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Genome-scale CRISPR-Cas9 viability screens performed in cancer cell lines provide a sys-

tematic approach to identify cancer dependencies and new therapeutic targets. As multiple

large-scale screens become available, a formal assessment of the reproducibility of these

experiments becomes necessary. We analyze data from recently published pan-cancer

CRISPR-Cas9 screens performed at the Broad and Sanger Institutes. Despite significant dif-

ferences in experimental protocols and reagents, we find that the screen results are highly

concordant across multiple metrics with both common and specific dependencies jointly

identified across the two studies. Furthermore, robust biomarkers of gene dependency found

in one data set are recovered in the other. Through further analysis and replication experi-

ments at each institute, we show that batch effects are driven principally by two key

experimental parameters: the reagent library and the assay length. These results indicate that

the Broad and Sanger CRISPR-Cas9 viability screens yield robust and reproducible findings.
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Despite recent advances in cancer research, most cancer
patients still have no clinical indications for approved
targeted therapies1. Expanding precision oncology to the

general patient population will require identifying and exploiting
many new genomic targets. To tackle this problem, large-scale
pharmacogenomic screenings have been performed across panels
of human cancer cell lines2,3. The advent of genome editing by
CRISPR-Cas9 technology has allowed extending these studies
beyond currently druggable targets with precision and scale4,5.
Pooled CRISPR-Cas9 screens employing genome-scale libraries of
single-guide RNAs (sgRNAs) are being performed on growing
numbers of cancer in vitro models6–12. The output of these
screens can be used to identify and prioritize new cancer ther-
apeutic targets13. However, fully characterizing genetic vulner-
abilities in cancers is estimated to require thousands of genome-
scale screens14.

We present a comparative analysis of data sets derived from
the two largest independent CRISPR-Cas9 based gene-
dependency screening studies in cancer cell lines published to
date13,15,16, part of the Cancer Dependency Map effort17,18. The
analysis aims to assess the concordance of these data sets and that
of the analytical outcomes they yield when investigated indivi-
dually. To this aim, our computational strategy includes com-
parisons at different levels of data-processing and abstraction:
from gene-level dependencies to molecular markers of depen-
dencies, and genome-scale cell line profiles of dependencies.
Lastly, we shed light on the differences in the experimental set-
tings that give rise to batch effects across independent studies of
this kind, discerning between biological and technical con-
founding factors.

Results
Overview of data sets and comparison strategy. We compared
two sets of pooled genome-scale CRISPR-Cas9 drop out screens
in cancer cell lines, generated at the Broad Institute and the
Sanger Institute through independently designed experimental
pipelines (detailed in Fig. 1a, Supplementary Data 1 and Sup-
plementary Methods), considering 147 cell lines and 16,733 genes
screened independently by both institutes (Supplementary
Data 2). We performed comparisons of individual gene scores,
quantifying the reduction of cell viability upon gene inactivation
via CRISPR-Cas9 targeting; of profiles of such scores across cell
lines (gene dependency profiles); of profiles of such scores across
genes in individual cell lines (cell line dependency profiles).

We calculated gene scores using three different strategies. First,
we considered fully processed gene scores, available for download
from the Broad17 and Sanger13,18 Cancer Dependency Map web-
portals (processed data). Because data processing pipelines vary
significantly between the two data sets, we also examined
minimally processed gene scores, generated by computing
median sgRNA abundance fold changes for each gene (unpro-
cessed data). Lastly, we applied the established batch correction
method ComBat19 to the unprocessed gene scores to remove
experimental batch effects between the data sets. This is achieved
by ComBat through aligning gene means and variances between
the data sets using an empirical Bayes framework. We refer to this
form of the data as the batch-corrected gene scores.

Agreement of gene scores. We found concordant gene scores
across all genes and cell lines with Pearson correlation= 0.658,
0.627, and 0.765, respectively for processed, unprocessed and
batch-corrected data (p-values below machine precision in all
cases, N= 2,465,631, Fig. 1b). Spearman correlations across the
different comparisons were 0.347, 0.411, and 0.551 respectively,
again significant below machine precision. The reproducibility of

gene scores between the two data sets can be considered a
function of two variables: the mean dependency across all cell
lines for each gene (relevant to infer common dependencies), and
the patterns of scores across cell lines for each gene (relevant to
predict selective oncology therapeutic targets). Mean gene scores
among all cell lines showed excellent agreement (Supplementary
Fig. 1a), with Pearson correlation= 0.784 and 0.818, respectively
for processed andunprocessed data (p below machine precision in
both cases using SciPy’s beta distribution test; N= 16,773). The
effect of ComBat correction on our data is to align gene means
and variances (Supplementary Fig. 1b). As expected, after Com-
Bat correction the Pearson correlation of gene means was=
0.9997, and the correlation of gene standard deviations (SDs) was
= 0.957.

We further tested whether it was possible to recover consistent
sets of common dependencies. To this end, we defined as
common dependencies those genes that rank among the top
dependencies when considering only their 90th percentile of least
dependent cell lines, with the score threshold for top dependen-
cies determined by the local minimum in the data (Fig. 1c). For
the unprocessed data, the Broad and Sanger jointly identify 1,031
common dependency genes (Supplementary Data 3). 260 putative
common dependencies were only identified by the Sanger and
397 were only identified by the Broad (Cohen’s kappa= 0.737,
Fisher’s exact test p-value below machine precision, N= 16,773,
Fig. 1d).

Agreement of selective gene score profiles across cell lines. In
both studies, most genes show little variation in their scores
across cell lines. Thus we expect low shared variance even if most
scores are numerically similar between the data sets20. Accord-
ingly, we focused on a group of genes for which the score variance
across lines is of potential biological interest. These are genes
whose dependency profile suggests a strong biological selectivity
in at least one of the two unprocessed data sets, identified using
the Likelihood Ratio Test (NormLRT) test introduced in
McDonald et al.21. We call these 49 genes Strongly Selective
Dependencies (SSDs) (Supplementary Data 4). We evaluated the
agreement between gene score patterns across cell lines using
Pearson’s correlations to test the reproducibility of selective via-
bility phenotypes. Figure 2a illustrates the score patterns for the
example cancer genes MDM4 (R= 0.820, beta test p= 6.91 ×
10–37), KRAS (R= 0.765, p= 1.66 × 10–29), CTNNB1 (R= 0.803,
p= 1.92 × 10–34), and SMARCA4 (R= 0.664, p= 4.61 × 10–20)
with unprocessed data (N= 147). For SSDs and unprocessed
data, the median correlation was 0.633 and 84% of SSDs showed a
correlation greater than 0.4. Five SSDs showed a correlation
below 0.2 (ABHD2, CDC62, HIF1A, HSPA5, C17orf64), and are
discussed further below. As expected, correlation across data
sets for all genes was lower (median R= 0.187, 8.34% genes with
R > 0.4).

One important use of these screens is to consistently classify
cells as dependent or not dependent on selective dependencies.
Therefore, we evaluated the agreement of the Broad and Sanger
data sets on identifying cell lines that are dependent on each SSD
gene. We classified cell lines as dependent on a given gene if its
gene score represents a false discovery rate (FDR) less than 0.05
(see the Methods section). Genes scores with greater than 5%
FDR are dominated by a large group of scores near zero (Fig. 2c).

The area under the receiver-operator characteristic (AUROC)
for recovering binary Sanger dependency on SSDs using Broad
gene scores was 0.940 in processed data, 0.963 in unprocessed
data, and 0.971 in corrected data; to recover Broad binary
dependency from Sanger scores, AUROC scores were 0.918,
0.870, and 0.968 respectively. The recall of Sanger-identified
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dependent cell lines in Broad data was 0.781 with precision equal
to 0.255 for processed data, 0.775 and 0.258 for unprocessed data,
and 0.754 and 0.587 for batch-corrected data (Supplementary
Fig. 1c). Agreement is higher than could be expected by chance
under all processing regimes (Fisher’s exact test p= 8.99 × 10–43

in processed, 9.65 × 10–44 in unprocessed, and 5.29 × 10–198 in
batch-corrected data; N= 7,203). A large proportion of Broad-
exclusive dependent cell lines (53.4% in processed data and 47.7%
in unprocessed data) were due to the single gene HSPA5, which is
an SSD in Sanger data but a common dependency in Broad data.
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Examining SSDs individually, we found median Cohen’s kappa
for sensitivity to individual SSDs of 0.461 in processed, 0.609 in
unprocessed, and 0.758 in batch-corrected data. In unprocessed
data, 59.2% of SSDs had Cohen’s kappa greater than 0.4, as
opposed to 0.03% expected by chance (Supplementary Fig. 1c).

Agreement of cell line dependency profiles. Previous literature
on reproducibility highlighted the importance of considering
agreement along both the perturbation and cell line axes of the
data22–24. We assembled a combined data set of cell line depen-
dency profiles from both studies and computed all possible
pairwise correlation distances between them, using genes that
were dependencies in at least one cell line (variable genes). A t-
distributed stochastic neighbor embedding (tSNE)25 visualisation
derived from these distance scores is shown in Fig. 2d. For the
uncorrected data, we observed a perfect clustering of the depen-
dency profiles by their study of origin, confirming a major batch
effect. However, following batch correction, we observed inte-
gration between studies and increased proximity of cell lines from
one study to their counterparts in the other study (Fig. 2e). To
quantify agreement, for each cell line dependency profile in one
data set, we ranked all the others (from both data sets) based on
their correlation distance to the profile under consideration. For
batch-corrected data, 175 of 294 (60%) cell line dependency
profiles from one study have their counterpart in the other study
as the closest (first) neighbor, and 209 of 294 (71%) of cell lines
have it among the five closest neighbors (area under the nor-
malized Recall curve — nAUC — averaged across all profiles=
0.91 for batch-corrected data, and= 0.53 for uncorrected data,
Fig. 2f). Similar results were obtained across dependency profiles
restricted to different sets of genes, with the best performance
obtained when considering SSD genes only (nAUC= 0.94) and
worst performances when considering all genes (nUAC= 0.90).
The percentage of cell lines matching closest to their counterparts
in the other study was 57% when considering all genes and 43%
when considering SSD genes. Further, the tSNE plots for each
tested gene set showed similar improvement after correction
(Supplementary Fig. 2a–b).

The batch correction also aligned numbers of significant (at 5%
FDR) dependencies across cell lines between the two data sets
(median number of dependencies 2,109 and 1,717 before, and
2,053 and 1,950 after correction, for Broad and Sanger
respectively, Supplementary Fig. 3a). The average proportion of
dependencies detected in both studies over those detected in at
least one study also increased across cell lines from 47.75% to
59.14%. Furthermore, the correlation between cell lines after
correction rose above the correlation within each individual
screen for each gene set considered (Supplementary Fig. 3b). We
finally examined whether the residual disagreement in corrected
data might be related to screen quality and if there are tissues for
which corresponding cell lines showed a consistently higher/
lower agreement across the two studies. We assessed screen
quality by computing true positive rates (TPRs) for recovering
common essential genes in each cell line with a fixed 5% FDR,
determined from the distribution of nonessential genes in the cell
line. We found that mean screen quality is a strong predictor of
screen agreement for both the uncorrected and batch-corrected
data sets (t-test p-values 2.06 × 10–35, 4.74 × 10–35, N= 147 and
adjusted R-squared 0.65, 0.64 for uncorrected and batch-
corrected respectively; Supplementary Fig. 3c). In addition, we
observed no differences in screen agreement when stratifying cell
line based on their tissue of origin (Supplementary Fig. 3d), with
screen quality being highly correlated with screen agreement
invariantly across tissues (Supplementary Fig. 3e and Supple-
mentary Data 5).

Agreement of gene dependency biomarkers. A selective depen-
dency is of limited therapeutic value unless it can be reliably
associated with an informative molecular feature of cancer (bio-
marker). Following a similar approach to that presented by the
Cancer Cell Line Encyclopedia and Drug Sensitivity in Cancer
consortia20, we performed a systematic test for molecular-feature/
dependency associations on the two data sets. To this aim, we
considered a set of Cancer Functional Events consisting of 578
molecular features selected in Iorio et al.26 based on their clinical
relevance and encompassing mutations in high-confidence cancer
driver genes, amplifications/deletions of chromosomal segments
recurrently altered in cancer, hypermethylated gene promoters,
microsatellite instability status, and the tissue of origin of the cell
lines (Supplementary Data 5). We considered each of these fea-
tures in turn and observed its status in the cell lines screened at
both Sanger and Broad. Based on this, cell lines were split into two
groups (respectively with negative/positive feature) and each of the
SSD genes was t-tested for significant differences in gene scores
across the obtained two groups of cell lines.

These tests yielded 71 out of 29,350 possible significant
associations (FDR < 5%, ΔFC <−1) between molecular features
and gene dependency when using the Broad unprocessed data,
and 90 when using the Sanger unprocessed data (Supplementary
Data 6). Of these, 55 (77% of the Broad associations and 61% of
the Sanger ones) were found in both data sets (FET p-value=
9.08 × 10–133, Fig. 3a and Supplementary Data 6). The con-
cordance between the associations identified by each study was
proportional to the threshold used to define significance
(Supplementary Data 7). This was assessed by first considering
the associations found significant (FDR < 5%) in one study as
positive controls and calculating precision, recall, and sensitivity
using a rank predictor based on the p-values obtained in the other
study for all associations. We then tested how performance
changed when considering increasingly stringent subsets of
significant associations as positive controls and found that the
most significant associations in one study were the most likely to
be recovered in the other (Fig. 3b). Further, the overall correlation
between differences in gene depletion FCs between cell lines with
and without a specified molecular feature was equal to 0.763, and
99.2% of associations had the same sign of differential
dependency across the two studies (Fig. 3a). This indicates that
the studies agree not only on the existence of specific biomarkers
but also on their robustness.

Gene dependency associations identified with both data sets
included expected as well as potentially novel hits. Examples of
expected associations included increased dependency on ERBB2
in ERBB2-amplified cell lines, increased dependency on beta-
catenin in APC mutant cell lines and increased dependency on
MYCN in peripheral nervous system cell lines. A potentially novel
association between FAM72B promoter hypermethylation and
beta-catenin was also consistently identified across data sets
(Fig. 3c).

We also considered gene expression to mine for possible
biomarkers of gene dependency using RNA-seq data sets
maintained at Broad and Sanger institutes. To this aim, we
considered as potential biomarkers 1,987 genes from intersecting
the top 2,000 most variable gene expression levels measured by
either institute. Clustering the RNA-seq profiles revealed that
each cell line’ transcriptome matched closest to its counterpart
from the other institute (Supplementary Fig. 4a).

We correlated the gene expression level for the most variably
expressed genes to the gene dependency profiles of the SSD genes.
Systematic tests of each correlation identified significant associa-
tions between gene expression and dependency. Further, as with
the genomic biomarkers, we found significant overlap between
gene expression biomarker associations identified in each data set
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with 4,459 (52% of Broad and 66% of Sanger gene expression
biomarkers) found significant for both studies, out of 97,363
tested (Fisher’s exact test p-value below machine precision), and
strong overall agreement of correlation scores between gene
expression markers and SSD genes dependency across data sets

(Pearson’s correlation 0.804, Fig. 3d). We observed both positive
and negative correlations consistently across data sets; for
example, ERBB2 gene score was positively correlated with its
expression, while ATP6V0E1 showed significant dependency
when its paralog ATP6V0E2 had a low expression (Fig. 3e).
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Elucidating sources of disagreement between the two data sets.
Despite the concordance observed between the Broad and Sanger
data sets, we found batch effects in the unprocessed data both in
individual genes and across cell lines. Although the bulk of these
effects are mitigated by applying an established correction pro-
cedure27, their cause is an important experimental question. We
conducted gene set enrichment analysis of genes sorted according
to the loadings of the first two principal components of the
combined unprocessed gene scores using a comprehensive col-
lection of 186 KEGG pathway gene sets from Molecular Signature
Database (MsigDB)28. We found significant enrichment for genes
involved in spliceosome and ribosome in the first principal
component, indicating that screen quality likely explains some
variability in the data (Supplementary Fig. 5a, b). We then
enumerated the experimental differences between data sets
(Fig. 1a) to identify likely causes of batch effects. The choice of
sgRNA can significantly influence the observed phenotype in
CRISPR-Cas9 experiments, implicating the differing sgRNA
libraries as a likely source of batch effect29. Additionally, previous
studies have shown that some gene inactivations results in cellular
fitness reduction only in lengthy experiments11. Accordingly, we
selected the sgRNA library and the time point of viability readout
for primary investigation as causes of major batch effects across
the two compared studies.

To elucidate the role of the sgRNA library, we examined the
data at the level of individual sgRNA scores. The correlation
between fold change patterns of reagents targeting the same gene
(co-targeting) across studies was related to the selectivity of that
geneʼs dependency (as quantified by the NormLRT score21,
Fig. 4a): a reminder that most co-targeting reagents show low
correlation because they target genes exerting little phenotypic
variation. However, even among SSDs there was a clear
relationship between sgRNA correlations within and between
data sets (beta test p= 4.9 × 10–10, N= 49; Fig. 4b). In particular,
we note that the five SSDs (ABHD2, CDC62, HIF1A, HSPA5,
C17orf64) identified earlier as having poor agreement between
data sets have poor sgRNA correlation within data sets, thus
indicating that this metric can be used to assess the reliability of a
selective dependency.

One possible explanation of gene score disagreement is that
sgRNAs in one of the two data sets had poor on-target efficacy.
To identify such cases, we need an independent assessment of
sgRNA efficacy. We estimated the efficacy of each sgRNA in both
libraries using Azimuth 2.0 (ref. 29), which uses only information
about the genome in the region targeted by the sgRNA. We found
that among genes identified as common dependencies in either
data set, mean sgRNA depletion indeed had a strong relationship
to the sgRNA’s Azimuth estimated efficacy (Fig. 4c). Thus, for
genes where Azimuth estimates are quite different between data
sets, observed phenotype differences are probably due to
differences in sgRNA efficacy. For each gene in each library, we

calculated the median estimated sgRNA efficacy (MESE) and
found cases where differing MESE values appear to explain gene
score differences. Some examples of this effect are EIF3F
(common essential in Sanger screens with MESE 0.613, non-
scoring in Broad screens with MESE 0.398) and MDM2 (strongly
selective in Broad screens with MESE 0.585, correlated but not
strongly selective in Sanger screens with MESE 0.402) (Fig. 4d).

We next investigated the role of different experimental time
points on the screens’ agreement. Given that the Broad used a
longer assay length (21 days versus 14 days) we expected
differences to be observed between late dependencies across the
data sets. Therefore, we compared the distribution of gene scores
for genes known to exert a loss of viability effect upon
inactivation at an early- or late-time (early or late dependen-
cies)11. While early dependencies have similar score distributions
in both data sets (median average score −0.781 at the Sanger and
−0.830 at the Broad), late dependencies are more depleted at the
Broad with median average score −0.402 compared to −0.269 for
the Sanger screens (Fig. 5a). The probability of observing a
difference at least this extreme for a random set of genes of the
same size is 2.57 × 10–78.

Many other experimental differences may also contribute to
differences in reported response. For example, Lagziel et al.
showed that many metabolic gene dependency profiles in Achilles
are related to screening media, with e.g. asparagine synthetase
(ASNS) notably more dependent in media lacking asparagine30.
The Broad Institute used provider-recommended media for all
Achilles screens, while the Sanger Institute adapted cells to either
RPMI or a fifty-percent mix of DMEM and F12. While DMEM
lacks asparagine, both RPMI and F12 contain it; thus, ASNS is
expected to be a strong dependency only in Broad screens, and
only in DMEM or other asparagine-deficient media. We
confirmed this result (Fig. 5b). The difference between ASNS
dependency in DMEM and either RPMI or DMEM:F12 in Broad
screens is significant (Student’s t-test p= 1.52 × 10–10, N= 100
and p= 0.0173, N= 80). In contrast, the difference between the
RPMI and DMEM:F12 media conditions is not significant in
either the Broad (p= 0.961, N= 34) or the Sanger (p= 0.964,
N= 147). Although ASNS is the strongest example, it is likely that
some of the differences in other metabolic genes between
institutes are explained by media.

Unlike differences in sgRNA efficacy, both time point and
media effects are expected to relate to the biological role of late
dependencies. As the Broad Institute uses longer screens and
includes a greater variety of media, Broad-exclusive dependencies
are likely to contain enrichment for gene functional sets. We
confirmed this by functionally characterizing, using gene
ontology (GO), genes that were exclusively detected as depleted
in individual cell lines (at 5% FDR), in one of the two studies,
excluding genes with significantly different sgRNA efficacies
between libraries. Results showed 29 GO categories significantly

Fig. 3 Reproducibility of biomarkers. a Results from a systematic association test between molecular features and differential gene dependencies (of the
SSD genes) across the two studies. Each point represents a test for differential dependency on a given gene (on the second line of the point label) based on
the status of a molecular feature (on the first line). b Precision/Recall and Recall/Specificity curves obtained when considering as positives controls the top
significant molecular-feature/gene-dependency associations found in one of the studies and ranking all the tested molecular-feature/gene-dependency
associations based on their p-values in the other study. To define top-significant associations different significance thresholds matching the quantile
threshold specified in the legend are considered, where 100% includes all associations with FDR less than 5%. c Examples of significant statistical
associations between genomic features and differential gene dependencies across the two studies. The box covers the interquartile range with the median
line drawn within it. The whiskers of the boxplot extend to a maximum of 1.5 times the size of the interquartile range. d Comparison of results of a
systematic correlation test between gene expression and dependency of SSD genes across the two studies. The gray dashed lines indicate the thresholds of
significant correlations at a 5% false discovery rate identified for each study. Labeled points show the gene expression marker on the first line and gene
dependency on the second line. Each tested association between gene expression and SSD dependency is represented by a single purple point. Regions
with higher density of points are shown in white. e Examples of significant correlations between gene expression and dependencies consistently identified
in both studies.
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enriched in the Broad-exclusive dependency genes (Broad-
exclusive GO terms) for more than 50% of cell lines (Fig. 5c
and Supplementary Data 8). The Broad-exclusive enriched GO
terms included classes related to mitochondrial and RNA
processing gene categories and other gene categories previously
characterized as late dependencies11. In contrast, no GO terms

were significantly enriched in the Sanger-exclusive common
dependencies in more than 30% of cell lines.

Batch effect sources: experimental verification. To verify that
batch effects between the data sets can be removed by changing
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Fig. 4 Influence of reagent library on gene score. a Distributions of sgRNA depletion score correlations for sgRNAs targeting genes with varying NormLRT
scores within each data set (left) and between them (right). Each gene is binned according to the mean of its NormLRT score across the two data sets. The
x-axis defines the color gradient. The y-axis reports the average of all correlations between pairs of sgRNAs that belong to the same data set and target that
gene. Boxes cover the interquartile range with the median indicated by a horizontal line. Whiskers extend up to 1.5 time the interquartile range with outliers
shown as fliers. b Relationship between sgRNA correlation within data sets and gene correlation between data sets. The linear trend is shown for SSD
genes. c The mean depletion of guides targeting common dependencies across all replicates vs Azimuth estimates of guide efficacy. The x-axis defines the
color gradient. d Comparison of Broad and Sanger unprocessed gene scores for genes matching SSD with highest minimum median estimated sgRNA
efficacy (MESE) across both libraries (left, TFA2C), common dependency in either data set and greatest difference between KY and Avana MESE (center,
EIF3F), and the SSD with worst KY MESE (right, MDM2).

ba

NCRNA metabolic process
Cellular component disassembly

Structural constituent of ribosome
Envelope

Single organism biosynthetic process
Organonitrogen compound biosynthetic process

Organellar large ribosomal subunit
Cellular amide metabolic process

Protein complex subunit organization
Ribosome

Mitochondrial envelope
Mitochondrion

Trna metabolic process
Peptide metabolic process
Organelle inner membrane

Catalytic complex
MItochodrion organization

Mitochondrial matrix
Ribonucleoprotein complex

Mitochondrial part
Amide biosynthetic process

Organellar ribosome
Macromolecular complex disassembly

Poly a RNA binding
Cellular protein complex disassembly

Translational termination
Translational elongation
Mitochondrial translation

RNA binding

GO:terms enriched in broad−exclusive  depleted gene sets

% cell lines

0 20

0.25

0.00

–0.25

–0.50

M
ea

n 
sc

or
e

–0.75

–1.00

Sanger

Broad

–1.25

–1.50

–1.75

40 60 80 100

c

0.5

0.0

–0.5

–1.0

A
S

N
S

 g
en

e 
sc

or
e

–1.5

BroadLate essentials
Category

Early essentials Sanger

RPMI

DMEM:F12

DMEM

Fig. 5 Influence of time point. a Distribution of early and late common dependency gene scores in the Broad and Sanger data sets averaged across cell
lines. Boxes cover the interquartile range with the median indicated by a horizontal line. Whiskers extend up to 1.5 time the interquartile range with outliers
shown as fliers. b Distribution of corrected gene scores for asparagine synthetase (ASNS) by media and institute. Blue and orange lines indicate the median
of nonessential and essential gene scores, respectively. c GO terms significantly enriched in Broad-exclusive dependencies. For each GO term the bar
length indicates the ratio of cell lines showing Broad-exclusive dependencies with a statistically significant enrichment of that GO term.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13805-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5817 | https://doi.org/10.1038/s41467-019-13805-y | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the library and the readout time point, we undertook replication
experiments independently at Broad and Sanger institutes, where
these factors were systematically permuted. The Broad sequenced
cells collected from its original HT-29 and JIMT-1 screens at the
14-day time point and conducted an additional screen of these
cell lines using the KY1.1 library with readouts at days 14 and 21.
The Sanger used both the Broad’s and the Sanger’s clones of HT-
29 to conduct a new KY screen and an Avana screen with
readouts at days 14 and 21. Principal component analysis (PCA)
of the concatenated unprocessed gene scores, including replica-
tion screens, showed a clear institute batch effect dominating the
first principal component. By highlighting replication screens, we
found that this effect is chiefly due to library choice, with time

point playing a smaller role (Fig. 6a, Supplementary Fig. 6a).
Changing from Sanger to Broad clones of HT-29 had minimal
impact. We examined the change in gene score profile for each
screen caused by changing either the library or time point while
keeping other conditions constant. Gene score changes induced
by either library or time point alterations were consistent across
multiple conditions (Fig. 6b). Sanger-exclusive common depen-
dencies were strongly enriched for genes that became more
depleted with the KY library, and Broad-exclusive common
dependencies were enriched among genes more depleted with the
Avana library (Supplementary Fig. 6b). Late dependencies wer-
e strongly enriched among genes that became more depleted
in the later time points, while early dependencies were not
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(Supplementary Fig. 6c). We compared the deviations in gene
score between Broad and Sanger screens under different condi-
tions, first comparing Broad original and replication screens of
HT-29 (Fig. 6c) and JIMT-1 (Supplementary Fig. 6d) to the
original Sanger screens of the same cell line. Matching library and
time point removed most of the average gene score change (batch
effect) between institutes, as indicated by the low correlation of
the remaining gene score differences in the replication screens
with the average gene score change. Specifically, matching San-
ger’s library and time point reduces the variance of gene scores in
HT-29 from 0.0486 to 0.0252 and in JIMT-1 from 0.0556 to
0.0260. We next compared Sanger original and replication screens
of HT-29 to the Broad original HT-29 screen. Matching library
and time point successfully detrended the data in this case as well;
however, the Sanger Avana screens of HT-29 contained con-
siderable excess noise, causing these screens to have a higher
overall variance from the Broad than the original screens (0.0486
vs 0.115). Nonetheless, the replication experiments confirm that
the majority of batch effects between data sets are driven by the
library and time point.

Discussion
Providing sufficient experimental data to adequately sample the
diversity of human cancers requires high-throughput screens.
However, the benefits of large data sets can only be exploited if
the underlying experiments are reliable and robustly repro-
ducible. In this work, we survey the agreement between two large,
independent CRISPR-Cas9 knock-out data sets, generated at the
Broad and Sanger institutes.

Our findings illustrate a high degree of consistency in esti-
mating gene dependencies between studies at multiple levels of
data processing, albeit with the longer duration of the Broad
screens leading to stronger dependencies for a number of genes.
The data sets are concordant in identifying common dependen-
cies and identifying mean dependency signals. Their agreement is
also striking in the more challenging task of identifying which cell
lines are dependent on selective dependencies. Indeed, when we
compared the two data sets at the level of gene dependency
markers we found consistent results at the level of common
informative molecular features, as well as with respect to their
quantitative strength.

We observed that a source of disagreement across the com-
pared data set is due to diffuse batch effects visible when the
whole profiles of individual cell lines are compared. Such effects
can be readily corrected with standard methods without com-
promising data quality, thus making possible integration and
future joint analyses of the two compared data sets. Furthermore,
much of this batch effect can be decomposed into a combination
of two experimental choices: the sgRNA library and the duration
of the screen. The effect of each choice on the mean depletion of
genes is readily explicable and reproducible, as shown by screens
of two lines performed at the Broad using the Sanger’s library and
screen duration and a reciprocal screen performed at the Sanger
with the Broad library and duration. Consequently, identifying
high-efficacy reagents and choosing the appropriate screen
duration should be given high priority when designing CRISPR-
Cas9 knock-out experiments.

Methods
Unprocessed gene scores. Read counts for the Broad were taken from avana_-
public_19Q1 (ref. 31) and filtered so that they contained only replicates corre-
sponding to overlapping cell lines and only sgRNAs with one exact match to a
gene. Read counts for Sanger were taken from Behan et al.13 and similarly filtered,
then both read counts were filtered to contain only sgRNAs matching genes
common to all versions of the data. In both cases, reads per million (RPM) were
calculated and an additional pseudo-count of 1 added to the RPM. Log fold change
was calculated from the reference pDNA. In the case of the Broad, both pDNA and

screen results fall into distinct batches, corresponding to evolving PCR strategies.
Cell lines sequenced with a given batch were matched to pDNA profiles belonging
to the same batch. Multiple pDNA RPM profiles in each batch were median-
collapsed to form a single profile of pDNA reads for each batch. Initial gene scores
for each replicate were calculated from the median of the sgRNAs targeting that
replicate. Each replicateʼs initial gene scores for both Broad and Sanger were then
shifted and scaled so the median of nonessential genes in each replicate was 0 and
the median of essential genes in each replicate was negative one12. Replicates were
then median-collapsed to produce gene- by cell-line matrices.

Processed gene scores. Broad gene scores were taken from avana_public_19Q1
gene_effect31 and reflect CERES15 processing. The scores were filtered for genes
and cell lines shared between institutes and with the unprocessed data, then shifted
and scaled so the median of nonessential genes in each cell line was 0 and the
median of essential genes in each cell line was −1 (ref. 12). Sanger gene scores were
taken from the quantile-normalized averaged log fold-change scores, post-
correction with CRISPRcleanR32, and globally rescaled by a single factor so that the
median of essential genes across all cell lines was −1 (ref. 12).

Batch-corrected gene scores. The unprocessed sgRNA log FCs were mean col-
lapsed by gene and replicates. Data were quantile normalized for each institute
separately before processing with ComBat using the R package sva. One batch
factor was used in ComBat defined by the institute of origin. The ComBat corrected
data were then quantile normalized to give the final batch-corrected data set.

Alternate conditions. Screens with alternate libraries, cell lines, and time points
were processed similarly to the Unprocessed data above.

Gene expression data. Gene expression log2(Transcript per million +1) data were
downloaded for the Broad from the Figshare repository for the Broad data set. For
the Sanger data set, we used fragments per kilobase million (FPKM) expression
data from Cell Model Passports33. We added a pseudo-count of 1 to the FPKM
values and transformed to log2. Gene expression values are quantile normalized for
each institute separately. For the Sanger data, Ensembl gene ids were converted to
Hugo gene symbols using BiomaRt package in R.

Guide efficacy estimates. On-target guide efficacies for the single-target sgRNAs
in each library were estimated using Azimuth 2.0 (ref. 29) against GRCh38.

Comparison of all gene scores. Gene scores from the chosen processing method
for both Broad and Sanger were raveled and Pearson correlations calculated
between the two data sets. 100,000 gene-cell line pairs were chosen at random and
density-plotted against each other using a Gaussian kernel with the width deter-
mined by Scott’s rule34. All gene scores for essential genes were similarly plotted in
Fig. 1b.

Comparison of gene means. Cell line scores for each gene in both Broad and
Sanger data sets with the chosen processing method were collapsed to the mean
score, and a Pearson correlation calculated.

Gene ranking, common essential identification. For each gene in the chosen data
set, its score rank among all gene scores in its 90th percentile least depleted cell line
was calculated. We call this the gene’s 90th percentile ranking. The density of 90th
percentile rankings was then estimated using a Gaussian kernel with width 0.1 and
the central point of minimum density identified. Genes whose 90th percentile
rankings fell below the point of minimum density were classified as common
essential.

Identification of selective gene sets. Selective dependency distributions across
cell lines are identified using a Likelihood Ratio Test as described in McDonald
et al.21. For each gene, the log-likelihood of the fit to a normal distribution and a
skew-t distribution is computed using R packages MASS35 and sn36, respectively.
In the event that the default fit to the skew-t distribution fails, a two-step fitting
process is invoked. This involves keeping the degrees of freedom parameter (ν)
fixed during an initial fit and then using the parameter estimates as starting values
for a second fit without any fixed values. This process repeats up to 9 times using ν
values in the list (2, 5, 10, 25, 50, 100, 250, 500, 1000) sequentially until a solution is
reached. The reported LRT score is calculated as follows:

LRT ¼ 2 � ln likelihood for Skewed� tð Þ � ln likelihood for Gaussianð Þ½ � ð1Þ

The numerical optimization methods used for the estimates do not guarantee
the maximum of the objective function is reached. In a small number of cases, we
failed to find a solution even with multiple attempts. NormLRT scores have been
left blank for these genes. Genes with NormLRT scores greater than 100 and mean
gene score greater than −0.5 in at least one institute’s unprocessed data set were
classified as SSDs.
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Binarized agreement of SSDs. For each processing method, Broad and Sanger
gene scores were concatenated. Scores for nonessential genes across all cell lines
and both institutes were taken as the null distribution, and a left-tailed p-value
calculated for each score. The resulting p-values for each processing method were
converted to FDR using the Benjamini–Hochberg algorithm as implemented in the
python package statsmodels. The gene score threshold corresponding to a FDR of
0.05 or lower was used to binarize gene scores. These thresholds were −1.02 for
unprocessed gene scores, −0.633 for processed gene scores, and −0.765 for cor-
rected gene scores. Cohen’s kappa was calculated for each gene individually.
Fisher’s exact test, precision, recall, and AUROC scores were calculated globally for
all SSD sensitivities in the three data versions.

Cell line agreement analysis. To obtain the two dimensional visualisations of the
combined data set before and after batch correction and considering different gene
sets, we computed the sample-wise correlation distance matrix and used this as
input into the t-statistic Stochastic Neighbor Embedding (tSNE) procedure25, using
the tsne function of the tsne R package, with 1000 iterations, a perplexity of 100 and
other parameters set to their default value.

To evaluate genome-wide cell line agreement we considered a simple nearest-
neighbor classifier that, for each dependency profile of a given cell line in one of the
two studies, predicted its matching counterpart in the other study. This prediction
was based on the correlation distance between one profile and all the other profiles.
To estimate the performance of this classifier, we computed a Recall curve for each
of the 294 dependency profiles in the tested data set. Each of these curves was
assembled by concatenating the number of observed true-positives amongst the
first k neighbors of the corresponding dependency profile (for k= 1–293). We then
averaged the 294 resulting Recall curves into a single curve and converted it to
percentages by multiplying by 100/294. Finally, we computed the area under the
resulting curve and normalized it by dividing by 293. We considered the area under
this curve (nAUC) as a performance indicator of the k-nearest neighbor.

Cell line profiles agreement in relation to data quality. First, to estimate the
initial data quality we calculated true positive rates (TPRs, or Recalls) for the sets of
significant dependency genes detected across cell lines, within the two studies. To
this aim, we used as positive control a reference set of a priori known essential
genes12. We assessed the resulting TPRs for variation before/after batch correction,
and for correlations with the inter-study agreement.

Biomarker analysis. We used cell lines’ binary event matrices based on mutation
data, copy number alterations, the tissue of origin and MSI status. The resulting set
of 587 features were present in at least 3 different cell lines and fewer than 144. We
performed a systematic two-sample unpaired Student’s t-test (with the assumption
of equal variance between compared populations) to assess the differential essen-
tiality of each of the SSD genes across a dichotomy of cell lines defined by the status
(present/absent) of each CFE in turn. SSD genes were those with NormLRT values
greater than 100 in either institute. From these tests, we obtained p-values against
the null hypothesis that the two compared populations had an equal mean, with the
alternative hypothesis indicating an association between the tested CFE/gene-
dependency pair. P-values were corrected for multiple hypothesis testing using
Benjamini–Hochberg. We also estimated the effect size of each tested association
by means of Cohen’s Delta (ΔFC), i.e. difference in population means divided by
their pooled standard deviations. For gene expression analysis we calculated the
Pearson correlation across the cell lines between the SSD gene dependency profiles
and the gene expression profiles from each institute. The significance of the cor-
relation was assessed using the t-distribution (n− 2 degrees of freedom) and p-
values were corrected for multiple hypothesis testing using the q-value method.

For the agreement assessment via ROC indicators (Recall, Precision and
Specificity), for each of the two studies in turn we picked the most significant 20,
40, 60, 80, and 100% associations as true controls and evaluated the performance of
a rank classifier based on the corresponding significance p-values obtained in the
other study.

For the analysis involving transcriptional data, we used the RNA-seq data from
each institute for overlapping cell lines, which includes some sequencing files that
have been used by both institutes and processed separately.

Rank-based dependency significance and agreement. To identify significantly
depleted genes for a given cell line, we ranked all the genes in the corresponding
essentiality profiles based on their depletion logFCs (averaged across targeting
guides), in increasing order. We used this ranked list to classify genes from two sets
of prior known essential (E) and non-essential (N) genes, respectively12.

For each rank position k, we determined a set of predicted genes P(k)= {s ∈ E ∪
N: ϱ(s)≤ k}, with ϱ(s) indicating the rank position of s, and the corresponding
precision PPV(k) as:

PPV kð Þ ¼ P kð Þ\Ej j= P kð Þj j
Subsequently, we determined the largest rank position k* with P(k*) ≥ 0.95

(equivalent to a FDR ≤ 0.05). Finally, a 5% FDR logFCs threshold F* was
determined as the logFCs of the gene s such that ϱ(s)= k*, and we considered all
the genes with a logFC < F* as significantly depleted at 5% FDR level. For each cell

line, we determined two sets of significantly depleted genes (at 5% FDR): B and S,
for Broad and Sanger data sets, respectively. We then quantified their agreement
using the Jaccard index37 J(B, S)= | B ∩ S | / | B ∪ S |, and defined their
disagreement as 1− (B, S). Summary agreement/disagreement scores were derived
by averaging the agreement/disagreement across all cell lines.

sgRNA correlations. Broad and Sanger log fold-changes for their original screens
were median-collapsed to guide by cell line matrices. For each gene present in the
unprocessed gene scores, a correlation matrix between all the sgRNAs targeting
that gene in each guide by cell line matrix was computed. The mean of the values in
this matrix for each institute, excluding the correlations of sgRNAs with them-
selves, was retained. The mean sgRNA correlation within institutes was then cal-
culated from the mean of the Broad and Sanger sgRNA correlation matrix means.
The mean sgRNA correlation between institutes for each gene was calculated from
the mean of all possible pairs of sgRNAs targeting that gene with one sgRNA
chosen from Sanger and one from Broad.

Relating sgRNA depletion and efficacy. We chose the set of genes found to be
essential in at least one unprocessed data set. The log fold-change of guides tar-
geting those genes in each data set was calculated and compared to the guide’s
estimated on-target efficacy.

Difference in late essential gene scores between data sets. We randomly
selected n genes, where n is the number of late essential genes, and calculated the
difference in median gene score for those genes between the Broad and Sanger
institutes. We repeated this 10,000 times to generate the null distribution for
median difference. No instances of the null were as extreme as the observed dif-
ference between median late essential scores. However, the null was well-
approximated by a Gaussian distribution, which allowed us to extrapolate a p-value
for the observed difference in medians.

Time point gene ontology analysis. We tested for enrichment of GO terms
associated with genes showing a significant depletion in only one institute. To rule
out the differences due to the library, genes with significantly different guide
efficacies were filtered from the analysis. Using the Azimuth scores average (mean)
efficacy scores for each gene at each institute were calculated. A null distribution of
differences in gene efficacy was estimated using genes not present in either institute
specific sets (which were defined as depleted in at least 25% of cell lines). Institute
specific genes greater than 2 standard deviations from the mean of the null dis-
tribution were removed.

For the filtered gene set prior known essential and non-essential gene sets
from32 were used to find significant depletions for each cell line and institute at 5%
FDR. For each cell line, the genes identified as significantly depleted in only Broad
or only Sanger were functionally characterized using GO enrichment analysis38. To
this aim, we downloaded a collection of gene sets (one for each GO category) from
the Molecular Signature Database (MsigDB)28, and performed a systematic
hypergeometric test to quantify the over-representation of each GO category for
each set of study-exclusive dependency genes, per cell line. We corrected the
resulting p-values for all the tests performed within each study using the
Benjamini–Hochberg procedure39, and considered a GO category enriched in a cell
line if the corrected p-value resulting from the corresponding test was < 0.05.

Principal component analysis of the batch effect. The Broad and Sanger
unprocessed gene scores and the gene scores for the alternate conditions tested by
both institutes were concatenated into a single matrix with a column for each
screen. Principal components were found for the transpose of this matrix, where
each row is a screen and each column a pseudogene. Components 1 and 2 were
plotted for all original screens and the alternate screens for either HT-29 (Fig. 6a)
or JIMT-1 (Supplementary Fig. 6a). The aspect ratio for the plot was set to match
the relative variance explained by the first two principal components.

Consistency of time point and library effects on gene scores. To evaluate
library differences, we took all screens that had been duplicated in each library with
all other conditions (time point, clone, and screen location) kept constant. For each
of these screens, we subtracted the gene scores of the version performed with the
KY library from the version performed with the Avana library to create library
difference profiles. For the case of Sanger’s day-14 KY screen of the Sanger HT-29
clone, two versions exist, the original and an alternative that was eventually grown
out to 21 days. We used the alternate version of this screen to be consistent with
the day 21 results. A correlation matrix of library difference profiles was then
calculated and is plotted to the left of Fig. 6b. The procedure was repeated for time
point differences, creating time point difference profiles by subtracting day 14
results from day 21 results for pairs of screen readouts that differed in time point
but not library, clone, or screen location.

Matching experimental conditions. For the cell line HT-29, we took Sanger’s
original screen as a baseline. We then subtracted from this baseline from four
Broad HT-29 screens: the original (Avana library at day 21), then with the Avana
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library at day 14, the KY library at day 21, and the KY library at day 14, generating
four arrays indexed by gene which form the y-axes in the succession of plots in
Fig. 6c. We also computed the mean score of each gene across all original Broad
screens and subtracted it from the mean score of each gene across all the original
Sanger screens to form the x-axis of all four plots. For each condition, the standard
deviation of the HT-29 screen differences (y-axes) was computed along with the
correlation of the HT-29 screen differences with the mean differences (x-axis). The
plots themselves are Gaussian kernel density estimates. We repeated this process
for JIMT-1 (Supplementary Fig. 6d) and then for HT-29 while swapping the roles
of Broad and Sanger (Fig. 6d). For the Sanger alternate condition screens we used
the Sanger clone of HT-29, and for its day 14 KY screen we used the Sanger’s
original HT-29 screen.

Replication experiments. The replication screens at Broad and Sanger were
performed using the normal current protocol of the respective institution13,15

except with respect to the specifically noted changes to the library (and the asso-
ciated primer sequences required for post-screen amplification of the sgRNA
barcodes) and the time point. See Supplementary Methods for details.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data used for this paper have been posted to Figshare (https://doi.org/10.6084/m9.
figshare.7970993.v1).

Code availability
Scripts to perform all analyses and generate figures are available at https://github.com/
DepMap-Analytics/Comparative-Analysis.
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