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Abstract

Ecological niche models (ENMs) are widely used in spatial prioritization for biodiversity con-

servation (e.g. selecting conservation areas). However, it is unclear whether ENMs are

always beneficial for such purposes. We quantified the benefit of using ENMs in conserva-

tion prioritization, comparing the numbers of species covered by conservation areas

selected on the basis of probabilities estimated by ENMs (ENM approach) and those

selected on the basis of raw observation data (raw-data approach), while controlling survey

range, survey bias, and target size of conservation area. We evaluated three ENM algo-

rithms (GLM, GAM, and random forests). We used virtual community data generated by

simulation for the evaluation. ENM approach was effective when survey bias is strong, sur-

vey range is narrow, and target size of conservation area is moderate. The percentage of

cases in which the ENM approach outperformed the raw-data approach ranged from 0.0 to

33% (GLM), 31% (GAM), and 75% (random forests) depending on conditions. The number

of rare species (< 20 presence records) included in the conservation area based on the

ENM approach was less than, or the same as, that of the raw-data approach. The unexpect-

edly limited cases in which the ENM approach was effective in the present research may

depend on the conservation target we used (to cover as many species as possible in conser-

vation area). Our results highlight urgent need for evaluating ENM’s effectiveness under

other conservation targets for wise use of ENM in conservation prioritization.

Introduction

Establishment of conservation area networks is central to the conservation of biodiversity, and

it is of great consequence to select conservation areas appropriately [1, 2] in the face of the cur-

rent biodiversity crisis [3]. Sophisticated computational site-selection algorithms have been

developed and are widely used to help identify cost-effective conservation area networks that

fulfill conservation targets [4]. However, the ability of these algorithms to select appropriately

representative conservation areas depends largely on data such as species presence and the

extent of vegetation types. Such raw survey data have various limitations, including limited

survey ranges, bias in survey ranges, and misclassification of species. A limited survey range

and omission errors can reduce the efficacy and options of conservation area networks [5–8],

and spatially and taxonomically biased data cause serious problems in conservation prioritiza-

tion [9, 10]. Without correcting false-positive errors due to misidentification, some species can

be excluded from a conservation area even though it was designed to include the species [5].
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Considering these limitations of survey data, Margules and Sarkar [1] recommended ana-

lyzing or treating raw survey data before using them for conservation prioritization in system-

atic conservation planning. Using an ecological niche model (ENM) is one of such

pretreatments. ENMs generate geographical maps of a species’ probability of presence typically

based on correlations between the presence, presence/absence, or abundance of species at mul-

tiple locations and the relevant environmental conditions[11, 12]. ENMs are generally

expected to improve the comprehensiveness and representativeness of conservation areas by

estimating species distributions in unsurveyed ranges and by reducing survey bias [13]. It

remains unclear, however, under which condition ENMs can resolve the limitations of survey

data for use in spatial prioritization, because they have their own limitations in terms of esti-

mation performance, depending on various conditions. In the case of survey range, for exam-

ple, it would be difficult to construct an accurate ENM when the survey range is too narrow,

and when it is sufficiently large, using an ENM does not improve–and can even worsen–prior-

itization as compared with using raw data alone. Moreover, prediction by using the ENM

approach may have greater uncertainty, and it is not clear how the uncertainty affects the

results of conservation prioritization [14].

Thus, the effectiveness of ENMs in conservation prioritization should depend on various

conditions. To our knowledge, no research has directly aimed to identify those conditions.

Some studies have compared the size and structure of selected conservation networks chosen

by using ENMs versus raw survey data [15–18]. These studies used distribution data of real

organisms, however, and therefore the true distributions are unknown. Thus, these studies

could not refer to the true number of species included in the networks as the baseline for the

performance evaluation and could not truly assess whether ENMs actually improved conserva-

tion area prioritization. Despite the unclear nature of the benefit of using ENMs and the condi-

tions needed for them to be effective in conservation prioritization, ENMs have been

frequently used in studies of conservation prioritization [5, 19–24].

Here, we used realistic distribution data generated by simulating several realistic macro-

assemblage properties such as species–abundance relationships. This virtual community data

for which we knew the true species distribution allowed us to clarify the conditions under

which the use of ENMs resulted in better conservation networks than using raw survey data

alone. To evaluate the effectiveness of ENMs, we compared the performance with regard to

spatial prioritization between two approaches: (1) the raw-data approach, in which we used

only survey data for conservation prioritization; and (2) the ENM approach, in which we esti-

mated ENMs based on the same survey data but used only the predicted probability of species

presence for conservation prioritization. We used the “maximal coverage” target as the aim of

conservation prioritization [25] in the present study: that is, the size of the conservation area

was predetermined (hereafter “target size”), and we selected sites so that they covered as many

species as possible. Performance here is defined as the number of species covered in the

selected conservation area networks. Though there are variations of “maximal coverage” target

to improve persistence of biodiversity in conservation areas networks, we used the simplest

conventional target. We considered the effects of the most common limitations of raw survey

data, namely survey range and degree of spatial survey bias, on the relative performance of the

two approaches.

Materials and methods

The flow of the analysis is shown in Fig 1, and we explain the details of each analytical process

in the following sections.

Evaluating the ecological niche model approach in conservation prioritization
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Generating virtual community structure

We used artificially generated virtual community data to evaluate the performance of ENMs in

conservation prioritization. We generated a species distribution dataset on a one-dimensional

space (grid) in which there was one environmental variable, and the environmental value

increased linearly as the spatial axis value increased. Both the number of sites (grid cells) and

the number of species in the overall range were fixed to 1000.

To generate various and realistic community structures on this environmental space, we

developed a program named ComGen (S1 supplemental methods), a generator of an virtual

community structure written in Perl. The program generates a dataset of the presence and

absence of multiple species at multiple sites that satisfies the three constraints; 1. frequency dis-

tributions of number of presence sites per species (rank-abundance curves), 2. frequency dis-

tributions of number of species per site (richness patterns), and 3. environmental preferences

of individual species. Those assemblage patterns are given to the ComGen program as input.

The rank-abundance curve is expected to affect the accuracy of an ENM, because estimating

the distributions of rare species is generally difficult and the curve determines the proportion

of rare species in the entire species pool. The species richness pattern among sites influences

the effectiveness of a conservation area network, because if many species are concentrated

within a small number of sites, many species can be covered by a small conservation area net-

work and vice versa. Therefore, we used realistic rank-abundance patterns: that is, log-linear

and log-normal curves and patterns extracted from actual distribution data of various taxo-

nomic groups (amphibians and reptiles, birds, butterflies, dragonflies, freshwater fishes, land

and freshwater mollusks, and mammals) in Japan obtained from reports of the Fifth National

Survey on the Natural Environment [26]. Log-linear and log-normal curves are commonly

used to fit rank-abundance curves of real communities [27]. There are few reports on richness

patterns in real communities, so we used log-linear and extracted patterns from the actual dis-

tribution data of the Fifth National Survey on the Natural Environment.

We assumed that each species had a unimodal environmental preference. The environmen-

tal suitability was a logit conversion of a quadratic function of the environment, and the central

value of a suitable environment was chosen randomly. We determined presence/absence of

each species considering this habitat suitability and above-mentioned rank-abundance curve

and richness pattern.

In the generating process of presence/absence of each species, we preset the number of spe-

cies at each site and the number of presence sites) of each species so that they meet the above-

mentioned richness pattern and rank-abundance curve. The most preferable environmental

Fig 1. Flow chart of analysis of the effectiveness of the ecological niche model (ENM) approach in conservation

prioritization, based on simulated virtual distribution data.

https://doi.org/10.1371/journal.pone.0226971.g001
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condition for each species is also preset at random, while the width of the preferable environ-

mental condition depends on the abundance of each species.

Then, we generate a tentative distribution of each species by randomly assigning the prede-

termined number of presence sites, considering the number of species present at each site, but

without considering the environmental preference of the species. Next, we adjust the random

tentative distribution to reflect the environmental preference of each species. We randomly

select two sites, and a pair of species each of which is present in one of the two sites are

swapped, if the swapping makes the distribution more consistent with the environmental pref-

erences. This process is repeated until there is no more swapping to improve consistency with

the environmental preferences. The richness pattern and rank-abundance curve are kept

unchanged through the swapping process. Details of this process are explained in S1 supple-

mental methods. Absence sites of each species are defined as the sites where the presence of

the species is not assigned.

We generated various community structures changing parameter values of rank-abundance

and richness patterns. See S1 Table for the names of parameters we controlled. Because the

generation procedure includes stochastic processes and the generated community structure

fluctuates randomly, we repeatedly generated 10 communities for each parameter setting. We

adopted this iteration number considering the balance between variability of results and calcu-

lation time. The calculation time was about 15 min on average per simulation run, including

all the processes in Fig 1.

Virtual survey

We surveyed the virtual community in survey areas of various sizes and with various levels of

spatial survey bias. Survey areas were set in blocks, and we controlled the level of spatial sam-

pling bias by changing the number and size of blocks. Survey bias is greater with a smaller

number of larger blocks. Although there are other ways to generate spatial survey bias, we

chose the block method because the response of ENM effectiveness to survey bias was largest

with this method. To set survey grid cells, we first divided the total area (1000 grid cells) into N
equally sized blocks. When the predetermined proportion of the surveyed range is R, 1000×R/

N consecutive grid cells are surveyed in each block. The position of the consecutive survey grid

cells in each block is randomly set. When 1000×R is indivisible by N, the remainder is ran-

domly assigned to survey blocks so that the total number of grid cells surveyed becomes

1000×R. We used 19 R values from 5% (50 grid cells) to 950% (950 grid cells) at 5% intervals,

and three levels of survey bias (no bias, weak bias with N = 5 survey blocks, and strong bias

with N = 2 blocks).

Ecological niche model

We assumed that species distribution data were presence/absence data, which is one of the

most frequently used data type in ENMs[28], and we used three ENM algorithms including

two classical statistical algorithms; generalized linear model (GLM)and generalized additive

model (GAM), and one machine learning algorithm; random forests (RF) [29]. We chose

these algorithms because of the following reasons. GLM and GAM are one of the most popular

and established statistical models, and GAM is able to fit non-linear more complicated func-

tion than GLM. RF is one of the most popular machine learning algorithms known for good

performance and requires relatively short calculation time including tuning parameters for

model complexity.

For GLM, we used logit-link function and binomial error distribution, and linear predictor

was a quadratic function, which was the same functional form as used in generating the virtual

Evaluating the ecological niche model approach in conservation prioritization
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community. Thus, we assumed that we knew the true functional form of each organism’s

response to the environmental condition. For GAM, we also used logit-link function and bino-

mial error distribution, and spline curve.

Selecting the conservation area

We selected the conservation area on the basis of complementarity [30, 31] in both the ENM

and raw-data approaches. We used the “maximal coverage” target as the aim of conservation

prioritization [25], and we selected sites so that they covered as many species as possible.

Another type of conservation target is the “minimum set” target [25], in which as small a

number of sites as possible is selected to cover all species or a certain proportion of species,

with no limitation on the size of the conservation area. However, the minimum set target was

not applicable in our case because we assumed the survey range was limited and we did not

know the true number of species in the whole area.

Target size directly affects the potential number of species to be conserved in the area, and

thus it is one of the most important factors that influence the results of conservation prioritiza-

tion. In the evaluation, we used five target sizes, i.e.1.0, 2.5, 5.0, 9.1, and 17% of the total area.

The 9.1 and 17% target size corresponds to the percentage area of national parks in Japan and

the Aichi Target of the Convention on Biodiversity, respectively.

Evaluation of the ENM approach

We evaluated the effectiveness of the ENM approach in conservation area selection based on

the following “effectiveness index”: (number of species covered in the conservation area by

ENM approach)/(number of species covered in the conservation area by raw-data approach)–

1. An effectiveness index value greater than zero indicates that the ENM approach is beneficial:

that is, we could select a conservation area that covers more species by using the ENM

approach than by using the raw-data approach.

Selecting conservation areas by using the raw-data approach

In the raw-data approach, we selected the conservation area on the basis of complementarity by

using the greedy algorithm. The greedy algorithm is a heuristic algorithm that uses stepwise analy-

sis to select conservation area [32]. In the first step, the cell with the largest species richness is

selected, and then additional cells that add the most additional species are selected step by step.

However, survey range is sometimes insufficient to select a predetermined target size of the

conservation area, such as when the survey range is smaller than the target size or when very

few species occur in the survey range. Thus, we used the following procedure: (1) we selected a

conservation area that covered all the species recorded in the surveyed range, and (2) when the

surveyed range was narrower than the target size, we added sites to the conservation area by

randomly selecting sites from the unsurveyed range until the conservation area equaled the

target size.

Selecting conservation areas by using the ENM approach

In the ENM approach, we selected the conservation area on the basis of the estimated probabil-

ity of the presence of each species over the whole area under consideration for conservation.

We ignored species that never appeared in the survey range because we could not construct an

ENM for such species. We directly used the presence probability and selected conservation

areas to maximize the expected number of species represented in the area by the greedy algo-

rithm, as described by Polasky, Camm [33].

Evaluating the ecological niche model approach in conservation prioritization
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There are other ways to select complementary conservation areas on the basis of the proba-

bility of species presence, such as converting probability into presence/absence data by using

threshold values [16, 34, 35]. We performed a preliminary analysis in which we converted the

probability of presence into presence/absence data by using various threshold values, and the

results we obtained were qualitatively the same as those with the direct use of probability.

Results

Among the various community structures we tried, we identified those cases in which the

ENM approach performed best in each type of rank-abundance pattern (i.e., type 1: log-linear,

type 2: log-normal, and type 3: realistic patterns). The parameters used to generate these three

virtual communities are shown in the S1 Table, and the community structures are illustrated

in Fig 2.

For each of these three community structure types, we generated 10 virtual communities.

Thus, we performed 25650 runs in total resulting from 3 community structure types × 10 itera-

tions × 19 survey ranges × 3 survey biases × 5 conservation targets × 3 ENMs.

Among the three ENM algorithms, the performance of RF was the best, and we show the

effectiveness of the ENM approach using RF in these three community structures in Figs 3–5.

Effectiveness of ENM approach using GLM and GAM are shown in Figs A-F in S1 Figs. The

effectiveness of the ENM approach was measured by effectiveness index which takes a value

greater than zero when the ENM approach is beneficial. When RF was used, the percentage of

cases in which effectiveness index> 0 was 75% (144 of 190 cases) under the best condition

(190 cases = 19 sampling ratios × 10 replications with community type 1, target size of 9.1%,

and strong survey bias; Fig 3), and it was 29% (2469 of 8550 cases) on average of all conditions

we showed in Figs 3–5. When GLM was used, the percentages dropped to 33% (best) and 6.9%

(on average), and when GAM was used, the percentages were 31% and 4.5%, respectively.

When we used RF, the conditions ENM approach to be beneficial were that survey bias was

large, survey range was narrow to medium, and target size of the conservation area was small

to medium. The parameter value of the surveyed range in which the ENM approach became

beneficial varied depending on the target size of the conservation area, and the parameter

value became smaller with smaller target size. When all three conditions were met, the effec-

tiveness index varied from 0.0 to 1.0. In other conditions, the number of species covered by

the selected conservation area based on ENM approach decreased in comparison with the

raw-data approach when bias is small and/or target size was small (lower left panels of Figs 3–

5). When bias was large and target size was large (upper right panels of Figs 3–5), the numbers

of species covered were almost similar (the values of effectiveness index were near 0) between

the two approaches.

When we used GAM or GLM, the general tendencies were similar to the results of RF,

except that the values of effectiveness index were smaller than 0 even when bias was large and

target size was large (upper right panels of S1 Figs and S2 Figs).

In the conservation areas selected by the ENM approach, the ratio of rare species (species

with<20 presence records) covered tended to be smaller than that of the raw-data approach,

and this tendency was especially marked when the ENM approach was effective, irrespective of

ENM algorithms (Fig 6A–6C). The number of rare species covered by ENM approach using

RF tended to be similar to or slightly smaller than that of the raw-data approach (Fig 6D). On

the other hand, the number of rare species covered by ENM approach using GLM or GAM

was generally smaller than that of the raw-data approach, and this tendency was especially

marked when the ENM approach was not effective (Fig 6E and 6f). When the effectiveness of

ENM was measured on the basis of the number of rare species by substituting “number of

Evaluating the ecological niche model approach in conservation prioritization
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species” in the effectiveness index with “number of rare species,” the parameter ranges for the

ENM approach to be beneficial became narrower, and the percentages of cases in which effec-

tiveness index > 0 for rare species using RF, GLM, and GAM were 20, 2.1, and 2.5%, respec-

tively, on average of all conditions for each algorithm (Figs A-I in S3 Figs).

Discussion

The conditions under which the ENM approach outperformed the raw-data approach in con-

servation area selection with a target to cover as many species as possible included: (1) large

survey bias; (2) narrow to medium survey range; and (3) small to medium target size of conser-

vation area. All of these conditions must be satisfied for the ENM approach to be beneficial

from the viewpoint of number of species covered, and the parameter ranges of these condi-

tions were not wide.

The reason for the conditions under which ENMs to be beneficial in

conservation prioritization

Two inherent properties of ENMs are likely to be responsible for the conditions under which

ENM-approach to be beneficial in conservation area selection by complementality with the

target to cover as many species as possible: (1) ENMs require a certain number of presence rec-

ords per species for good estimation and cannot properly estimate the distribution of rare spe-

cies unless the survey range is sufficiently large; and (2) ENMs cannot estimate the

distribution range of species that never occur in the survey range.

The parameter conditions under which the ENM approach became beneficial was closely

related to the ENMs’ property (1). In the cases of large survey bias (condition 1) and narrow or

medium-sized survey range (condition 2), only a few species appeared in the survey range (Fig

7), because only species in limited environmental conditions were sampled under such condi-

tions. There is a trade-off between the total number of species in the survey range and presence

records per species, and fewer total species results in increased presence records per species

(Fig 7). The trade-off exists because the total number of presence records (i.e., the sum of spe-

cies richness at all surveyed sites) in survey ranges of the same size is expected to be constant

irrespective of their levels of spatial bias, because the species richness at each site was assigned

in a spatially random manner in the present simulation (Fig D in S1 Supplemental Methods).

Therefore, under conditions 1 and 2, a small number of species frequently appeared in the sur-

vey range, and ENMs could be constructed for a larger proportion of the species. In the raw-

data approach, however, a reduction in the number of species in the survey range directly

resulted in a reduction of conservation efficiency. Thus, under conditions 1 and 2, the ENM

approach outperformed the raw-data approach.

When the target size was small to medium (condition 3), the ability of ENMs to predict

common species’ distributions was fully utilized. To increase the number of species included

in a small conservation area, we had to find sites of high species richness. The species included

needed not be rare species, but could be common species, given that we could conserve only a

small number of species in a small conservation area. Finding sites where common species are

concentrated is exactly the condition under which ENMs work well.

Fig 2. Three combinations of rank-abundance curve and richness pattern used to generate community structure types of virtual

distribution data used for the evaluation. (a), (c), (e) Histograms of number of presence sites per species (rank-abundance curve) and (b),

(d), (f) number of species per site (richness pattern) in communities with (a), (b) type 1: log-linear, (c), (d) type 2: log-normal, and (e), (f)

type 3: realistic patterns of rank-abundance curves in Japanese freshwater mollusks.

https://doi.org/10.1371/journal.pone.0226971.g002
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Conditions 2 (narrow to medium survey range) and 3 (small to medium target size) were

interrelated. With a smaller target size, the survey range in which a ENM was beneficial

became narrower. This is because in a small to medium conservation area, only a few species

can potentially be covered, and even a narrow survey range is sufficient to fill such a small con-

servation area.

The fact that ENMs cannot estimate the distribution range of species that never occur in

the survey range is obvious but implies that they have a limited ability to complement spatial

information. The main reasons why ENMs were expected to have some benefit in conservation

prioritization are that they can complement distribution information in unsurveyed ranges

and that they can correct the survey bias. However, a ENM corrects the distribution informa-

tion of only species that appear in the survey range. The benefit of this correction would be

small under the target to cover as many species as possible, because the raw-data approach is

also able to cover observed species when the target size is sufficiently large. A more serious

problem caused by a biased survey range is that species that live only in unsurveyed range are

not considered in conservation prioritization, and an ENM is not able to solve this problem.

Among the three ENM algorithms, RF performed considerably better than GLM and

GAM. Though the above-mentioned three conditions for ENM approach to perform better

than raw-data approach were common to all three ENM algorithms, RF resulted in negative

effectiveness value much less frequently than the other two algorithms especially when target

size is large. The superiority of RF is thought to be attributable to its ability to predict distribu-

tion of rare species relatively well. The number and ratio of rare species covered in the conser-

vation selected by using RF were notably larger than those of GLM and GAM, especially when

survey range was wide (Fig 6), and prediction accuracies were higher when RF was used than

when GLM or GAM was used (S4 Fig).

Previous researches compared characteristics of conservation areas selected based on raw-

data and ENMs using real distribution data [14–16]. These studies used “minimal area” target,

which seeks for minimal conservation area that satisfies a target such as covering all the spe-

cies. These studies found common characteristics that conservation areas based on ENMs tend

to be narrower than that based on raw-data. This is because ENMs estimate wider habitats

than known limited presence points, and more frequent overlaps among distribution ranges of

different species occur. These studies could not compare effectiveness of raw-data and ENM

approaches, because there was no perfect distribution data for the real communities they stud-

ied. Our study is the first study which evaluate the conditions for ENM approach to be effective

in comparison to raw-data approach using virtual community data as far as we know.

We used ENM for each species, which is the most popular type of distribution models used

in conservation prioritization. In contrast, Arponen, et al. [36] compared the efficiency of vari-

ous combinations of community-level modelling, which model multiple species at once, and

maximization algorithms for conservation prioritization by using simulated community data.

They showed that maximization of complementary richness–a procedure that accounts for

gradients in species richness and non-constant turnover rates of community composition in

environmental space–outperforms other approaches including direct selection based on raw

data, irrespective of target size they tested. They used virtual community composed of 3000

species in 160 × 160 grid cells with gradient of two environmental variables, biased and fixed

narrow survey range (200 sites, randomly scattered within the 25% of total environmental

Fig 3. Performance of the ecological niche model (ENM) approach using RF in the community structure type 1 illustrated in Fig 2A

and 2B. Black filled circles are values when the ENM approach was beneficial, and gray open circles were the other case. Line chart shows

median value in each condition. Target sizes of 9.1% and 17% correspond to the percentage area of national parks in Japan and the Aichi

Target of the Convention on Biodiversity, respectively.

https://doi.org/10.1371/journal.pone.0226971.g003
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Fig 4. Performance of the ecological niche model (ENM) approach using RF in the community structure type 2 illustrated in Fig 2C

and 2D. See Fig 3 for more details.

https://doi.org/10.1371/journal.pone.0226971.g004
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range), and narrow target size (2–64 sites). Direct comparison between their results and our

study is difficult because of the difference in the type of modelling, but we can find common

point that modelling is effective when survey range is relatively narrow and environmentally

biased, and target size is small.

Implication for future research

It is possible that the unexpectedly narrow parameter ranges in which ENM approach is effec-

tive in the present result is dependent on the target of conservation prioritization. We used the

“maximal coverage” target to cover as many species as possible. To achieve this target, accuracy

of distribution estimation of rare species is important, and this situation is unfavorable to the

ENM approach. There are other possible targets for conservation prioritization [25]. For

example, when the target is to better cover the distribution range of well-known species in the

Fig 5. Performance of the ecological niche model (ENM) approach using RF in the community structure type 3 illustrated in Fig 2E

and 2F. See Fig 3 for more details.

https://doi.org/10.1371/journal.pone.0226971.g005

Fig 6. Ratios of rare species (< 20 presence records) among species in conservation area networks (a), (b), (c), and numbers of rare species covered in

conservation area networks (d), (e), (f). The ecological niche model (ENM) approach using RF is considered effective when the total number of species in the selected

conservation area networks is larger than that by using the raw-data approach. The values are in the community structure type 1 illustrated in Fig 2A and 2B, with strong

survey bias and a 2.5% target size: that is, in one of the best-performing cases of the ENM approach.

https://doi.org/10.1371/journal.pone.0226971.g006
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conservation area, it would be just the case in which ENM-approach is very useful. Although it

is beyond the scope of the current study, it is promising avenue for future research to examine

relationships between target types and performance of ENMs and to look for the target that

has higher affinity with ENM approach.

In addition, the setting in the current analysis to make up for the shortage of conservation

area by randomly selecting sites from unsurveyed range when the survey range is insufficient

in the raw-data approach may be unrealistic. In reality, we would not select a conservation

area in such a way. Another way may be to use a hybrid approach that combines an ENM with

raw data. For example, one could select a conservation area on the basis of the raw-data

approach and then make up for the shortage by selecting additional sites based on prediction

by ENMs. Or, one could select a conservation area on the basis of the raw-data for rare species

or species of low ENM accuracy, and ENMs for other species. We performed a preliminary

analysis of such a hybrid approach, but among all our attempts there was no case in which the

hybrid approach performed better than the raw-data approach. This is probably because an

Fig 7. (a), (b), (c) Numbers of species in surveyed sites and (d), (e), (f) average number of presence records of each species observed at surveyed sites.

With (a), (d) no, (b), (e) moderate (five survey blocks), and (c), (f) strong (two survey blocks) survey bias. The values are in the community structure illustrated

in Fig 2A and 2B, with a 2.5% target size. Black filled circles are values when the ENM approach using RF was effective, and gray open circles were the other

case.

https://doi.org/10.1371/journal.pone.0226971.g007
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ENM cannot provide any profitable information as compared with random selection of sites

owing to its limited ability to complement spatial information (an ENM’s second property).

However, there are various possible ways to combine ENMs and raw data, and further analysis

of such hybrid approaches may be warranted.

There would be room to improve reality of virtual community structure. We generated vir-

tual communities which satisfy three constraints, i.e. rank-abundance curve, richness pattern,

and habitat suitability of each species. We did not consider environmental or spatial structures

in richness patterns, but in reality, existence of such structures is well known (e.g. latitudinal

gradient in species diversity). In addition, we considered only one environmental variable in

this research. Developing algorithm to generate virtual community which satisfy spatio-envi-

ronmental structures in richness pattern and having multiple environmental variables is chal-

lenging, but it would be very interesting to validate the effect of these factors on the

performance of ENM approach.

Our present analysis is the first step to understand the characteristics of ENM approach in

conservation prioritization, and the present results highlight the importance of future

researches in the above-mentioned perspectives for wise use of ENM in conservation

prioritization.
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