State of the art. Existing crawling methods are stated as follows:

• ZeusMilker [46]: ZeusMilker is a novel crawling algorithm that aims to circumvent the

restriction of a peer list response algorithm which biases the returned peer list to a specific

key. It strategically spoofs keys to milk all peers from the peer list of a bot.

• Random [55]: A P2P botnet monitoring algorithm which generates spoof keys uniformly at

random. The discovery ratio of DUSTBot is expected to be the same as P2P Zeus.

4.4.2.2.2 Metrics. Again, the success of anti-crawling countermeasures is measured by the

discovery ratio, which has been stated in the former experiments.

4.4.2.2.3 Experimental Setup. The size of returned subset Sreturn is also restricted to M/5

in the following experiments. We compare the effectiveness of the proposed anti-crawling

countermeasure to the existing countermeasures we stated in Section 3.2.3 by crawling a

random bot in the constructed botnet with ZeusMilker and Random. The crawled bot

returns peers with different anti-crawling strategies when it receives a peer list request.

Overall, 8 experiments are carried out. 2000 different bots are crawled with different crawl-

ing algorithms, and the results are averaged. The performance of ZeusMilker is expected to

be worse than Random because of the additional randomness provided by the latest Ether-

eum hash.

4.4.2.2.4 Results. The performance of Random and ZeusMilker on a single peer list of differ-

ent anti-crawling strategies is shown in Fig 11(a) and 11(b).

For ZeroAccess, the discovery ratio of different crawling algorithms would be precisely 0.2

since a ZeroAccess bot always returns first M/5 peers in its peer list, and we assume that all the

Fig 10. Performance of BFS (a), DFS (b) and LICA (c) on different anti-crawling strategies (Sreturn = 4, M = 20).

https://doi.org/10.1371/journal.pone.0226594.g010

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 20 / 27

https://doi.org/10.1371/journal.pone.0226594.g010
https://doi.org/10.1371/journal.pone.0226594

peer list does not change while crawling. Crawling strategies is ineffective to ZeroAccess. How-

ever, the peer list of a ZeroAccess bot is sorted by most-recently responsive peers. After the

active peers are discovered, a ZeroAccess botnet is effectively taken down by defenders.

Fig 11(a) indicates that Random is capable of retrieving all peers in the peer list of a bot

after a large number of requests except for ZeroAccess. DUSTBot and P2P Zeus perform better

than Sality against Random. The performance of DUSTBot and P2P Zeus against Random is

similar since the effectiveness of Random is not influenced by bits flipping.

The performance of different anti-crawling strategies indicates that DUSTBot performs

best with a maximum discovery ratio of about 75% after 100 requests, as shown in Fig 11(b).

ZeusMilker is not capable of discovering all the peers in the peer list of a Sality bot since Zeus-
Milker stops crawling when no new key pairs are added to a milking set. DUSTBot performs

better than other anti-crawling strategies since additional randomness is added at the side of

the queried of a peer list request through the latest Ethereum block hash. It is hard for the

requesting node to spoof keys towards a single DUSTBot strategically. The returned subset is

biased to a specific key generated by the queried node.

4.4.3 Effectiveness against routing table poisoning attack. The proposed peer list

exchange algorithm is also designed to prevent routing table poisoning attack. Each element in

the received IP list Ltemp has an equal likelihood to be added into the peer list of the requesting

node because of the randomness of the latest Ethereum block hash. We will evaluate the effec-

tiveness of the proposed peer list exchange algorithm against the routing table poisoning attack

in this subsection.

4.4.3.1 Experimental Setup. To measure the effectiveness of this strategy, we set up an

experiment as follows:

Step 1: Randomly select a bot C whose peer list size is M from the botnet constructed in Sec-

tion 4.1. We assume that 5/M of the peers in its peer list are malicious, which intend to

inject nodes into the peer list of C. And the value of Nneed in Algorithm 1 always equals

to M.

Fig 11. Performance of Random (a) and ZeusMilker (b) on different anti-crawling strategies (Sreturn = 4, M = 20).

https://doi.org/10.1371/journal.pone.0226594.g011

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 21 / 27

https://doi.org/10.1371/journal.pone.0226594.g011
https://doi.org/10.1371/journal.pone.0226594

Step 2: C requests all the peers in its peer list for peers and filters peers to be added utilizing

Algorithm 1 for 30000 times. During all the filtering procedures, C retrieves the Ethereum

block hashes from height 6480001 to height 6510000 as the nonce.

Step 3: Collect the results in Step 2.

Step 4: For each iteration, calculate the fractions that the IP addresses to be added into the

peer list of C are from malicious peers. Then, the average the results and the standard devia-

tion of the fractions are calculated.

4.4.3.2 Results. According to the results we observed in the evaluation, the average of the frac-

tions is 19.57%, and the standard deviation of the fractions is 0.077, which indicates that each

candidate in the received IP list has the equal likelihood to be added into the peer list of the

requesting node. The attempt of routing table poisoning attack towards a single DUSTBot would

be inefficient because of the additional randomness provided by the latest Ethereum block hash.

4.5 DUSTBot stealthiness evaluation

We will evaluate the stealthiness of the proposed botnet through a network traffic analysis in

this subsection. To study if DUSTBot is indistinguishable from a genuine Bitcoin user, we indi-

vidually run the Bitcoin Core Client and DUSTBot on the same computer within the same time

interval and monitor the network traffic. The result is shown in Fig 12(a) and 12(b). The num-

ber and fraction of the packets of a single DUSTBot (Fig 12(b)) are similar to a genuine Bitcoin

user (Fig 12(a)). Hence, the traffic of a single DUSTBot is indistinguishable from that of any

other genuine Bitcoin node. The time interval of this experiment is 15 minutes. As throughput,

572 bytes per second is inconspicuous. The result demonstrates the stealthiness of DUSTBot.

5. Countermeasures

5.1 Countermeasures for the hosts

A DUSTBot listens to port 8333 and 18333, the default ports of the Bitcoin protocol while it

is running on an infected device. The communication is easily blocked by filtering network

Fig 12. The network traffic of (a) running the Bitcoin Core client and (b) DUSTBot in the same network environment within 15 minutes.

https://doi.org/10.1371/journal.pone.0226594.g012

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 22 / 27

https://doi.org/10.1371/journal.pone.0226594.g012
https://doi.org/10.1371/journal.pone.0226594

traffic if there is no application based on the Bitcoin protocol on the infected device since

DUSTBot disguises itself as a genuine Bitcoin node. However, other network services which

rely on the same port would be unavailable if network traffic of port 8333 and 18333 is filtered.

Therefore, traffic filtering can be a temporary countermeasure.

5.2 Countermeasures for the Bitcoin network

5.2.1 Blocking communication of DUSTBot. Theoretically, the proposed botnet will

be shut down if the Bitcoin address that belongs to the botmaster is blacklisted. One possible

strategy against DUSTBot is blacklisting the Bitcoin address that belongs to the botmaster with

the agreement of the development team of Bitcoin Core since nearly 96% of genuine Bitcoin

clients are Bitcoin Core [57].

5.2.2 Tracing the botmaster. Legitimate Bitcoin transactions are broadcast in the Bitcoin

P2P network. Therefore, the IP address of the botmaster is exposed to the Bitcoin node to

which the transaction data is first sent. Cooperating with the whole Bitcoin network, the

source of a Bitcoin transaction could be traced if the Bitcoin address is marked as malicious.

However, the two methods are impractical. The users of Bitcoin would primarily resist

such attempts as it would be a behavior that runs against the Bitcoin ethos [58]. Any form of

regulation would more or less violate the libertarianism, which is the ideology that Bitcoin per-

sisted. The development team of Bitcoin Core would also refuse to add a blacklist mechanism.

5.3 Countermeasures for ISPs

Although tracing and blocking the botmaster is impractical in hosts or the Bitcoin network,

transaction data could be captured by SDN-based detection points deployed at ISP level [59]

when it is first sent from a host controlled by the botmaster. Then the botmaster could be

traced by traditional countermeasures towards botnet C&C servers. However, it is still a chal-

lenge for defenders to trace the botmaster by cooperating with so many ISPs around the world

since the Bitcoin nodes are distributed globally.

6. Discussion

6.1 Economic cost of botnet maintenance in the Bitcoin network

At a minimum, it usually costs about 50 cents (USD) per transaction. Assume the botmaster

issues a command per 30 minutes, 48 commands are issued every day. Thus the downstream

cost is $24.0 every day, $720.0 every month. On the other hand, upstream data is sent back to

the botmaster via the Bitcoin testnet. Testnet Bitcoin is free and public to get on some third-

party websites. Capturing sensor bots would not lead to money loss to the botmaster. Besides,

communication data is broadcast in the self-constructed P2P network. However, the profit of

successful botnet is typically hundreds of thousands of dollars per month [60]. Compare to the

profits of popular botnets for rent, the cost of the proposed botnet is trivial.

6.2 Robustness of the C&C channel of DUSTBot

From what we have discussed above and other studies, there is no easy solutions towards such

blockchain “pollution”, dubbed by Forbes magazine [61].

In addition, the network traffic of DUSTBot is indistinguishable from the traffic of a genu-

ine Bitcoin node. Defenders are more possible to distinguish the network traffic generated by

bots if they have successfully reverse-engineered a bot. This complicates the analysis toward

the proposed botnet. The behavior of a sensor bot is similar to a regular bot, and the types of

other bots are not saved in peer lists. This provides a further challenge to distinguish a sensor

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 23 / 27

https://doi.org/10.1371/journal.pone.0226594

bot. If the fraction of sensor bots is lower than a threshold, the botmaster can easily upgrade

regular bot to sensor bot via the downstream channel, which is hard to block.

The peer list management mechanism, i.e., the peer list exchange algorithm, blacklist mech-

anism, and segment restriction presented in this paper is effective against DDoS attack and

routing table poisoning attack. This provides more challenges for defenders to analyze, moni-

tor, and disrupt the proposed botnet.

7. Conclusion and future work

As a preeminent threat to cyberspace, botnets have always been the focus of cybersecurity

research. Current solutions to apply blockchain technology to build infrastructure for botnets

suffer from high economic cost, single point of failure, and limited scalability. In this paper, we

present DUSTBot, a novel P2P botnet model in which C&C communication utilizes the Bit-

coin network. Compare to similar works, the C&C channel of DUSTBot is covert, duplex, and

low-cost. Besides, the peer list management mechanism we proposed in this paper is effective

against routing table poisoning attack and existing botnet crawling algorithms. It is hard for

defenders to prevent the botmaster from sending transactions to the Bitcoin main network.

Also, it is hard to prevent bots from retrieving commands from the Bitcoin main network. The

results demonstrate the feasibility, performance, stealthiness, and robustness of DUSTBot. We

are going to make some improvements to our work as follows:

1. Switch C&C channel to other low-cost cryptocurrencies or deploy the C&C communica-

tion on multiple cryptocurrencies, which reduces cost and expands the bandwidth of the

C&C channel.

2. Try tracing the transaction in the blockchain network of popular cryptocurrencies, to track

the botmaster of similar botnets.

3. Try detecting illegitimate network traffic of popular blockchain protocols in hosts with

machine learning algorithms against similar botnet models.

Supporting information

S1 Appendix. Methods and experimental data. Detailed descriptions of methods, computa-

tional processes, and experimental data. Includes the Bitcoin testnet addresses we used in Sec-

tion 4.2.

(DOCX)

Author Contributions

Conceptualization: Yi Zhong, Lei Zhang, Zheng Zuo.

Data curation: Yi Zhong.

Formal analysis: Yi Zhong.

Methodology: Yi Zhong, Lei Zhang, Zheng Zuo.

Project administration: Anmin Zhou, Lei Zhang, Zheng Zuo.

Software: Yi Zhong, Fan Jing, Zheng Zuo.

Supervision: Anmin Zhou, Lei Zhang, Zheng Zuo.

Validation: Yi Zhong, Fan Jing, Zheng Zuo.

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226594.s001
https://doi.org/10.1371/journal.pone.0226594

Visualization: Yi Zhong.

Writing – original draft: Yi Zhong.

Writing – review & editing: Yi Zhong, Anmin Zhou, Lei Zhang, Zheng Zuo.

References
1. Hung M (2017) Gartner Insights on How to Lead in a Connected World.:29.

2. Cooke E, Jahanian F, McPherson D. The Zombie Roundup: Understanding, Detecting, and Disrupting

Botnets. In: Proceedings of the Steps to Reducing Unwanted Traffic on the Internet on Steps to Reduc-

ing Unwanted Traffic on the Internet Workshop. Berkeley, CA, USA: USENIX Association; 2005. p. 6–6.

(SRUTI’05).

3. Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E, Cochran J, et al. Understanding the mirai

botnet. In: USENIX Security Symposium. 2017. p. 1092–1110.

4. McAfee Labs (2015) Threat Advisory: CTB-Locker.

5. Werner T (2011) The Miner Botnet: Bitcoin Mining Goes Peer-To-Peer.

6. Gu G, Zhang J, Lee W. BotSniffer: Detecting Botnet Command and Control Channels in Network Traf-

fic. Proceedings of the 15th Annual Network and Distributed System Security Symposium. 2008 Feb 1

7. Strayer WT, Lapsely D, Walsh R, Livadas C. Botnet Detection Based on Network Behavior. Botnet

Detection. 2008;1–24.

8. Abu Rajab M, Zarfoss J, Monrose F, Terzis A. A Multifaceted Approach to Understanding the Botnet

Phenomenon. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement. New

York, NY, USA: ACM; 2006. p. 41–52. (IMC ‘06).

9. Nadji Y, Antonakakis M, Perdisci R, Dagon D, Lee W. Beheading Hydras: Performing Effective Botnet

Takedowns. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security. New York, NY, USA: ACM; 2013. p. 121–132. (CCS ‘13).

10. Stone-Gross B, Cova M, Cavallaro L, Gilbert B, Szydlowski M, Kemmerer R, et al. Your Botnet is My

Botnet: Analysis of a Botnet Takeover. In: Proceedings of the 16th ACM Conference on Computer and

Communications Security. New York, NY, USA: ACM; 2009. p. 635–647. (CCS ‘09).

11. Dooley K (2001) Designing Large Scale Lans: Help for Network Designers. O’Reilly Media, Inc.

12. Sanatinia A, Noubir G. OnionBots: Subverting Privacy Infrastructure for Cyber Attacks. 2015 45th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 2015;69–80.

13. Nappa A, Fattori A, Balduzzi M, Dell’Amico M, Cavallaro L. Take a Deep Breath: A Stealthy, Resilient

and Cost-Effective Botnet Using Skype. In: Detection of Intrusions and Malware, and Vulnerability

Assessment. Springer, Berlin, Heidelberg; 2010. p. 81–100. (Lecture Notes in Computer Science).

14. Pantic N, Husain MI. Covert Botnet Command and Control Using Twitter. In: Proceedings of the 31st

Annual Computer Security Applications Conference. New York, NY, USA: ACM; 2015. p. 171–180.

(ACSAC 2015).

15. Nagaraja S, Houmansadr A, Piyawongwisal P, Singh V, Agarwal P, Borisov N. Stegobot: a covert social

network botnet. In: International Workshop on Information Hiding. Springer; 2011. p. 299–313.

16. Whittaker Z (2013) Skype ditched peer-to-peer supernodes for scalability, not surveillance.

17. Shin S, Gu G, Reddy ALN, Lee CP. A Large-Scale Empirical Study of Conficker. IEEE Transactions on

Information Forensics and Security. 2012; 7:676–90.

18. Stover S, Dittrich D, Hernandez J, Dietrich S. Analysis of the Storm and Nugache Trojans: P2P is here.

USENIX; login. 2007; 32(6):18–27.

19. Holz T, Steiner M, Dahl F, Biersack E, Freiling FC, others. Measurements and Mitigation of Peer-to-

Peer-based Botnets: A Case Study on Storm Worm. First USENIX Workshop on Large-Scale Exploits

and Emergent Threats. 2008; 8(1):1–9.

20. Wang P, Wu L, Aslam B, Zou CC. A Systematic Study on Peer-to-Peer Botnets. In: 2009 Proceedings

of 18th International Conference on Computer Communications and Networks. 2009. p. 1–8.

21. Zheng Z, Xie S, Dai H, Chen X, Wang H. An Overview of Blockchain Technology: Architecture, Consen-

sus, and Future Trends. In: 2017 IEEE International Congress on Big Data (BigData Congress). 2017.

p. 557–64.

22. Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system.

23. Wood G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow

paper. 2014; 151:1–32.

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 25 / 27

https://doi.org/10.1371/journal.pone.0226594

24. Ali ST, McCorry P, Lee PH-J, Hao F. ZombieCoin: powering next-generation botnets with bitcoin. In:

International Conference on Financial Cryptography and Data Security. Springer; 2015. p. 34–48.

25. Ali ST, McCorry P, Lee PH-J, Hao F. ZombieCoin 2.0: managing next-generation botnets using Bitcoin.

International Journal of Information Security. 2017; 17:411–22.

26. Pirozzi A (2018) BOTCHAIN aka The Dark side of Blockchain.

27. Malaika M (2017) Botract—Abusing smart contracts and blockchain for botnet command and control.

28. BitInfoCharts (2019) Cryptocurrency statistics.

29. Ray J (2018) Light client protocol.

30. Zohar O (2018) Unblockable Chains: A POC on using blockchain as infrastructure for malware

operations.

31. Bitcoin.org (2018) Bitcoin Developer Documentation.

32. Coinfaucet.eu (2015) Bitcoin testnet3 faucet. 2015.

33. testnet-faucet (2018) Yet Another Bitcoin Testnet Faucet! YABTF!.

34. bitcoinfaucet.uo1.net (2018) Bitcoin Testnet Faucet.

35. Tschorsch F, Scheuermann B. Bitcoin and beyond: A technical survey on decentralized digital curren-

cies. IEEE Communications Surveys & Tutorials. 2016; 18(3):2084–2123.

36. Starnberger G, Krügel C, Kirda E. Overbot: a botnet protocol based on Kademlia. In: SecureComm.

2008.

37. Lee S, Kim J. Fluxing botnet command and control channels with URL shortening services. Computer

Communications. 2013; 36:320–32.

38. Chen W, Luo X, Yin C, Xiao B, Au MH, Tang Y. CloudBot: Advanced mobile botnets using ubiquitous

cloud technologies. Pervasive and Mobile Computing. 2017; 41:270–85.

39. Wang Z, Qin M, Chen M, Jia C, Ma YT. A learning evasive email-based P2P-like botnet. China Commu-

nications. 2018; 15:15–24.

40. Desimone J, Johnson D, Yuan B, Lutz P. Covert Channel in the BitTorrent Tracker Protocol. In 2016.

41. Wu D, Fang B, Yin J, Zhang F, Cui X. SLBot: A Serverless Botnet Based on Service Flux. 2018 IEEE

Third International Conference on Data Science in Cyberspace (DSC). 2018;181–8.

42. Symantec Corporation (2011) Sality: Story of a peer-to-peer viral network.

43. Symantec Corporation (2013) ZeroAccess Indepth.

44. Karuppayah S. Advanced Monitoring in P2P Botnets—A Dual Perspective. Springer; 2018.

45. Andriesse D, Rossow C, Stone-Gross B, Plohmann D, Bos H. Highly resilient peer-to-peer botnets are

here: An analysis of Gameover Zeus. In: 2013 8th International Conference on Malicious and Unwanted

Software: “The Americas” (MALWARE). 2013. p. 116–23.

46. Karuppayah S, Roos S, Rossow C, Mühlhäuser M, Fischer M. Zeus Milker: Circumventing the P2P

Zeus Neighbor List Restriction Mechanism. In: 2015 IEEE 35th International Conference on Distributed

Computing Systems. 2015. p. 619–29.

47. Bitcoin Wiki (2018) Majority attack

48. Crypto51 (2019) Cost of a 51% Attack for Different Cryptocurrencies

49. Montresor A, Jelasity M. PeerSim: A scalable P2P simulator. In: 2009 IEEE Ninth International Confer-

ence on Peer-to-Peer Computing. 2009. p. 99–100.

50. Wang P, Sparks S, Zou CC. An advanced hybrid peer-to-peer botnet. IEEE Transactions on Depend-

able and Secure Computing. 2010; 7(2):113–127.

51. Liu C, Lu W, Zhang Z, Liao P, Cui X. A recoverable hybrid C&C botnet. In: Malicious and Unwanted

Software (MALWARE), 2011 6th International Conference on. IEEE; 2011. p. 110–118.

52. Zou CC, Gong W, Towsley DF. Code red worm propagation modeling and analysis. In: ACM Confer-

ence on Computer and Communications Security. 2002.

53. Bitcoinj (2018) A library for working with Bitcoin.

54. Karuppayah S, Fischer M, Rossow C, Mühlhäuser M. On advanced monitoring in resilient and

unstructured P2P botnets. In: 2014 IEEE International Conference on Communications (ICC). 2014.

p. 871–7.

55. Rossow C, Andriesse D, Werner T, Stone-Gross B, Plohmann D, Dietrich CJ, et al. SoK: P2PWNED—

Modeling and Evaluating the Resilience of Peer-to-Peer Botnets. In: 2013 IEEE Symposium on Security

and Privacy. 2013. p. 97–111.

56. Dittrich D, Dietrich S. Discovery techniques for P2P botnets. Stevens Institute of Technology CS Tech-

nical Report. 2008; 4(26):2.

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 26 / 27

https://doi.org/10.1371/journal.pone.0226594

57. Coin Dance (2018) Bitcoin Nodes Summary.

58. Bustillos M (2013) The Bitcoin Boom. The New Yorker.

59. Haq O, Abaid Z, Bhatti N, Ahmed Z, Syed A. SDN-inspired, real-time botnet detection and flow-blocking

at ISP and enterprise-level. In: 2015 IEEE International Conference on Communications (ICC). 2015.

p. 5278–83.

60. Putman C, Nieuwenhuis LJ, others. Business Model of a Botnet. arXiv preprint arXiv:180410848. 2018;

61. Interpol (2015) Bitcoin’s Blockchain Offers Safe Haven For Malware And Child Abuse

DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network

PLOS ONE | https://doi.org/10.1371/journal.pone.0226594 December 20, 2019 27 / 27

https://doi.org/10.1371/journal.pone.0226594

