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Abstract Chronological age is an important predictor
of morbidity and mortality; however, it is unable to
account for heterogeneity in the decline of physiological
function and health with advancing age. Several at-
tempts have been made to instead define a “biological
age” using multiple physiological parameters in order to
account for variation in the trajectory of human aging;
however, these methods require technical expertise and
are likely too time-intensive and costly to be implement-
ed into clinical practice. Accordingly, we sought to

develop a metabolomic signature of biological aging
that could predict changes in physiological function
with the convenience of a blood sample. A weighted
model of biological age was generated based on multi-
ple clinical and physiological measures in a cohort of
healthy adults and was then applied to a group of
healthy older adults who were tracked longitudinally
over a 5–10-year timeframe. Plasma metabolomic sig-
natures were identified that were associated with bio-
logical age, including some that could predict whether
individuals would age at a faster or slower rate. Metab-
olites most associated with the rate of biological aging
included amino acid, fatty acid, acylcarnitine,
sphingolipid, and nucleotide metabolites. These results
not only have clinical implications by providing a sim-
ple blood-based assay of biological aging, but also
provide insight into the molecular mechanisms underly-
ing human healthspan.

Keywords Biological aging,Metabolomics,
Healthspan, Precisionmedicine

Introduction

Advanced chronological age is one of the most impor-
tant risk factors for many of the chronic diseases and
disabilities affecting contemporary societies (Lunenfeld
and Stratton 2013). The link between advancing age and
increased chronic disease risk is predominately mediat-
ed by the progressive decline of multiple physiological
systems (Franceschi and Campisi 2014; Kennedy et al.
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2014). While aging itself is inescapable, the rate at
which physiological functions decline with age is highly
variable among individuals and is the combined result of
genetic and non-genetic factors including lifestyle be-
haviors (e.g., diet and physical activity) and other envi-
ronmental or occupational exposures (e.g., sun damage
or proximity to volatile chemicals) (Brooks-Wilson
2013; Jiang et al. 2013). As such, individuals of the
same chronological age may differ considerably with
respect to their physiological function and overall health
status, thus limiting the predictive capacity of chrono-
logical age alone in determining overall disease risk.

In order to address this issue, recent attempts
have been made to define a “biological age” that is
more reflective of the inherent heterogeneity of hu-
man aging than chronological age (Nakamura 1991;
Cho et al. 2010; Levine 2013; Mitnitski et al. 2013;
Belsky et al. 2015; Sebastiani et al. 2017). Central to
this approach is the integration of multiple age-
related “biomarkers” that are modifiable by lifestyle
behaviors and other environmental factors and there-
fore more reflective of overall health than chrono-
logical age alone. In this regard, biological age,
when determined using clinical and physiological
parameters, predicts morbidity and mortality better
than chronological age (Levine 2013); however, the
clinical utility of this approach is limited by the
substantial cost, time, specialized equipment, and
training required to accurately assess multiple phys-
iological functions. As such, the development of a
surrogate blood-based measure of biological age
would eliminate the burden of making multiple clin-
ical and physiological assessments and more rapidly
identify individuals at risk for faster aging. More-
over, such biomarkers may offer insight into the
underlying mechanisms of aging and provide new
targets for therapies aimed at improving human
healthspan.

The metabolome, defined as all small molecules
characterizing a biological system, is altered with
age and reflective of age-related changes in physio-
logical function (Lawton et al. 2008; Houtkooper
et al. 2011; Mapstone et al. 2014; Johnson et al.
2018). In the present study, we sought to identify
plasma metabolomic signatures associated with bio-
logical aging in healthy adults. To do this, we
trained a model of biological age based on clinical
and physiological measures in a large cohort of
healthy adults and tested it in a smaller cohort of

mostly healthy middle-aged and older adults who
were tracked longitudinally over a 5–10-year time
frame. We identified small molecule signatures pres-
ent at baseline and/or follow-up in the longitudinal
cohort that are associated with biological aging,
including metabolites that are predictive of faster
vs. slower aging.

Methods

Study design and subjects

All study procedures were reviewed and approved by
the University of Colorado Boulder Institutional Review
Board. Clinical and physiological measurements were
performed at the University of Colorado Boulder Clin-
ical Translational Research Center (CTRC). All study
participants provided written informed consent after the
nature, benefits, and risks of the study were explained.
Subjects from the longitudinal cohort were re-contacted
after at least 5 years and provided an option to re-enroll.
All subjects were non-smokers, determined to be free of
clinical disease as assessed by medical history, physical
examination, blood chemistries, and resting and exer-
cise ECG. To control for their menstrual cycle, premen-
opausal women were studied during the early follicular
phase, while older women were postmenopausal for at
least 1 year. All subjects followed a 12-h fast and 24-h
abstention from alcohol, exercise, and prescription med-
ication prior to testing.

Model of biological age

Biological age was calculated using the basic Klemera-
Doubal equation without chronological age as a
marker to avoid biasing or overfitting the model and to
ensure that we capture the true heterogeneity of human
aging (Klemera and Doubal 2006). Parameters for the
13 clinical and physiological measures used in the mod-
el were estimated from cross-sectional data in 355 men
and 249 women (Table 1), generating separate equations
for biological age in males and females due to basic
differences in physiology. Specifically, a linear relation-
ship with chronological age was estimated in men and
women for each measure by individual linear regres-
sions. Biological age (BAE) for an individual with mea-
surements (xj) was calculated by the Klemera-Doubal
equation with m = 13:
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where kj is the slope, qj the intercept, and sj the standard
deviation of residuals for the corresponding regression.
Once the model was trained on our initial cohort of 604
individuals, the equation was applied to a longitudinal
cohort of 31 individuals to determine rates of aging,
calculated as the ratio ofΔ biological age:Δ chronolog-
ical age. ageDiff was calculated by assessing the differ-
ence in calculated biological age from chronological age
at baseline.

Dietary analysis

Each participant was instructed to complete a 3-day
food record (two weekdays and one weekend day) at
each time point. Participants were provided with verbal
and written instructions for reporting food intake includ-
ing providing accurate descriptions of the foods con-
sumed as well as estimated portion sizes. Upon comple-
tion, food records were checked for accuracy. Food

Processor SQL Nutrition and Fitness Program (ESHA
Research, Salem, OR, USA) was used for analysis.
Percent calories from fat, protein, and carbohydrates
were calculated for each individual, and differences in
the distribution of these dietary variables were assessed
using paired t tests and deemed significant at P < 0.05.

Metabolomics analysis

Sample preparation

Plasma was isolated from subjects and stored at − 80 °C
until analysis. Prior to LC-MS analysis, samples were
diluted 1:10 (v/v) with methanol:acetonitrile:water
(5:3:2, v:v). Suspensions were vortexed continuously
for 30 min at 4 °C. Insoluble material was removed by
centrifugation at 10,000g for 10 min at 4 °C, and super-
natants were isolated for metabolomics analysis by
UHPLC-MS.

UHPLC-MS analysis

Analyses were performed as previously published
(Nemkov et al. 2017). Briefly, the analytical platform
employs a Vanquish UHPLC system (Thermo Fisher
Scientific, San Jose, CA, USA) coupled online to a Q
Exactive mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA). Plasma extracts (10 μL) were
resolved over a Kinetex C18 column, 2.1 × 150 mm,
1.7-μm particle size (Phenomenex, Torrance, CA, USA)
equipped with a guard column (SecurityGuard™
Ultracartridge—UHPLC C18 for 2.1 mm ID Col-
umns—AJO-8782—Phenomenex, Torrance, CA,
USA) using an aqueous phase (A) of water and 0.1%
formic acid and a mobile phase (B) of acetonitrile and
0.1% formic acid. Samples were eluted from the column
using either an isocratic elution of 5% B flowed at 250
μL/min and 25 °C or a gradient from 5 to 95% B over 1
min, followed by an isocratic hold at 95% B for 2 min,
flowed at 400 μL/min and 30 °C. The Q Exactive mass
spectrometer (Thermo Fisher Scientific, San Jose, CA,
USA) was operated independently in positive or nega-
tive ion mode, scanning in Full MS mode (2 μscans)
from 60 to 900 m/z at 70,000 resolution, with 4-kV
spray voltage, 15 sheath gas, and 5 auxiliary gas. Cali-
bration was performed prior to analysis using the
Pierce™ Positive and Negative Ion Calibration Solu-
tions (Thermo Fisher Scientific). Acquired data was
then converted from .raw to .mzXML file format using

Table 1 Training cohort subject characteristics

Subject characteristics Male Female

Subjects (n) 355 249

Avg. age (range) 52 (18–79) 55 (18–80)

Body mass index (kg/m2) 26 ± 0.21 24 ± 0.25

Waist-to-hip ratio 0.89 ± 0.003 0.76 ± 0.004

Body fat (%) 24 ± 1 34 ± 1

Bone mineral density (g/cm2) 1.27 ± 0.01 1.14 ± 0.01

Systolic blood pressure (mmHg) 122 ± 1 116 ± 1

Diastolic blood pressure (mmHg) 74 ± 1 69 ± 1

Glucose (mg/dL) 90 ± 1 87 ± 1

Total cholesterol (mg/dL) 189 ± 2 200 ± 2

LDL-C (mg/dL) 116 ± 2 116 ± 2

HDL-C (mg/dL) 50 ± 1 66 ± 1

eGFR (mL/min/1.73 m2) 78 ± 1 75 ± 1

Max heart rate (bpm) 173 ± 1 168 ± 1

VO2max (mL/kg/min) 37.9 ± 0.5 30.7 ± 0.5

Data are mean ± SEM. LDL-C, low-density lipoprotein cholester-
ol; VLDL-C, very low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; eGFR, estimated glomerular
filtration rate; VO2max, maximal oxygen consumption
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Mass Matrix (Cleveland, OH, USA). Samples were
analyzed in randomized order with a technical mixture
injected after every 15 samples to qualify instrument
performance. Metabolite assignments, isotopologue dis-
tributions, and correction for expected natural abun-
dances of deuterium, 13C, and 15N isotopes were per-
formed using MAVEN (Princeton, NJ, USA) (Clasquin
et al. 2012). Metabolic pathway analysis was performed
using the MetaboAnalyst 3.0 package (www.
metaboanalyst.com) (Xia and Wishart 2016).

Statistics

The relation between chronological age and biological
age in our initial training cohort was established using
Pearson Correlation analysis. Additional comparisons
between measures made at baseline and follow-up in
the longitudinal cohort were performed using paired t
tests and deemed significant at P < 0.05. For metabolo-
mics analysis, features between the two time points in
the longitudinal cohort with raw p values < 0.05
resulting from a two-tailed t test and a false-discovery
rate (FDR) < 0.1 were classified as significant. To iden-
tify metabolites related with rate of aging, differences in
metabolite concentrations were calculated and associat-
ed with rate of biological aging while including chrono-
logical age as a covariate. Subsequently independent
linear regressions were employed to understand the
relation between metabolite abundances, future rate of
aging, and biological age while using percent calories
from total fat, protein, and carbohydrate as covariates.
Because three individuals did not complete all necessary
dietary records, they were excluded and 28 individuals
were included in the regression analyses. Removal of 3
individuals with missing dietary values did not change
overall subject characteristics (Table S1).

Results

Selection of healthspan indicators and calculation
of biological age

Thirteen (13) clinical and physiological indicators of
human healthspan were used to generate a model bio-
logical age (Table 1) using a similar approach as previ-
ously described (Klemera and Doubal 2006; Belsky
et al. 2015). Briefly, select clinical and physiological
measures were evaluated for their relation to

chronological age using individual linear regressions
and necessary components of these regressions were
incorporated into a weighted equation to calculate bio-
logical age (see “Methods” for complete description)
(Klemera and Doubal 2006). The selection of
healthspan indicators was based on their availability in
our datasets, their association with chronological age in
an independent training cohort (Figure S1) and/or their
relevance to age-related disease risk as reported in the
literature (Calle et al. 1999). Importantly, to avoid bias-
ing or overfitting our model of biological age, chrono-
logical age was not a selected variable. The training
cohort consisted of 604 healthy adults (aged 18–80
years), who had previously undergone testing in our
laboratory between 2003 and 2017. Importantly, all
subjects were free of clinical disease and disability at
the time of initial testing as confirmed by a medical
history and physical examination, and all healthspan
indicators were within normal healthy ranges, providing
a unique opportunity to address the underlying mecha-
nisms of primary aging without the confounding and
uncontrolled impact that various disease states may
impart upon an aging cohort (Table 1). Due to inherent
sex-related differences of several biomarkers included in
our model such as body composition and maximal
aerobic capacity (Fleg et al. 2005; Wells 2007), sex-
specific models of biological age were created from
our training cohort allowing us to compare men and
women on the same scale for all subsequent analyses.

Biological age was significantly correlatedwith chro-
nological age (Fig. 1, R2 = 0.68, P < 0.0001; both sexes

Fig. 1 Biological age and chronological age are significantly
correlated in our training cohort of 604 healthy adults (R2 = 0.68,
P value < 0.0001)
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combined); however, variability among subjects of sim-
ilar chronological age was observed and reflects the
expected heterogeneity of biological aging. To explore
this heterogeneity further, we calculated each individ-
ual’s “ageDiff”—the mathematical difference (in years)
between biological age and chronological age (Horvath
2013; Kim et al. 2017). A positive ageDiff implies that
an individual is biologically older than their chronolog-
ical age would suggest. In this regard, we observed a
normal distribution of ageDiff across our training cohort
(Fig. 2), suggesting that our model is sensitive to detect
a wide range of differences in biological age.

Rate of biological aging in an independent longitudinal
cohort

Using the sex-specific regression coefficients derived
from our training models, we calculated biological age
in a separate set of 31 healthy middle-aged and older
adult men and postmenopausal women at two separate
time points (Table 2). Subjects included individuals who
had undergone testing in our laboratory between 5 and
10 years prior and agreed to return to the laboratory for
follow-up assessments. All subjects were free of chronic
disease or disability at the time of initial enrollment and
remained mostly healthy over the time to follow-up,
which averaged 8.6 years. Only late middle-aged and
older adults were included in this longitudinal cohort to
maximize our ability to detect changes in biological age
within the relatively short follow-up period.

Overall, a significant increase in mean biologi-
cal age was calculated in our longitudinal cohort
from baseline to follow-up, which were free of any
differences associated with sex, demonstrating the

balance of our sex-specific algorithms. A total
increase of approximately six biological aging
years was observed, suggesting that as a group,
the longitudinal cohort aged slower than expected
over the time to follow-up (Fig. 3a). This may
have been due in part to a slight decrease in
LDL and total cholesterol (Table 2), which was
most likely due to initiation of cholesterol-
lowering medications in several of the subjects.
Interestingly, ageDiff at baseline was significantly
associated with ageDiff at follow-up, suggesting
that individuals who were biologically older than
their chronological age at baseline were likely to
remain relatively older than their chronological age
at follow-up, and vice versa (Fig. 3b).

Finally, to determine the rate of biological aging
over the follow-up period, we normalized changes in
biological age to changes in chronological age. This
resulted in a ratio in which a value above or below
one (1) is indicative of faster vs. slower biological
aging, respectively. We observed a continuous dis-
tribution in the rate of biological aging across our
longitudinal cohort, with approximately half of all
subjects exhibiting faster biological aging and other
half exhibiting slower biological aging (Fig. 4a).
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Fig. 2 ageDiff was calculated, and although most individual’s
biological age is within 5 years of their chronological age, many
demonstrate greater differences between biological age and chro-
nological age

Table 2 Subject characteristics of our longitudinal cohort

Subject characteristics Baseline Follow-up

Sex (M/F) 20/11

Age (years) 59 ± 1 68 ± 1*

Body mass index (kg/m2) 25 ± 1 25 ± 1

Waist-to-hip ratio 0.86 ± 0.02 0.86 ± 0.02

Body fat (%) 26 ± 2 27 ± 2

Bone mineral density (g/cm2) 1.23 ± 0.02 1.21 ± 0.02*

Systolic blood pressure (mmHg) 119 ± 2 123 ± 2

Diastolic blood pressure (mmHg) 73 ± 2 73 ± 1

Glucose (mg/dL) 89 ± 2 85 ± 1*

Total cholesterol (mg/dL) 204 ± 5 172 ± 5*

LDL-C (mg/dL) 124 ± 4 100 ± 4*

HDL-C (mg/dL) 57 ± 3 54 ± 3*

eGFR (mL/min/1.73 m2) 71 ± 2 78 ± 3

Max heart rate (bpm) 168 ± 2 156 ± 3*

VO2max (mL/kg/min) 36.1 ± 1.7 31.5 ± 1.5*

Data are mean ± SEM. LDL-C, low-density lipoprotein cholester-
ol; VLDL-C, very low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; eGFR, estimated glomerular
filtration rate; VO2max, maximal oxygen consumption. *P < 0.05
vs. baseline
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The plasma metabolome as a predictor of biological
aging

Because the determination of biological age based off of
clinical and physiological indicators is time-consuming
and technically challenging, we sought to identify po-
tential circulating metabolites that may serve as novel
biomarkers of biological aging. To do this we measured
the abundance of 360 individual metabolites in the
plasma of our longitudinal subjects at both time points
using ultra-high pressure liquid chromatography and
mass spectrometry (UHPLC-MS). To account for any
transient changes in the metabolome within an individ-
ual due to modifications to dietary consumption, mac-
ronutrient compositions were included as covariates in
our baseline statistical models. The percent of each
macronutrient in the diet showed no differences from
baseline to follow-up, suggesting stability in diet over
time. Therefore, dietary intakes were not included in the
longitudinal analyses.

In total, eighty-one (81) metabolites were signif-
icantly altered from baseline to follow-up in the
longitudinal cohort, confirming that age-related
changes are detectable in the plasma metabolome
over a relatively short period of time (Figure S2).
To determine if any of these changes were also
indicative of biological aging, we compared changes
in the metabolome (normalized to follow-up time) to
the rate of biological aging and identified 28 metab-
olites that were significantly associated with the rate
of biological aging (Fig. 4b) and Table S2. Interest-
ingly, more robust changes in metabolite abundance
in either direction, as indicated by a higher or lower

Z-score, appeared to occur in those individuals who
exhibited the fastest or slowest biological aging,
respectively (Fig. 4a). The metabolites most associ-
ated with the rate of biological aging included amino
acid, fatty acid, acylcarnitine, sphingolipid, and nu-
cleotide metabolites.

Although determining an individual’s actual rate of
biological aging holds clinical value (e.g., precision
medicine), it is technically challenging and requires
repeat assessments of multiple clinical and physiologi-
cal parameters, making it difficult to implement into
clinical practice. Therefore, our ultimate goals were to
(a) identify baseline metabolomic signatures indicative
of one’s biological age at a single time point and (b) to
predict one’s future rate of biological aging (i.e., if
someone is at risk for faster vs. slower aging).

Metabolites associated with biological age

To understand if the plasma metabolome is reflective of
one’s biological age, we explored whether metabolite
abundances measured at baseline are associated with an
individual’s biological age at the same time point, while
controlling for chronological age and dietary macronu-
trient content in the analysis. Three individuals did not
complete all necessary dietary records and were there-
fore excluded from this regression analysis due to miss-
ing values, although the elimination of these subjects did
not change group characteristics (Table S1). In total, 21
metabolites were related to biological age, 16 of which
were endogenous or secondary metabolites of microbe
metabolism (Table 3). Greater abundances of metabo-
lites associated with folate (6-lactoyl-5-6-7-8

Baseline Follow-Up
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Fig. 3 a Change in biological age, calculated from clinical and
physiological measures, in our longitudinal cohort. Although the
change in biological age is significant (P < 0.01), the trajectories of

aging are highly variable. b Significant relation between ageDiff at
baseline and follow-up (P < 0.001)
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tetrahydropterin), fatty acyl (phaseolic acid), ethanol-
amine (anandamide), and carboxylic acid (L-
homocitrulline) metabolism were observed in individ-
uals who were biologically older. Alternatively, greater
concentrations of metabolites from carnitine and fatty
acid metabolism (10-hydroxydecanoic acid, O-
dodecanoyl-carnitine, tetradecenoyl carnitine, O-
decanoyl-L-carnitine, acyl-C18:2-OH), TCA cycle (cit-
rate), polyamine (putrescine), inositol (inositol 1-2-3-5-
6-pentakisphosphate), sterol (pregna-4,9(11)-diene-
3,20-dione), serine (phosphoserine), indole (indole-3-
acetate), and ubiquinone (4-hydroxybenzoate) pathways
were associated with a lower biological age.

Predicting faster vs. slower aging

Finally, after determining that the plasma metabolome is
associatedwith biological age, we sought to determine if
the concentrations of specific metabolites among indi-
viduals at baseline could predict whether an individual
would experience faster or slower biological aging over

the time to follow-up.While controlling for age and diet,
twelve (12) metabolites measured at baseline predicted
the rate of biological aging in our longitudinal cohort
(Table 4). Of these, all four metabolites associated with
faster aging were linked to fatty acid/TCA cycle metab-
olism (acyl-C5-OH, oxaloacetate, N-(heptadecanoyl)-
ethanolamine, and oxalosuccinate), whereas eight me-
tabolites related to glycolysis (2-phospho-D-glycerate),
nucleotide (phosphate and 3′5′-cyclic IMP), glutathione
(ascorbate), caffeine metabolism (5-acetylamino-6-
formylamino-3-methyluracil), amino acid metabolism
(selenohomocystine and pantetheine), and one exoge-
nous metabolite (octylamine) were positively associated
with a slower aging phenotype.

Discussion

Despite a growing body of literature, there is little
consensus regarding the most appropriate method
for determining biological age in humans. One
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Fig. 4 a Rate of biological aging
for each individual in the
longitudinal cohort. A ratio
smaller than one indicates slower
aging, while a ratio greater than
one indicates faster aging. b
Heatmap of the change in
abundance of 28 metabolites
significantly associated with rate
of biological aging. Individuals
are aligned in columns,
metabolites in rows. (See
Table S2 for list of metabolites
and associated pathways).
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popular approach has been to measure the levels of
circulating biomarkers that are strongly correlated
with chronological age such as the calculation of
DNA methylation (DNAm) age using age-related
CpG methylation sites within circulating leukocytes
(Hannum et al. 2013; Horvath 2013). Although this
approach is convenient and there is some agreement
among methylation sites, it has been demonstrated
that the ability of DNAm age to predict mortality is
lost after adjusting for chronological age (Kim et al.
2017), suggesting that these circulating biomarkers
may be more related to the passage of time than a
true indicator of human healthspan. Although some
analyses have associated molecular markers, such as
DNAm age, with physiological measures, this ap-
proach only stands to validate against individual
physiological risk factors instead of capturing
changes in physiological function (Peters et al.
2015). An alternative approach is to define

biological age using clinical and physiological pa-
rameters that are closely associated with age-related
disease risk. Such models predict mortality better
than those based only on chronological age-related
molecular markers (Levine 2013; Belsky et al. 2015;
Kim et al. 2017), but are more costly and time-
consuming and require specialized training and
equipment to measure, thus limiting their practical-
ity in primary care or other clinical settings.

In the present study, we developed a hybrid approach
in which we first developed a model of biological aging
using clinical and physiological parameters indicative of
risk for age-related disease and disability and then iden-
tified sets of circulating metabolites that are associated
with, and/or predictive of biological age, thereby merg-
ing clinically relevant parameters with the simplicity of
a blood sample. In general, we identified several metab-
olites associated with both baseline biological age and
the future rate of aging that are known to be involved in

Table 3 Association of metabolite concentrations with biological age at baseline. Non-endogenous are metabolites notated in italic text

Metabolite Estimate Error P value

Greater values indicative of greater biological age

6-Lactoyl-5-6-7-8-tetrahydropterin 9.45E-06 4.07E-06 0.03

Phaseolic acid 1.23E-05 5.23E-06 0.03

Anandamide 4.56E-04 1.82E-04 0.02

L-Homocitrulline 2.61E-03 1.07E-03 0.02

4-Nitroaniline 2.63E-06 8.61E-07 0.006

Felbamate 4.40E-06 1.82E-06 0.02

Greater values indicative of lower biological age

10-Hydroxydecanoic acid − 1.17E-04 4.35E-05 0.01

Inositol 1-2-3-5-6-pentakisphosphate − 3.95E-04 1.52E-04 0.02

Citrate − 1.27E-06 5.15E-07 0.02

Acyl-C18:2-OH − 3.00E-04 1.22E-04 0.02

Phosphoserine − 1.57E-05 6.56E-06 0.03

1stgna-4-9(11)-diene-3-20-dione − 1.54E-04 6.56E-05 0.03

Indole-3-acetate − 6.64E-06 2.87E-06 0.03

4-Hydroxybenzoate − 1.26E-07 5.56E-08 0.03

Tetradecenoyl carnitine − 5.57E-06 2.47E-06 0.03

O-Dodecanoyl-carnitine − 5.90E-06 2.69E-06 0.04

O-Decanoyl-L-carnitine − 3.40E-06 1.60E-06 0.045

Putrescine − 7.86E-04 3.76E-04 0.048

6-Thioxanthine 5-monophosphate -5.87E-05 1.88E-05 0.004

Theogallin -5.53E-06 1.67E-07 0.003

Pantetheine -5.80E-06 2.21E-06 0.02
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the regulation of energy homeostasis (e.g., fatty acid
metabolism). Cellular energy metabolism is tightly con-
trolled, and its dysregulation has been implicated as a
central mechanism, or “hallmark” of age-associated
physiological declines (Finkel 2015; López-Otín et al.
2016); thus, our study may offer new indicators of aging
trajectories that can suggest which individuals might be
best targeted for early intervention. In our model, higher
levels of carnitines (tetradecenoyl carnitine, O-
dodecanoyl-carnitine, O-decanoyl-L-carnitine), neces-
sary for fatty acid metabolism, were associated with
lower biological ages at baseline. Elevated levels of
carnitine metabolites may be indicative of increased
capacity for fatty acid utilization, as reduced carnitine
levels with age have been demonstrated to reduce mito-
chondrial performance (Noland et al. 2009) and support
the association between biological aging and mitochon-
drial dysfunction. Additionally, lower biological age
was also associated with higher levels of the TCA cycle
intermediate citrate, indicating a greater capacity of the
TCA cycle to produce ATP. Together, these findings
indicate that lower biological age is associated with the
potential for greater metabolic flux.

Metabolites associated with energy metabolism were
also related to an individual’s future rate of biological
aging. Elevated 2-phospho-D-glycerate (glycolysis) was
associated with a slower rate of future aging, whereas
higher concentrations of acyl-C5-OH, N-(heptadecanoyl)-

ethanolamine, oxaloacetate, and oxalosuccinate were asso-
ciated with a faster rate of biological aging in the future.
Oxaloacetate and oxalosuccinate are key components of
the citric acid cycle and indicate potential disruptions in
this energy pathway may contribute to a pro-biological
aging phenotype. Oxaloacetate is converted to citrate by
the enzyme citrate synthase, while oxalosuccinate is con-
verted from isocitrate to α-ketoglutarate. Considering that
we observed higher levels of citrate in those with lower
baseline biological age, these findings may suggest that
diminished citrate synthase activity (resulting in an
assumulation of oxaloacetate and oxalosuccinate accom-
panied by a decrease in citrate levels) could play a key role
in the biological aging process. Indeed, citrate synthase
activity has been shown to decline in human skeletal
muscle with aging (Lanza et al. 2008), an effect that is
protected by endurance exercise training, a known modu-
lator of human healthspan.

Our analysis also highlighted amino acid metab-
olism in addition to energy homeostasis pathways.
Several amino acids were also associated with an
increased rate of biological aging, such as L-cyste-
ine, L-lysine, glutamine, cystine, and L-methionine,
further implicating changes in amino acid metabo-
lism with aging (Houtkooper et al. 2011). Particu-
larly, the positive association of circulating L-me-
thionine levels and a faster rate of biological aging
i s in t r igu ing , as prev ious f ind ings have

Table 4 Metabolite concentrations at baseline are significantly associated with future faster or slower rate of aging. Non-endogenous
metabolites are notated in italic text

Metabolite Estimate Error P value

Greater values indicative of future faster aging

Acyl-C5-OH 9.47E-06 3.53E-06 0.01

Oxaloacetate 8.81E-06 3.38E-06 0.02

N-(Heptadecanoyl)-ethanolamine 9.74E-05 4.48E-05 0.04

Oxalosuccinate 2.13E-06 1.02E-06 0.048

Greater values indicative of future slower aging

2-Phospho-D-glycerate − 2.11E-05 7.35E-06 0.01

Ascorbate − 2.50E-06 1.04E-06 0.02

Selenohomocystine − 9.00E-07 3.80E-07 0.03

Pantetheine − 3.00E-07 1.29E-07 0.03

Phosphate − 1.02E-07 4.50E-08 0.03

5-Acetylamino-6-formylamino-3-methyluracil − 4.41E-07 1.98E-07 0.04

3′,5′-Cyclic IMP − 4.11E-07 1.93E-07 0.045

Octylamine − 2.72E-07 1.25E-07 0.04
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demonstrated that L-methionine restriction is asso-
ciated with preserved physiological function in
animal models across the lifespan (Sun et al.
2009; Hasek et al. 2010).

This analysis demonstrates that circulating plasma
metabolomic profiles are associated with the rate at
which changes in biological age occur, which is impor-
tant in determining the molecular underpinnings of ag-
ing. Our novel set of blood-based markers of biological
aging have potential applications in both biomedical
research and clinical practice. In research settings, this
approach provides an avenue to more efficiently test and
validate novel interventions designed to target the basic
mechanisms of human aging. Such trials will take years
before their success can be confirmed; however, the
concept of blood-based markers of biological age that
could provide intermediate insight into the potential of
an intervention to slow aging would be of great value
considering the projected increase in the number of
older adults over the next several decades.

Our unique blood-based markers of biological age
could also be used in the primary care setting to more
efficiently and cost-effectively track disease risk over
time, and possibly screen candidates for more labor-
intensive follow-up testing. For example, low cardiore-
spiratory fitness (usually assessed by measuring
VO2max) is a known risk factor for cardiovascular and
all-cause mortality in older adults (Blair et al. 1989;
Laukkanen et al. 2004; Sui et al. 2007); however, it is
not regularly assessed in the primary care setting due to
costs and logistical challenges (Ross et al. 2016). Al-
though non-exercise, regression-based prediction
models of cardiorespiratory fitness currently exist
(Jackson et al. 1990; Bradshaw et al. 2005; Cao et al.
2010; Nes et al. 2011), these models are typically based
off of basic characteristics such as age, sex, and body
composition (Ross et al. 2016) and may not capture
more subtle differences among healthy, asymptomatic
older adults. Because the plasma metabolome is thought
tomore closely reflect changes in physiological function
(Soltow et al. 2010; Barallobre-Barreiro et al. 2013), our
unique signatures of biological aging may be more
capable of identifying subclinical changes indicative of
worsening function (such as low cardiorespiratory fit-
ness). While our approach is not meant to serve as a
replacement for important clinical measures such as
VO2max, the early and more frequent assessment of
these novel biomarkers may trigger earlier follow-up
testing and implementation of preventive measures.

In summary, our study identified unique metabolomic
signatures that are associated with the rate of human
biological aging and may be useful for the rapid detection
of older adults at risk for physiological dysfunction. Al-
though further analyses need to be performed in diverse
patient populations to confirm and extend our observa-
tions, the presentmodel of biological aging and subsequent
molecular analyses has established an approach to investi-
gate the molecular foundation of biological aging in
humans.
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