
REVIEW

The potential role of necroptosis in inflammaging and aging
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Abstract An age-associated increase in chronic, low-
grade sterile inflammation termed “inflammaging” is a
characteristic feature of mammalian aging that shows a
strong association with occurrence of various age-
associated diseases. However, the mechanism(s) re-
sponsible for inflammaging and its causal role in aging
and age-related diseases are not well understood. Age-
associated accumulation of damage-associated molecu-
lar patterns (DAMPs) is an important trigger in inflam-
mation and has been proposed as a potential driver of
inflammaging. DAMPs can initiate an inflammatory
response by binding to the cell surface receptors on
innate immune cells. Programmed necrosis, termed
necroptosis, is one of the pathways that can release
DAMPs, and cell death due to necroptosis is known to
induce inflammation. Necroptosis-mediated inflamma-
tion plays an important role in a variety of age-related
diseases such as Alzheimer’s disease, Parkinson’s dis-
ease, and atherosclerosis. Recently, it was reported that

markers of necroptosis increase with age in mice and
that dietary restriction, which retards aging and in-
creases lifespan, reduces necroptosis and inflammation.
Genetic manipulations that increase lifespan (Ames
Dwarf mice) and reduce lifespan (Sod1−/− mice) are
associated with reduced and increased necroptosis and
inflammation, respectively. While necroptosis evolved
to protect cells/tissues from invading pathogens, e.g.,
viruses, we propose that the age-related increase in
oxidative stress, mTOR signaling, and cell senescence
results in cells/tissues in old animals being more prone
to undergo necroptosis thereby releasing DAMPs,
which contribute to the chronic inflammation observed
with age. Approach to decrease DAMPs release by
reducing/blocking necroptosis is a potentially new ap-
proach to reduce inflammaging, retard aging, and im-
prove healthspan.
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Introduction

Chronic, low-grade sterile inflammation that occurs
with age (inflammaging) has been observed in all mam-
malian species studied, e.g., rodents (Brubaker et al.
2011), rhesus monkeys (Didier et al. 2012), and humans
(Franceschi and Campisi 2014), and has been identified
as one of the “seven pillars of aging” (Kennedy et al.
2014). According to inflammaging theory, “physiolog-
ical or pathological aging can be driven by the
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proinflammatory cytokines and substances produced by
the innate immune system” (Franceschi et al. 2000;
Goto 2008); therefore, inflammaging has been put for-
ward as a mediator of reduced healthspan and unsuc-
cessful aging in humans (Franceschi et al. 2007). Be-
cause inflammation is strongly associated with a variety
of diseases (e.g., type 2 diabetes, cardiovascular disease,
cancer, neurodegenerative diseases such as Alzheimer’s
disease, and frailty), it has been argued that
inflammaging is also an important factor in the etiology
of most age-related diseases (Franceschi and Campisi
2014). In support of this argument are the studies show-
ing that disease and environmental conditions that re-
duce lifespan (e.g., obesity, human immunodeficiency
virus-infection, and exposure to cigarette smoke) are
associated with increased inflammation (Iantorno et al.
2014; Deeks 2011; Lee et al. 2012), and interventions
that increase lifespan in mice, e.g., dietary restriction
(Spaulding et al. 1997), dwarfism (Masternak and
Bartke 2012), and rapamycin treatment (Richardson
et al. 2015) reduce inflammation. These data have led
to the generally accepted view that inflammation plays
an important role in the underlyingmechanisms of aging
(Franceschi and Campisi 2014). However, almost all the
data in support of role of inflammation in aging are
correlative. There are two studies that have directly
tested the role of inflammation in aging. Zhang et al.
(2013a) showed that inhibition of the nuclear factor
kappa-light-chain-enhancer of activated B cells
(NF-κB) pathway (which regulates the expression of
various pro-inflammatory genes), in the hypothalamus
of mice reduced brain inflammation, extended lifespan,
and improved healthspan of mice. However, this study
failed to test the effect of this genetic manipulation on
systemic inflammation and it is possible that blocking
NF-κB activation affected the brain and aging through
processes other than inflammation. Second, Youm et al.
(2013) reported that mice deficient in Nod-like receptor
nucleotide-binding domain leucine rich repeat contain-
ing protein 3 (NLRP3) inflammasome (Nlrp3−/− mice),
which is required for the caspase-1-dependent secretion
of interleukin-1 beta (IL-1β) and IL-18, have reduced
inflammation and improved measures of healthspan,
such as cognition and memory, rotarod performance,
bone loss, and glycemic control. However, no lifespan
data for the Nlrp3−/− mice was presented.

One of the common features of inflammaging is the
age-related increase in the level of circulating proinflam-
matory cytokines such as IL-6, tumor necrosis factor-α

(TNF-α), and IL-1β (Hager et al. 1994; Pedersen et al.
2003; Ferrucci et al. 2005; Roubenoff et al. 1998). C-
reactive protein (CRP) is yet another factor that has been
shown to be associated with inflammaging in humans
(Ahmadi-Abhari et al. 2013; Puzianowska-Kuźnicka
et al. 2016). Increased levels of IL-6 and TNF-α in the
serum of elderly are associated with disease, disability,
and mortality (De Martinis et al. 2005) and elevated IL-
1β levels are associated with the development of several
age-related degenerative diseases, including type 2 dia-
betes and Alzheimer’s disease (Youm et al. 2011;
Heneka et al. 2013).

Although the exact cause of inflammaging is not
known, cell senescence (Campisi and d'Adda di
Fagagna 2007; Baker et al. 2011), immune senescence
(Franceschi et al. 2000; McElhaney and Effros 2009),
increased gut permeability or changes in oral microbiota
(Fransen et al. 2017), and changes in the coagulation
system (Biagi et al. 2011) have been proposed to play a
role in inflammaging. Age-associated accumulation of
damage-associated molecular patterns (DAMPs) is yet
another important factor that has been proposed as a
potential driver of inflammaging (Goldberg and Dixit
2015). In this review, we will discuss the potential role
of DAMPs and a novel inflammatory cell death path-
way, necroptosis in inflammaging and age-associated
diseases and review the possible mechanisms of how
necroptosis could potentially be activated with age.

Role of DAMPs in inflammaging

DAMPs are self-molecules that can initiate an inflam-
matory response through activation of the innate im-
mune system (Seong and Matzinger 2004; Feldman
et al. 2015). Under normal physiological conditions,
DAMPs are sequestered inside the cell and are therefore
hidden from recognition by the immune system. How-
ever, conditions that cause cell death or tissue injury,
which result in the release of these molecules into the
extracellular environment, can trigger activation of the
innate immune system (Land 2015). The innate immune
system is the first line of host defense against pathogens
and is activated by unique microbial molecules called
pathogen-associated molecular patterns or PAMPs
through the binding to pattern recognition receptors
(PRRs) (Albiger et al. 2007). DAMPs initiate the in-
flammatory response through the activation of the same
group of PRRs, and sustained activation of the innate
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immune system by DAMPs can lead to chronic inflam-
mation and tissue injury (Land 2015).

Because DAMPs are potent inducers of inflamma-
tion, it is possible that DAMPs might play a role in the
age-related increase in chronic inflammation. Pinti et al.
(2014) reported a strong association between the age-
related increase in circulating mitochondrial DNA
(mtDNA), a DAMP, and increase in inflammatory cy-
tokines in humans. Circulating mtDNA levels gradually
increase after 50 years of age, and subjects with the
higher mtDNA plasma levels had the higher amounts
of circulating TNF-α, IL-6, RANTES (regulated on
activation, normal T cell expressed and secreted), and
IL-1rα, and subjects with the lowest mtDNA levels had
the lowest levels of the same cytokines. Importantly,
they showed that treatment of monocytes with mtDNA
also resulted in increased production of TNF-α, in vitro,
providing direct evidence for the role of mtDNA in
inflammation and possibly inflammaging. An age-
associated increase in the circulating levels of the
DAMP, high mobility group protein B1 (HMGB1) has
been reported in mice (Davalos et al. 2013).

When cells rupture, DAMPs are released from dif-
ferent cellular compartments such as extracellular ma-
trix (e.g., fibronectin, heparan sulfate), the nucleus (e.g.,
DNA, histones, HMGB1, and IL-1α), cytosol (e.g.,
S100 proteins, heat shock proteins (HSPs), amyloid
beta, uric acid, ATP), mitochondria (e.g., mtDNA,
Tfam), endoplasmic reticulum (e.g., calreticulin), and
plasma membrane (e.g., syndecans and glypicans)
(Schaefer 2014). A major source of DAMPs is necrosis,
a non-regulated form of cell death. When the cell mem-
brane ruptures in cells undergoing necrosis, there is a
massive release of DAMPs into the extracellular space
(Ellis and Horvitz 1986;Miura et al. 1993). Studies have
shown that conditions that induce necrosis lead to the
release of DAMPs (HMGB1, HSP70, ATP and IL-1α),
and induce a strong inflammatory response both in vitro
and in vivo (Kaczmarek et al. 2013).

Molecular mechanism of necroptosis and role
of necroptosis in inflammation

Necrosis was initially thought to be an accidental (non-
regulated) form of cell death because this cell death
process is caspase-independent, in contrast to apoptosis.
However, research over the past decade have shown that
necrosis can also be programmed by a pathway called

necroptosis (Degterev et al. 2005; Newton andManning
2016; Pasparakis and Vandenabeele 2015). Cells under-
going necroptosis are characterized by cell swelling,
loss of plasma membrane permeability, membrane rup-
ture (Galluzzi et al. 2012), the release of DAMPs, such
as HMGB1, S100 proteins, ATP, IL-33, IL-1α, HSP70,
double stranded DNA (dsDNA) and mtDNA, and in-
creased production of pro-inflammatory cytokines IL-6
and IL-1β (Moreno-Gonzalez et al. 2016). The key
players in the necroptosis pathway are receptor-
interacting serine/threonine-protein kinase 1 (RIPK1),
RIPK3 and mixed lineage kinase domain like
pseudokinase (MLKL) as shown in Fig. 1. Sequential
activation of RIPK1 and RIPK3 is followed by phos-
phorylation and oligomerization ofMLKL, then binding
to and disruption of the cell membrane, and release of
cellular components, such as DAMPs. The DAMPs
bind to cell surface receptors on innate immune cells
to trigger an inflammatory response.

The term “necroptosis” was introduced by Degterev
et al. 2005 when he observed that Necrostatin-1 [Nec-1,
5-(1H-indol-3-ylmethyl)-3-methyl-2-sulfanylidene-4-
imidazolidinone] selectively inhibited TNF-α-induced
necrosis. Later studies showed that Nec-1 blocks
necroptosis by inhibiting the kinase activity of RIPK1,
the first kinase in the necroptotic pathway (Degterev
et al. 2008; Xie et al. 2013). Studies by Polykratis
et al. (2014) have shown that mice expressing the kinase
inactive form of Ripk1 (Ripk1D138N/D138N) are protected
from TNF-induced necroptosis, in vivo, demonstrating
that kinase activity of RIPK1 is essential for necroptosis.
RIPK3 was identified as a crucial regulator of death
receptor-induced necroptosis in 2009 (Cho et al. 2009;
He et al. 2009; Zhang et al. 2009). Formation of
necrosome, a complex of RIPK1 and RIPK3, was
shown to be the key event in necroptosis activation
(Linkermann and Green 2014; Vandenabeele et al.
2010) as shown in Fig. 1. Within the necrosome, the
kinase-active conformation of RIPK1 is essential for the
activation and autophosphorylation of RIPK3 (He et al.
2009). Similar to RIPK1, the kinase activity of RIPK3 is
critical for necroptosis because kinase-inactive mutants
of RIPK3 fail to reconstitute necroptosis in RIPK3-
deficient cells (Cho et al. 2009; He et al. 2009; Zhang
et al. 2009). In contrast to Ripk1−/− mice that die soon
after birth (Kelliher et al. 1998), Ripk3−/− mice are
viable and fertile and exhibit no obvious phenotype.
While Ripk3−/− mice are resistant to TNF-induced hy-
pothermia, mice expressing catalytically-inactive form
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of Ripk3 (RIPK3D161N) exhibit perinatal lethality due to
apoptosis mediated by RIPK1 and caspase-8, suggest-
ing that both necroptosis and apoptosis are held in
balance by RIPK3 (Newton et al. 2014).

The RIPK3-mediated phosphorylation of the kinase-
like domain of MLKL is the next key step in the
necroptosis pathway (Wang et al. 2014) as shown in
Fig. 1. Phosphorylation of MLKL results in its oligo-
merization, which exposes a motif in the N-terminus of
MLKL that triggers the translocation of MLKL to the
plasma membrane. Phosphatidylinositol phosphate
within the plasma membrane interacts with the exposed

motif on MLKL, leading to the disruption of plasma
membrane through a yet to be identified mechanism
(Murphy et al. 2013; Dondelinger et al. 2014). Similar
to Ripk3−/−mice,Mlkl−/−mice are viable and exhibit no
obvious phenotype. Cells derived fromMlkl−/−mice are
resistant to TNF-induced necroptosis demonstrating that
MLKL is a critical effector molecule in the execution of
necroptosis (Murphy et al. 2013). As shown in Table 1,
studies have shown that use of genetic and pharmaco-
logical manipulations that inhibit necroptosis can reduce
inflammation induced in a variety of systems, in vivo,
demonstrating the importance of necroptosis in
inflammation.

Role of necroptosis in aging and inflammaging

Because necroptosis is a major source of DAMPs, we
were interested in determining whether the increased
levels of circulating DAMPs with age could be due to
an age-related increase in necroptosis. We measured the
levels of the necroptosis marker, phosphorylatedMLKL
and MLKL in epididymal white adipose (eWAT) of
mice, one of the major tissues involved in the production
and secretion of proinflammatory cytokines. As shown
in Fig. 2a, we found a 2.7-fold increase in the levels of
phosphorylated MLKL and 3.5-fold increase in MLKL
protein with age. The age-associated increase in
necroptosis was paralleled by an increase in 14 inflam-
matory cytokines, including the proinflammatory cyto-
kines IL-6, TNF-α, and IL-1β, and 11 chemokines in
old mice. We next tested the effect of dietary restriction
(DR) on necroptosis because DR increases the lifespan
of a wide variety of species and has been shown to
reduce inflammation in mammals (Spaulding et al.
1997). As shown in Fig. 2a, DR reduced necroptosis
in eWAT of old mice, e.g., the levels of phosphorylated
MLKL and MLKL were reduced to levels similar to
young/adult mice. Importantly, DR also attenuated the
expression of IL-6, TNF-α, and IL-1β as well as 85% of
the other cytokines/chemokines induced with age.
These were the first data showing that necroptosis in-
creased with age (Deepa et al. 2018).

We have recently measured necroptosis in twomouse
models that have been genetically modified to alter
aging: one that shows an extension in lifespan and
retarded aging and another that shows a reduction in
lifespan and accelerated aging. Ames dwarf mice, which
lack growth hormone, prolactin, and thyroid-stimulating

Fig. 1 Schematic representation of TNF-α-induced necroptosis.
Binding of TNF-α to its receptor, TNFR1, sequentially activates of
RIPK1 and RIPK3 by phosphorylation, leading to the formation of
necrosome, a complex of RIPK1 and RIPK3, which is a key event
in necroptosis activation (step 1). This is followed by the phos-
phorylation of MLKL by active RIPK3, causing its oligomeriza-
tion and membrane anchorage (step 2). Binding of oligomerized
MLKL to the membrane causes its rapture and release of DAMPs
(step 3). DAMPs bind to the cell surface receptors of innate
immune cells, leading to increased transcription of proinflamma-
tory cytokines and increased inflammation (step 4). RIPK,
receptor-interacting protein kinase; MLKL, mixed lineage kinase
domain-like protein
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hormone, show a > 50% increase in lifespan (Brown-
Borg et al. 1996). As shown in Fig. 2b phosphorylated
MLKL and MLKL protein levels are reduced 54% and
42%, respectively, in eWAT from 11-month-old dwarf
(Df/Df) mice compared with age-matched control mice.
Transcript levels ofMlkl in eWATof Df/Df mice are also
reduced by 60% (data not shown), which is consistent
with the reduction in necroptosis. Importantly, transcript
levels of IL-6 and IL-1β are also reduced by 78% and
53% in the eWAT of Ames Dwarf mice (Fig. 2b).

Mice deficient in the antioxidant enzyme Cu/Zn
superoxide dismutase (Sod1−/− mice) exhibit nearly
30% reduction in lifespan, increased levels of

circulating proinflammatory cytokines and many
phenotypes of accelerated aging (Zhang et al.
2013b; Deepa et al. 2019). As shown in Fig. 2c,
phosphorylated MLKL was increased by 3-fold and
MLKL protein expression was increased by 2-fold
in the eWAT of 9-month-old Sod1−/− mice compared
with age-matched WT mice. Consistent with the
changes in MLKL protein levels, transcript levels
of Mlkl were increased by 1.5-fold in the eWAT of
Sod1−/− mice (data not shown). Similarly, transcript
levels of proinflammatory cytokines IL-6 (2-fold),
TNF-α (1.5-fold) and IL-1β (2.7-fold) were also
increased in the eWAT of Sod1−/− mice (Fig. 2c).

a

b

c

Fig. 2 Changes in necroptosis and inflammation with age, in a
mouse model of extended lifespan (Ames Dwarf mice), and in a
mouse model of accelerated aging (Sod1−/− mice). a Left panel:
graphical representation of quantified immunoblots of eWAT ex-
tracts from adult male (9-month-old, blue bar), old (25- to 29-
month-old, red bar), and old-DR (25- to 29-month-old mice fed a
DR diet starting at 4 months of age, green bar) mice for P-MLKL
andMLKL, normalized toβ-tubulin (n = 5–6/group). Right panel:
graphical representation of transcript levels of IL-6, TNF-α, and
IL-1β in eWAT, normalized to β-microglobulin (data taken from
Deepa et al. 2018). b, c Left panel: immunoblots of eWATextracts

from 11-month-old male control mice (blue bar) and Ames Dwarf
(Df/Df) mice (red bar) (b), and 9-month-old male control mice
(blue bar) and Sod1−/− mice (red bar) (c) for P-MLKL, MLKL,
and β-tubulin (n = 6/group). Middle panel: graphical representa-
tion of quantified blots normalized to β-actin. Right panel: graph-
ical representation of transcript levels of IL-6, TNF-α and IL-1β in
eWAT of Df/Df mice (b) and Sod1−/− mice (c), normalized to β-
microglobulin. Data shown are mean ± SEM. p < 0.05 is taken as
significant for the following: *adult vs old/control vs Df/Df/con-
trol vs Sod1−/− mice; ^old vs old-DR; #adult vs old-DR

GeroScience (2019) 41:795–811800



Thus, extension of lifespan in Ames Dwarf mice and
DRmice is associated with reduction in necroptosis, and
reduction in lifespan in the Sod1−/− mice is associated
with an increase in necroptosis. Importantly, these
changes in necroptosis were associated with either re-
duced or increased expression of proinflammatory cy-
tokines, which would be predicted if the changes in
necroptosis were playing a role in inflammaging. These
data suggest that DAMPs released when cells undergo
necroptosis with age inWTmice or accelerated aging in
Sod1−/− mice leads to the age-related increase in the
expression of cytokines. Conversely, reduction in
necroptosis observed in Ames Dwarf mice and DRmice
leads to reduced generation of DAMPs, resulting in a
reduced expression of proinflammatory cytokines.

Role of necroptosis in age-related diseases

Over the past 5 years, several studies have explored the
role of necroptosis in inflammation associated with var-
ious age-related diseases (e.g., neurodegenerative dis-
eases, atherosclerosis, and cancer) using genetic and
pharmacological manipulations that block necroptosis.
Neuroinflammation is a hallmark of various neurode-
generative diseases, which increase with age (Yuan et al.
2019). Brain aging is also characterized by chronic
activation of M1/pro-inflammatory microglia and this
age-dependent activation of microglia is reported across
different species (Cribbs et al. 2012; Holtman et al.
2015, Norden and Godbout 2013). It is widely accepted
that inflammation mediated by microglia is a major
contributor to the pathogenesis of various age-related
neurodegenerative diseases. While factors that could
activate microglia with age are not completely under-
stood, DAMPs released by damaged neurons is one of
the known activators of microglia leading to neuroin-
flammation (Katsumoto et al., 2018; Sarlus and Heneka
2017). Age-related accumulation of myelin defects and
axon loss is also reported to activate microglia in rhesus
monkey (Shobin et al. 2017).

Amyotrophic lateral sclerosis (ALS) is a severe neu-
rodegenerative disease characterized by the progressive
degeneration of motor neurons in brain and spinal cord
(Rowland and Shneider 2001). Neuroinflammation is a
prominent pathological signature in ALS and increasing
evidence suggests that the increase in inflammation in
the central nervous system contributes to the pathogen-
esis of ALS (McGeer and McGeer 2002; Winkeler et al.

2010; Calvo et al. 2010). Using two mouse models of
ALS [optineurin-deficient mice (Optn− /−) and
SOD1G93A transgenic mice], Ito et al. (2016) showed
that necroptosis was increased in oligodendrocytes in
the ALS mice and that blocking necroptosis either ge-
netically (Ripk3−/− and/or Ripk1D138N/D138N mice) or
pharmacologically (using Necrostatin-1s (Nec-1s, 7-
Cl-O-Nec1)) reduced oligodendrocyte death, microglial
inflammation and axonal degeneration. In Optn−/−

mice, blocking necroptosis using Nec-1s, also improved
vertical rearing activity in mice (Ito et al. 2016). Impor-
tantly, in SOD1G93A transgenic mice, inhibition of
necroptosis using Nec1-s or Ripk3 deficiency delayed
the onset of motor dysfunction and extended survival of
SOD1G93A mice as shown in Fig. 3a (Ito et al. 2016).

Alzheimer’s disease (AD) is a progressive neurode-
generative disorder characterized by cognitive decline
and by the presence of amyloid β plaques and neurofi-
brillary tangles. Chronic inflammation in the central
nervous system is a hallmark of AD and is believed to
play a central role in the progression of the neuropath-
ological changes that are observed in AD (Mandrekar-
Colucci and Landreth 2010). Caccamo et al. (2017)
observed increased levels of necroptosis markers in

b

a

Fig. 3 Effect of blocking necroptosis on lifespan. a Comparison
of motor dysfunction onset in SOD1G93Amice treated with vehicle
or Nec-1s for 1 month starting from 8 weeks of age. Data taken
from Ito et al. 2016. b Survival of ApoE-single-knockout and
Ripk3/ApoE-double-knockout mice fed high-cholesterol diet. Data
taken from Meng et al. 2015
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postmortem human AD brains, and they showed that
activation of necroptosis in an AD transgenic mouse
model (APP/PS1 mice) exacerbated cognitive deficits
as assessed by Morris water maze test (Caccamo et al.
2017). Other studies have shown that blocking
necroptosis using Ripk1D138N/D138N mice or Nec-1s in
APP/PS1 mice reduced amyloid burden, levels of in-
flammatory cytokines TNF-α and IL-1β, and memory
deficits (Ofengeim et al. 2017; Degterev et al. 2013).

Parkinson’s disease (PD) is a neurodegenerative dis-
ease caused by the degeneration of dopaminergic neu-
rons of the substantia nigra, leading to severe motor
deficits, and inflammation is proposed to play a key role
in the pathogenesis of PD (Deleidi and Gasser 2013). A
recent study by Iannielli et al. (2018) showed that phar-
macological inhibition of necroptosis using Nec-1s
protected dopaminergic neurons from cell death in a
mouse model of PD, optic atrophy type 1 (OPA1)–
deficient mice. However, this study did not determine
if blocking necroptosis reduced inflammation in the PD
mouse model.

Age-related macular degeneration (AMD) is a leading
cause of blindness, and chronic inflammation is reported to
play a central role in this retinal degenerative disease.
AMD is characterized by progressive degeneration of
retinal pigment epithelium (RPE) and studies by
Murakami et al. (2014) showed that necroptosis and in-
flammation are increased in a mouse model of dsDNA-
induced retinal degeneration. They also showed that
blocking necroptosis using Ripk3−/− mice reduced retinal
degeneration and inflammation in this mouse model.

Atherosclerosis is also a disease of aging, as age is a
major risk factor for the development of atherosclerosis
(Wang and Bennett 2012). Apolipoprotein E–knockout
(ApoE KO) mice is a model of cholesterol metabolic
dysfunction and are widely used to study atherosclerosis
because these mice show chronic inflammation and
develop atherosclerotic plaques when fed a high-
cholesterol diet (Libby 2002; Breslow 1996). Meng
et al. (2015) reported that necroptosis and inflammation
are increased in aortic plaques of ApoE-KO mice and
blocking necroptosis genetically (ApoE/Ripk3-double-
KO (DKO) mice) reduced inflammation as assessed by
the reduction in the transcript levels of 10 inflammatory
cytokines in the plaque regions of ApoE/Ripk3-DKO
mice. In addition, lymphocyte infiltration was reduced
in the adipose tissue. More importantly, the survival of
the ApoE/Ripk3-DKO mice was significantly increased
compared with ApoE-KO mice as shown in Fig. 3b.

Necroptosis also appears to play a role in the repro-
ductive aging in mice. Aging of the reproductive system
results in the reduction of reproductive capacity (Zirkin
and Tenover 2012; Wang et al. 2017). Blocking
necroptosis using Ripk3−/− and Mlkl−/− mice reduced
inflammation and delayed aging of mice testes, both
morphologically and functionally, suggesting a role of
necroptosis in the aging of testes in mice (Li et al. 2017).
Interestingly, induction of necroptosis in testes of
young, wild type mice by local application of the
necroptosis inducer TSZ (a combination of TNF-α,
Smac mimetic, and caspase inhibitor z-VAD-FMK) re-
sulted in a phenotype of male reproductive system ag-
ing, which was characterized by reduced fertility rate
and depletion of cells in the seminiferous tubules. How-
ever, Ripk3−/− and Mlkl−/− mice were protected from
such effects, suggesting a potential role of necroptosis
and possibly inflammation in testis in male reproductive
system aging.

Aging is also the major risk factor for cancer develop-
ment and inflammation is a hallmark of both aging and
cancer (Leonardi et al. 2018). Inflammation is the key
driver of cancer growth and metastasis, and increased
expression of TNF-α in the tumor microenvironment is a
characteristic feature of many malignant tumors (Wu and
Zhou 2009). In support of the role of necroptosis-induced
inflammation in cancer, Liu et al. (2015) showed that Nec-
1 treatment reduced inflammation and colitis-associated
tumorigenesis in a mouse model of DSS-induced colitis.
Similarly, blocking necroptosis by Ripk3 deletion or Nec1-
s treatment protected mice from pancreas oncogenesis that
was driven by the chemokine CXCL1 (Seifert et al. 2016).
Tumor cell–induced necroptosis of endothelial cells has
been shown to promote metastasis, and endothelial cell-
specific deletion of Ripk3 or Mlkl or Nec-1 treatment
reduced tumor cell-induced endothelial necroptosis, tumor
cell extravasation and metastasis (Strilic et al. 2016).
Chronic liver inflammation is the most important risk
factor for the development of primary liver cancer that
comprises hepatocellular carcinoma (HCC) and
intrahepatic cholangiocarcinoma (ICC). Seehawer et al.
(2018) showed that a necroptosis-associated hepatic cyto-
kine microenvironment shifts HCC to ICC development
and blocking necroptosis genetically or pharmacologically
reverted the necroptosis-dependent cytokine microenvi-
ronment and changed ICC to HCC. (Seehawer et al.
2018). Sod1−/− mice that have a significantly shorter
lifespan and exhibit various accelerated aging phenotypes
are also characterized by a dramatic increase in HCC.
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Sod1−/− mice developed enlarged livers as early as 3
months of age with many of the mice developing HCC
(Elchuri et al. 2005). We found significantly elevated
transcript levels of necroptosis markers Ripk3 (1.5-fold)
andMlkl (3-fold), and proinflammatory cytokines IL-6 (2-
fold), IL-1β (3.1-fold), and IL-1α (2.2-fold) in the liver of
5-month-old male Sod1−/− mice (Fig. 4a). Reducing the
expression of Ripk3 by 50% in Sod1−/− mice (Sod1−/
−Ripk3+/−) significantly attenuated the expression of IL-
6, IL-1β and IL-1α andwere comparable to the expression
in age-matched wild type mice (Fig. 4b).

In summary, research over the past 10 years has
demonstrated that necroptosis-mediated inflammation
plays an important role in a variety of age-related dis-
eases based on the activation of necroptosis in each of
these diseases. Importantly, blocking necroptosis during
these age-related conditions resolved inflammation and
reduced the progression of the disease, suggesting a
potential role of necroptosis-mediated inflammation in
disease development and progression.

Possible mechanism(s) responsible for age-related
increase in necroptosis

Based on the current literature, the increase in necroptosis
could arise through three pathways that have been shown
to increase with age: oxidative stress, mTOR activation,

and cell senescence. There is evidence that oxidative stress
can induce necroptosis in certain conditions, and there is a
great deal of data showing that oxidative stress, assessed
by the levels of oxidative damage to lipid, DNA, and
protein increase with age in a wide variety of tissues and
animal models (Bokov et al. 2004). In support of the role
of oxidative stress in necroptosis, in vitro studies have
shown that high concentrations of hydrogen peroxide can
induce necroptosis in RPE cells (Hanus et al. 2015), and
oxidative stress induced by paraquat leads to necroptosis in
cardiomyocytes (Zhang et al. 2018). Deletion of the anti-
oxidant enzyme glutathione peroxidase 4 in hematopoietic
cells resulted in increased ROS generation and necroptosis
in erythroid precursor cells (Canli et al. 2016). Similarly,
excessive acetaminophen treatment–induced ROS produc-
tion and necroptosis in mice (Takemoto et al. 2014).
Increased oxidative stress due to hyperoxia exposure also
led to necroptotic cell death in the lung tissue of rats (Han
et al. 2017). As shown in Fig. 2c we found that markers of
necroptosis are increased in Sod1−/− mice, which show a
dramatic increase in oxidative stress (Muller et al. 2006;
Zhang et al. 2016). Based on the current data that oxidative
stress can induce necroptosis, the age-related increase in
oxidative stress is a prime candidate for the age-associated
increase in necroptosis. Reduced efficiency of Nrf2,master
regulator of redox homeostasis, could be one of the reasons
for increased oxidative stress with age (Zhang et al. 2015;
Schmidlin et al. 2019). In support of this, interventions that

b

aFig. 4 Necroptosis and
inflammation in the liver of
Sod1−/−mice. Transcript levels of
Ripk3 andMlkl (a), and transcript
levels of TNF-α, IL-6, IL-1β and
IL-1α (b) in the liver of 5-month-
old control mice (blue bar),
Sod1−/− mice (red bar), and
Sod1−/−Ripk3+/− mice (green
bar), normalized to β-actin. Data
shown are mean ± SEM of 5 to 8
mice per group. p < 0.05 is taken
as significant for the following:
*control vs Sod1−/−; ^Sod1−/− vs
Sod1−/−Ripk3+/−
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extend lifespan (CR and rapamycin) is reported to increase
the expression of Nrf2 target genes (Hyun et al. 2006;
Bruns et al. 2015) and naked mole rats that exhibit a
remarkable extension in lifespan have increased Nrf2 sig-
naling (Lewis et al. 2015). Similarly, administration of a
known activator of Nrf2, conjugated linoleic acid, to older
adults is reported to reduce systemic oxidative stress and
skeletal muscle oxidative damage (Konopka et al. 2017).
Thus, age-associated reduction in Nrf2 activity with age
might contribute to age-related increase in necroptosis
through induction of oxidative stress.

Necroptosis has also been reported to be induced by
mTOR activation. Activation of mTOR has been observed
to increase with age in various tissues (Baar et al. 2016)
and increased mTORC1 signaling is associated with vari-
ous age-related diseases such as Alzheimer’s disease (An
et al. 2003, Caccamo et al. 2010), diabetes (Inoki et al.
2011; Völkers et al. 2014), and cancer (Bar-Peled et al.
2013; Grabiner et al. 2014). Dietary interventions (such as
calorie restriction and protein restriction) and genetic ma-
nipulation (e.g., AmesDwarfmice) that extend lifespan are
associated with reduced mTORC1 signaling (Solon-Biet
et al. 2014; Lamming et al. 2015; Sharp and Bartke 2005)
and inhibition ofmTORby rapamycin extends the lifespan

of yeast (Powers et al. 2006), Drosophila melanogaster
(Bjedov et al. 2010), C. elegans (Robida-Stubbs et al.
2012), and mice (Miller et al. 2011). Several studies sug-
gest that mTOR pathway plays a role in activating
necroptosis. In the hippocampal neuronal cell line HT22,
induction of necroptosis was blocked by the combined
treatment of Akt and mTOR inhibitors, suggesting a po-
tential role of Akt-mTOR pathway in necroptosis (Liu
et al. 2014). In the mouse fibroblast cell line L929, activa-
tion of the PI3K-Akt-mTOR signaling pathway by insulin
promotes necrotic cell death via suppression of autophagy
(Wu et al. 2009). Similarly, treatment of schwannoma cells
with lithium chloride (a chemical that reduces cancer risk)
induces necroptosis through activation of the Akt-mTOR
pathway. Aberrant activation of mTOR by genetic deletion
of TSC1 in intestinal epithelial cells resulted in the over-
expression of RIPK3, epithelial necrosis, and subsequent
colitis (Xiao 2018). A strong association between mTOR
pathway and neuroinflammation is also reported. In a
mousemodel of cerebral palsy,mTOR inhibitor rapamycin
has been shown to prevent neuroinflammation and neuro-
nal cell death (Srivastava et al. 2016). Rapamycin treat-
ment has also been shown to block lipopolysaccharide-
induced neuroinflammation in rats (Mengke et al. 2016).

Fig. 5 Necroptosis is an example
of antagonistic pleiotropy.
Following viral infection, viral
RNA (shown in red) transcribed
by the host genome is sensed by
ZBP1, which dimerizes with
RIPK3 through its RHIM domain
to activate RIPK3. Activated
RIPK3 triggers necroptotic cell
death through phosphorylation
and membrane translocation of
MLKL and this process of
independent of RIPK1.
Necroptosis is also induced by the
age-related activation of path-
ways such as oxidative stress,
mTOR signaling, and cell senes-
cence, possibly through RIPK1-
RIPK3-MLKL pathway. ZBP1:
Z-DNA binding protein, also
known as DAI or DLM-1; RHIM,
RIP homotypic interaction motifs.
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Rapamycin injection after focal ischemic stroke in rats
reduced production of proinflammatory cytokines and
chemokines by macrophages and microglia, and blocked
brain macrophage polarization towards the M1 type (Xie
et al. 2014). A dual inhibitor of mTORC1 and mTORC2,
KU0063794, is shown to reduce neuroinflammation asso-
ciatedwith spinal cord injury inmice (Cordaro et al. 2017).
These findings show a strong association between mTOR
inhibition and reduced neuroinflammation suggesting that
mTOR-mediated activation of necroptosis might play a
role in neuroinflammation. However, this possibility needs
to be tested in the future.

Another pathway that could contribute to
necroptosis is cellular senescence. Cell senescence is
a cellular response to persistent DNA damage, which
initiates several signaling cascades, resulting in an
irreversible growth arrest. Senescent cells exhibit a
secretory phenotype, characterized by the secretion of
numerous proinflammatory cytokines (termed the
senescence-associated secretory phenotype or SASP),
which can alter the function of nearby normal cells
(Coppé et al. 2008, 2010). Senescent cells accumulate
with age in many tissues and are resistant to cell death/
apoptosis. They are proposed to be an important factor
in many age-related pathologies and inflammaging
(Coppé et al. 2010; Baker et al. 2011). The proinflam-
matory cytokine TNF-α is one of the SASPs secreted
by the senescent cells, and the circulating levels of
TNF-α have been reported to be increased with age in
humans (Bruunsgaard et al. 2003; Kirwan et al. 2001).
Importantly, TNF-α is one of the well-characterized
inducers of necroptosis (Laster et al. 1988), e.g., bind-
ing of TNF-α to its receptor TNFR1 induces
necroptosis in various cell lines in the presence of a
caspase inhibitor. Therefore, it is possible that age-
associated increase in cell senescence, which results
in increased proinflammatory cytokines, could trigger
the increase in necroptosis in neighboring cells with
age. Removal of senescent cells using senolytics re-
duced neuroinflammation and improved cognition in a
mouse model of AD (Zhang et al. 2019b). Similarly, in
a mouse model of tau-dependent neurodegenerative
disease model, clearance of senescent cells using
INK-ATTAC transgenic mice reduced neuroinflamma-
tion and improved cognitive function (Bussian et al.
2018). These studies support a role of senescence in
neuroinflammation. It will be interesting to see wheth-
er removal of senescent cells could affect necroptosis
markers in these mouse models.

Summary

Necroptosis most likely evolved as an alternative form of
cell death to kill cells infected by viral pathogens and to
promote inflammatory and immune responses to limit the
spread of the viruses (Dondelinger et al. 2016). As shown
in Fig. 5, viral RNA transcribed by the host genome
following viral infection is sensed by Z-DNA binding
protein 1 (ZBP1, also known as DAI or DLM-1), which
dimerizes with and activates RIPK3. Activated RIPK3
then triggers necroptotic cell death through phosphoryla-
tion and membrane translocation of MLKL. Importantly,
viral induced, ZBP1-dependent necroptosis depends on
RIPK3 recruitment and does not require RIPK1 (Upton
et al. 2012; Maelfait et al. 2017).

While necroptosis evolved to protect organisms from
viral infection, the age-related activation of pathways such
as oxidative stress, mTOR signaling, and cell senescence
could make the cells in old animals prone to undergo
necroptosis and release DAMPs as shown in Fig. 5. We
propose that the increase in necroptosis contributes to
chronic inflammation that increases with age. Thus,
necroptosis is an example of antagonistic pleiotropy, i.e.,
a process beneficial early in life that suppresses viral
infection but is detrimental later in life when necroptosis
is induced by oxidative stress, mTOR activation, or cell
senescence resulting in inflammaging that in turn results in
an age-related increase in pathology, disease and reduced
physiological functions. Because recent studies show that
blocking/reducing necroptosis either genetically or phar-
maceutically can reduce inflammation, it is possible that
similar treatments might prevent, reduce, or retard
inflammaging and lead to improved lifespan/healthspan
and a reduction in age-related diseases.
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