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Abstract

Purpose—Despite the increasing number of research studies of cardiopulmonary coupling 

(CPC) analysis, an electrocardiogram-based technique, the use of CPC in underserved population 
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remains underexplored. This study aimed to first evaluate the reliability of CPC analysis for the 

detection of obstructive sleep apnea (OSA) by comparing with polysomnography (PSG) derived 

sleep outcomes.

Methods—205 PSG data (149 males, age 46.8 ± 12.8 years) were used for the evaluation of CPC 

regarding the detection of OSA. Automated CPC analyses were based on ECG signals only. 

Respiratory events index (REI) derived from CPC and apnea-hypopnea index (AHI) derived from 

PSG were compared for agreement tests.

Results—CPC-REI positively correlated with PSG-AHI (r = 0.851, p < 0.001). After adjusting 

for age and gender, CPC-REI and PSG-AHI were still significantly correlated (r = 0.840, p < 

0.001). The overall results of sensitivity and specificity of CPC-REI were good.

Conclusion—Compared to the gold standard PSG, CPC approach yielded acceptable results 

among OSA patients. ECG recording can be used for the screening or diagnosis of OSA in the 

general population.
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1. INTRODUCTION

Obstructive sleep apnea (OSA) is a major form of sleep-disordered breathing (SDB) with an 

estimated prevalence ranging from 9% to 38% among the general population [1]. OSA 

causes or contributes to hypoxemia, hypercapnia, nocturia, sleep fragmentation, morning 

headaches, and excessive daytime sleepiness. It also increases the risks of cardiovascular 

disease, neurocognitive dysfunction, mood or psychiatric disorders, metabolic syndrome or 

diabetes, gastroesophageal reflux disease, impaired work performance, degraded quality of 

life, all-cause mortality or even sudden death. Screening to identify unrecognized OSA 

followed by appropriate treatment may improve sleep quality and normalize the respiration 

and oxygen saturation levels to prevent adverse health outcomes.

Although attended in-lab polysomnography (PSG) is the current gold standard diagnostic 

test for SDB, the high cost, requirement of multiple sensors during an overnight stay in the 

laboratory, and hours of manual scoring, make it difficult to expand services. On the other 

hand, there is uncertainty about the accuracy or clinical utility of all potential screening 

tools. There is increasing demand for simple, readily obtained and cost-effective screening 

approaches for OSA diagnosis, particularly in China, where OSA and its comorbid are 

significantly underdiagnosed [2], and the large population overwhelms its limited medical 

resources.

In recent years, several new techniques have been proposed for OSA screening or diagnosis 

[3,4]. Although most of them are portable, they require several sensors for accuracy, or 

scarify accuracy for easy use. Home screening tools based on a few or single signals include 

devices using respiratory flow and/or respiratory effort, peripheral arterial tonometry (PAT) 

or Watch-PAT [5–7], pulse transit time (PTT) [8], photoplethysmography (PPG) [9] and 
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actigraphy [10]. Another approach is to detect SDB by altered heart rate dynamics. Since the 

autonomic nervous system (ANS) dynamics vary according to sleep depth and states 

[11,12], ECG-based approaches can be used for sleep studies. However, traditional heart rate 

variability (HRV) has many limitations [13–19], and does not distinguish the power spectra 

due to signal non-stationarity or cyclic variation patterns resulting from repeated sleep 

apneas [20]. In addition, some HRV measures (e.g. rMSSD, pNN50, HF, etc.) can be 

exaggerated due to scanning error (uneven beat detection, missed or misclassified beats) or 

from irregular HR patterns (erratic rhythm) that are not reflective of better parasympathetic 

nervous systems functioning. Although commonly reported and potentially meaningful, 

HRV measures need to be interpreted with caution [13]. Many years ago, cyclic variation of 

heart rate (CVHR) [21,22] was proposed as a marker of SDB because apnea/hypopnea 

episodes result in repeated autonomic arousals associated with cyclic changes in heart rate. 

More recently, a novel approach, known as Cardiopulmonary Coupling (CPC), incorporates 

the respiration coupling concept into HRV analysis [20], thus is able to enhance the potential 

diagnostic utility by “filtering” out power spectra due to non-respiratory induced heart rate 

changes [13].

As the CPC technique was first developed [20] and evaluated by cyclic alternating pattern 

identified from electroencephalography (EEG), it is often utilized as sleep stability 

assessment, and has been introduced in a series of publications describing potential clinical 

applications. The agreement in the detection of stable/unstable sleep of CPC sleep states was 

previously proven by comparing with EEG-based measures [20]. In addition, CPC may also 

be used for sleep apnea detection and classification, since SDB is associated with predictable 

characteristics from the ANS dynamics. By now, there are little published studies showing 

the sensitivity and specificity of CPC in the use of OSA detection. In this study, we aimed to 

evaluate the reliability of CPC analysis, and assess the agreement of the respiratory events 

index derived from CPC (CPC-REI) and apnea-hypopnea index derived from conventional 

PSG (PSG-AHI) in the general population to fill the gaps.

2. METHODS

The datasets included in this study were collected previously from clinical studies with 

separate protocols approved by different Institutional Review Boards (IRB) accordingly, and 

all experiments were performed in accordance with relevant guidelines and regulations. All 

the data we used in this secondary analysis study were de-identified. Therefore, additional 

IRB approval can be waived.

2.1 Database for PSG vs CPC comparison

The accuracy of the cardiopulmonary coupling measure was evaluated on data from two 

sleep centers, Guang’anmen Hospital of China Academy of Chinese Medical Sciences, and 

Nanjing First Hospital. All included data were from out-patients referred for evaluation of 

suspected OSA. One hundred and twenty polysomnograms from each hospital were 

randomly acquired backward from September 2014, by using random number sequence 

(A001-A120 and B001-B120). The data analyzed in this study were selected using the 

following criteria: (1) subjects with age over 18 years, (2) standard overnight diagnostic PSG 
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study with sleep time no less than four hours, and (3) continuous ECG signal can be 

extracted from the PSG recording for no less than 4 hours. Data were excluded for (1) 

patients with use of ventricular pacing, atrial fibrillation, severe arrhythmia, or severe 

comorbidities, such as symptomatic coronary heart disease, congestive heart failure, 

uncontrolled pulmonary disease, wearing pacemaker, or pregnancy and (2) those who 

currently under interventions including oxygen therapy or positive airway pressure.

2.2 Polysomnography Protocols and Scoring

All subjects from the two sleep centers underwent attended overnight PSG in the sleep 

laboratories. Sleep studies was performed using the Compumedics E-Series and 

Compumedics Siesta (Compumedics Ltd, Abbotsford, Australia), SW-SM2000C (Curative 

Medical Technology Inc, China), or Respironics Alice 5 Diagnostic Sleep System (Philips 

Respironics, United States). PSG montages were placed according to American Academy of 

Sleep Medicine (AASM) recommendations [23], at least including six EEG channels, two 

electromyogram channels, a vibration snore sensor, nasal pressure airflow, oronasal 

thermocouple, submental electromyography, one ECG channel, dual thoracoabdominal 

respiratory inductance plethysmography belts, finger pulse oximetry, bilateral anterior 

tibialis electromyography, and body position.

All PSG studies were independently and manually scored by three registered 

polysomnographic technologists (RPSGT) following the AASM recommendations (AASM 

Manual for the Scoring of Sleep and Associated Events, version 2.3) [23]. Every PSG 

recording was scored by two RPSGTs. To reduce inter-scorer difference, once disagreement 

occurred between the two RPSGTs, the third RPSGT will involve, and the scoring agreed by 

two RPSGTs was used as the final result. All the RPSGTs were blind to any results from 

CPC analyses. After manual PSG scoring and CPC automated analyses were completed, the 

results were collected by an independent statistician for agreement analysis.

An apneic event was defined when all of the following criteria are met [23,9]: (a) there is a 

drop in the peak signal excursion by ≥ 90% of pre-event baseline using an oronasal thermal 

sensor; (b) the duration of the ≥ 90% drop in sensor signal lasts at least the minimum 

duration as specified by obstructive, mixed, or central apnea duration criteria; and (c) the 

event meets respiratory effort criteria for obstructive, central or mixed apnea. Hypopnea is 

scored if all of the following criteria are met: (a) the peak signal excursions drop by ≥ 30% 

of pre-event baseline using nasal pressure or an alternative hypopnea sensor; (b) the duration 

of the ≥ 30% drop in signal excursion is ≥ 10 seconds; and (c) there is a ≥ 3% oxygen 

desaturation from pre-event baseline or the event is associated with an arousal.

PSG derived apnea-hypopnea index (PSG-AHI) was defined as the total number of apnea 

and hypopnea events per hour of sleep, and OSA diagnosis is based on the International 

Classification of Sleep Disorders, Third Edition (ICSD-3) [24]. Mild, moderate and severe 

OSA were defined using PSG-AHI cut-off points of 5, 15 and 30 respectively [25].

2.3 Cardiopulmonary Coupling Analysis

The Cardiopulmonary Coupling analysis technique is based on two features of a continuous 

ECG signal: heart rate variability and the respiratory modulation of QRS waveform on a 
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beat-to-beat basis. These signals have two basic patterns: a high-frequency component due 

to physiological sinus arrhythmia that reflects intra-breath fluctuations and a low-frequency 

component that reflected cyclic variation across multiple breaths. The cross-power and 

coherence between these two signals can be calculated as a way of quantification of cardiac 

and respiratory interactions. By analyzing coupling between heart rate variability (HRV) and 

ECG-derived respiration (EDR), the CPC algorithm can generate an ECG-derived sleep 

spectrogram. Physiological sleep states derived from CPC analysis include stable sleep 

(indicated by high frequency coupling, or HFC, 0.1–0.4 Hz), unstable or fragmented sleep 

(indicated by low frequency coupling, or LFC, 0.01–0.1 Hz), and REM/wakeful states 

(indicated by very low frequency coupling, or VLFC, 0.001–0.01 Hz). Elevated-low 

frequency coupling (e-LFC), a subset of LFC, reflects predominant obstructive upper airway 

and sustained strong chemoreflex effects on sleep respiration [26]. When sleep apnea occurs, 

heart rate typically shows cyclic increases and decreases associated with apneic phase and 

resumption of breathing. Therefore, respiratory events during sleep can be detected and 

quantified. CPC derived respiratory event index (CPC-REI) is defined as the total number of 

respiratory events per hour of sleep. It is an automated measure detecting the changes in 

heart rate that occur during apneas, called Cyclic Variation of Heart Rate (CVHR), which 

consists of bradycardia during apnea followed by abrupt tachycardia near the end of the 

apnea [27]. CPC-REI was defined as the total number of respiratory events per hour of sleep.

2.4 Statistical Analyses

Statistical analyses were performed using SPSS version 19.0 (IBM SPSS Statistics, NY, 

United States), and receiver operating characteristic (ROC) analysis was done using R (R 

3.4.0 for Windows). Descriptive statistics were reported as mean ± standard deviation (SD) 

for normal distributed data, or median [interquartile range (IQR)] for skewed data, and 

number (percentage) for categorical data. Correlations between continuous variables were 

tested by Pearson correlation. Partial correlation and linear regression models were used to 

adjust covariates. Comparisons of categorical variables were made using the chi-squared or 

Fisher’s exact test. Comparisons of continuous variables were assessed by t-test or non-

parametric test (Mann-Whitney U). Agreement analysis included calculations of sensitivity, 

specificity, positive and negative likelihood ratios (LR+, LR−), negative predictive value, 

positive predictive value, accuracy and Kappa test by SPSS using the PSG-AHI as the 

referenced standard. Analyses were performed based on the diagnosis by comparing the 

final OSA severity categorization (normal, mild, moderate, severe) of CPC-REI and PSG-

AHI. Bland Altman plot and ROC curves were generated to show the agreement between 

CPC-REI and PSG-AHI. All statistical tests were 2-tailed and a p value <0.05 was 

considered statistically significant.

3. RESULTS

3.1 Subject Characteristics

A total of 205 overnight attended polysomnograms were included in the study. Demographic 

characters of the included subjects from the test database were shown in Table 1. As for 

OSA severity indicated by PSG-AHI, there were 49 (23.9%) normal subjects, 29 (14.1%) 

mild, 33 (16.1%) moderate, and 94 (45.9%) severe OSA among all.
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3.2 Correlations between PSG-based and CPC-based Measures

As shown in Figure 1a, significant correlations were found between CPC-REI and PSG-AHI 

(r = 0.851, p < 0.001). After adjusting for age, gender and TST, CPC-REI and PSG-AHI 

were still significantly correlated (r = 0.838, p < 0.001). Although the Bland-Altman plots 

(Figure 1b) showed that most estimates were within two standard deviations of the mean, 

CPC-REI seemed to be overestimating normal and mild individuals.

3.3 Diagnostic Accuracy of the CPC Measures

Compared with PSG-AHI, the performance of automated CPC analysis regarding the 

diagnostic accuracy of CPC-REI was evaluated by sensitivity, specificity, positive and 

negative predictive values, agreement, positive and negative likelihood ratios, and Kappa 

value (as shown in Table 2). By ROC analysis (Figure 2), the three curves were shown with 

the AHI cut-off points set at 5, 15 and 30 events/hour, and area under the curve (AUC) is 

0.900, 0.939 and 0.935 respectively. According to ROC analysis, cut-off points of CPC-REI 

to distinguish none, mild, moderate and severe sleep apnea were found to be 4.5, 14.2 and 

19.2 events/hour, respectively. Accordingly, the sensitivities are 88.5%, 81.1%, 86.2%, and 

specificities are 81.6%, 88.5%, 84.7%, respectively. Since CPC-REI and PSG-AHI were 

significantly correlated, and most of the current alternative approaches still take the same 

cut-off points as PSG-AHI (5, 15, and 30 events/hour), we also analyzed the diagnostic 

accuracy of CPC-REI using the same cut-off points (Table 2). For mild+ (AHI⩾5), moderate

+ (AHI⩾15) and severe (AHI⩾30) sleep apnea, CPC presented a sensitivity of 93.8%, 

92.7% and 89.5%, while a specificity of 67.8%, 72.2% and 79.8%, respectively.

3.4 Correlations of OSA severity and PSG- or CPC-derived parameters

The parameters derived from PSG and CPC were included in correlation analyses (Table 3). 

Weak correlations were found between PSG-AHI and N1, N2, REM sleep, while no 

correlations were found between PSG-AHI and N3 sleep or sleep efficiency (Figure 3). In 

contrast, significantly strong correlations were found between PSG-AHI and all CPC 

derived parameters (e.g., CPC-REI, HFC, LFC, VLFC). PSG-AHI is negatively correlated 

with HFC (r = −0.641, p < 0.001, Figure 3) and VLFC (r = −0.412, p < 0.001), and 

positively correlated with LFC (r = 0.759, p < 0.001, Figure 3) with adjustment for age, 

gender, total sleep time (TST).

4. DISCUSSION

This study included 205 subjects with PSG-based sleep studies. The performance of CPC-

REI was compared with PSG-AHI. In moderate and severe OSA patients, CPC-based 

diagnostic accuracy was 83.0%, suggesting that the screening results from CPC were 

consistent with the currently recommended criteria for portable monitoring device to “rule-

in” OSA (AHI ≥ 15 events/hour) in clinical settings [3]. In a recently published study with 

smaller sample size, Hilmisson et al [28] performed a similar evaluation on the accuracy of 

CPC and they reported that CPC identified patients with moderate to severe sleep apnea with 

sensitivity of 100%, specificity of 81%, agreement of 93%, and kappa of 0.85 compared 

with manual scoring of AHI.
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Our results in the Chinese population are in line with existing evidence from Caucasians to 

support the reliability of CPC as a screening tool for sleep apnea. For sleep apnea detection, 

a recent study combined CPC and CVHR in the ambulatory screening for sleep apnea and 

found a high degree of agreement between the CPC+CVHR algorithms against both the 

manually rescored AHI (sensitivity 89%, specificity 79%, agreement 85%) and the 

computerized scored AHI (sensitivity 93%, specificity 79%, agreement 87%) to identify 

patients with moderate and severe sleep apnea (AHI > 15) [21]. For sleep quality in sleep 

apneic patients, Harrington et al [29] compared PSG- versus CPC-based sleep measures, and 

reported that CPC can be used to study sleep quality in patients with OSA, and distinguish 

successful and unsuccessful continuous positive airway pressure (CPAP) response. All these 

evidence yields comparable or more reliable results to other screening tools.

Beyond the screening of SDB, since the early publication on CPC technique [20], single-

channel ECG has been used in many sleep-related studies, including sleep stability and 

quality in a broad range of conditions (e.g. insomnia [30–32], depression [33–36], 

fibromyalgia [37], heritability of abnormalities [38], etc), subtypes of SDB [39], assessment 

for treatment options [40,41], pre- and post-treatment evaluation [42–45].

EEG-based recording allows multiple approaches to analyze the dynamic changes of brain 

activities during sleep [46–51]. Our results indicate that ECG also provides possibilities to 

study sleep differently; an ECG-based monitor can be used to screen OSA in the general 

population., Main advantages of using ECG monitor as an OSA screening tool include (1) It 

reduces the number of electrodes attached to patients, and it is significantly easier for the 

patients, as there are only 3 electrodes that need to be attached to a patient for a one-lead 

ECG; (2) The algorithm is completely automated, no time-consuming manual scoring is 

needed, which also avoids inter-scorer discrepancies; and (3) The CPC technique can also 

provide valuable measures (e.g., HFC, LFC) that are related to sleep structure and quality.

PSG scoring rules require that the change of breathing has to meet the criteria (e.g. length 

and amplitude) to be marked as a respiratory event. By CPC techniques, when power on the 

e-LFC bands was detected, a respiratory event was automatically marked. Some events with 

breathing disturbance that barely meet the “at least 10-second” rule may be sensitively 

detected by CPC, leading to a possible overestimation by CPC-REI. In addition, we also 

noticed the lack of correlation between CPC-HFC and N3 sleep, which may be because 

effective sleep is restorative and spans both conventional SWS and periods of stage N2 [52]. 

Respiratory effort- related arousal (RERA) may induce LFC/e-LFC can cause discrepancy in 

such analyses. Further investigations on the correlation between RERA and CPC outcomes 

are encouraged.

Evidence from systematic reviews show that sensitivities decreased and specificities 

increased for detecting moderate or greater OSA (AHI≥15) or severe OSA (AHI≥30). The 

ranges of sensitivity and specificity reported across studies for type IV monitors were wide 

[53,9]. To meet the demand of home sleep testings, other alternative approaches are 

currently available with recording of different physiological signals. Actigraphy may assist 

to distinguish wake and sleep during the night, thus the combination of actigraphy and 

respiratory recording may allow a more accurate AHI or REI. The use of oximetry enables 
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proper risk stratification, and can be added to OSA screening in the general population [54]. 

Wristband-based and ECG-based sleep analyses may provide comparable results in the 

screening of SDB [55]. An appropriate combination of the methods for the targeted 

population can improve the diagnostic accuracy and provide complementary values in 

clinical interventions [9].

A preferred approach for sleep evaluation is that the measures can objectively illustrate how 

abnormalities impact sleep quality or sleep stability. For example, sleep apnea is known to 

worsen deep sleep and sleep continuity. However, our results showed that PSG-AHI and 

slow wave sleep (i.e., N3 stage) is not correlated. This result is in agreement with the 

criticism that conventional sleep stages often cannot reflect disease severity [56–59]. In 

contrast, significant correlations have been found between PSG-AHI and HFC, LFC, VLFC 

derived from CPC, suggesting that a higher AHI negatively impact stable sleep or deep 

sleep, positively increase unstable sleep, which is in line with the existing findings from the 

clinical practice. Implying that CPC measures, which focus on physiologic aspects of sleep 

instead of EEG morphology, can bring valuable insight to a quantitative description of sleep 

quality.

SDB was linked to a higher prevalence of metabolic syndrome [60] and abnormal blood 

pressure patterns [2] in the general population. Therefore, large-scale screening of high risk 

population to identify subjects with SDB for appropriate management is warranted [60,2]. 

Previous studies have found ECG-based approach to be cost-efficient and may provide 

clinical insight into abnormal sleep, because it can be used in various populations, illustrate 

sleep states (stable or unstable sleep), and provide reliable estimation of SDB [61]. Our 

findings suggest that CPC offers opportunity for OSA screening or diagnosis to be simple, 

cost-effective, and less resource-intensive, and can also be potentially for monitoring the 

efficacy of intervention.

While we found significant association between CPC-REI and PSG-AHI, we were unable to 

evaluatethe compliance of ECG monitoring at home settings. However, previous studies 

using ECG at home may support that CPC techniques can be used for home monitoring. The 

predicting value in OSA screening is worth further studies. Second, in our analyses, only 

CPC-REI measures with PSG outcomes were compared. Future comparison studies are 

encouraged to include different portable approaches for the use of home testing. A 

combination of CPC with other signal-based measures may further improve the accuracy of 

home diagnosis, and such studies are encouraged given the increasing needs for SDB 

screening. For example, there are many situations when knowing the oxygenation profile 

matters, including for severity, which the ECG technique is blind to, including deep REM 

desaturation and hypoventilation. When ECG recording is combined with actigraphy, the 

accuracy of sleep period estimates may be improved. Third, the exclusion of subjects with 

comorbidities (e.g. symptomatic coronary heart disease, congestive heart failure, 

uncontrolled pulmonary disease) may limit the generalizability of this approach to the 

general population. CPC techniques are not applicable for patients with cardiac arrhythmia, 

especially atrial fibrillation and continuous bigeminy, and for patients using some 

medications like beta blockers. Future studies are encouraged to investigate whether this 

technique is also applicable across patients with these types of common comorbidities or 
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conditions. In addition, severely fragmented sleep from other causes may cause an apnea-

like signature on the CPC spectrum. Proper context (e.g. snoring, sleepiness, etc.) should be 

considered for clinical differential diagnosis.

5. CONCLUSION

The performance of CPC techniques with automated estimation of REI was shown with 

reliable diagnostic values that are consistent with standard PSG measures. CPC-REI has 

significant correlation and good agreement with PSG-AHI, and the sensitivity, specificity, 

positive and negative predictive values indicated good accuracy on the detection of 

respiratory events from ECG recordings. The use of ECG signals allow the possibilities for 

simple, less resource-intensive and cost-effective methods for OSA screening or treatment 

follow-ups.
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Abbreviations

AASM American Academy of Sleep Medicine

AHI apnea-hypopnea index

AUC area under the curve

CPC cardiopulmonary coupling

e-LFC elevated-low frequency coupling

ECG electrocardiogram

EEG electroencephalography

FDA Food and Drug Administration

HFC high-frequency coupling

HRV heart rate variability

IRB Institutional Review Board

LFC low frequency coupling

LR likelihood ratio

NPV negative predictive value

OCST out of center sleep testing

OSA obstructive sleep apnea
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PPV positive predictive value

PSG polysomnography

REI respiratory events index

ROC receiver operating characteristic

RPSGT registered polysomnographic technologists

SD standard deviation

SDB sleep-disordered breathing

TIB time in bed

TST total sleep time

VLFC very low frequency coupling
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Figure 1. 
Comparison of CPC-REI and PSG-AHI. (a) Correlation of CPC-REI and PSG-AHI. The 

correlation coefficient (r) of CPC-REI and PSG-AHI is 0.851 (p < 0.001). After controlling 

for age and gender, the correlation coefficient (r) is 0.840 (p < 0.001). (b) Bland Altman plot 

for agreement of CPC-REI and PSG-AHI.
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Figure 2. 
The receiver operating characteristic curves for CPC-REI versus PSG-AHI.
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Figure 3. 
Scatter plots to show correlations between AHI and sleep parameters derived from PSG and 

CPC.
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