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Abstract

Described is a general method for the installation of a minimal 6-methyltetrazin-3-yl group via the 

first example of a Ag-mediated Liebeskind-Srogl cross-coupling. The attachment of bioorthogonal 

tetrazines on complex molecules typically relies on linkers that can negatively impact the 

physiochemical properties of conjugates. Cross-coupling with arylboronic acids and a new 

reagent, 3-((p-biphenyl-4-ylmethyl)thio)-6-methyltetrazine (b-Tz), proceeds under mild, 

PdCl2(dppf)-catalyzed conditions to introduce minimal, linker-free tetrazine functionality. Safety 

considerations guided our design of b-Tz which can be prepared on decagram scale without 

handling hydrazine and without forming volatile, high-nitrogen tetrazine byproducts. Replacing 

conventional Cu(I) salts used in Liebeskind-Srogl cross-coupling with a Ag2O mediator resulted in 

higher yields across a broad library of aryl and heteroaryl boronic acids and provides improved 

access to a fluorogenic tetrazine-BODIPY conjugate. A covalent probe for MAGL incorporating 

6-methyltetrazinyl functionality was synthesized in high yield and labeled endogenous MAGL in 

live cells. This new Ag-mediated cross-coupling method using b-Tz is anticipated to find 

additional applications for directly introducing the tetrazine subunit to complex substrates.
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The bioorthogonal reactions of tetrazines have emerged as important tools for chemical 

biology over the last decade.1–6 Cycloadditions involving a range of dienophiles including 

trans-cyclooctenes1,7–10, cyclopropenes11–12 and norbornenes13 have been developed as 

tools for a variety of applications including cellular labeling14–17, in vivo imaging18–20, 

unnatural amino acid mutagenesis3,21–22, targeted drug delivery23–25, proteomics26, as well 

as in the fabrication and patterning of biomaterials27. Tetrazines themselves have also found 

applications in explosives technology28, in metal-organic frameworks29 and in natural 

product synthesis.30

Conjugates of tetrazines are frequently prepared by amide bond forming reactions as 

represented in Figure 1A. A major limitation of this approach is that large and hydrophobic 

linkers can negatively impact the physiochemical properties of an attached ligand.6, 17 

Complementary new methods for the introduction of minimal tetrazines to small molecules 

may further advance their potential as bioorthogonal probes and chemical reporters. The 

replacement of bulky derivatives with smaller tetrazines has resulted in fluorophores with 

improved fluorogenic and cellular wash-out properties31–33, better substrates for enzyme-

catalyzed protein modification,17, 34 and probes for 18F-PET imaging35. However, there are 

currently few methods for the direct attachment of ‘minimal’ tetrazine fragments to target 

molecules.36 Additionally, many approaches to tetrazine synthesis produce high-nitrogen 

byproducts and involve harsh reaction conditions that can limit scalability and scope. Herein, 

we describe the decagram synthesis and thermal stability of 3-((p-biphenyl-4-

ylmethyl)thio)-6-methyltetrazine, (b-Tz, 1a) and a method to directly introduce the 6-

methyltetrazin-3-yl group to arylboronic acids through the first example of a Ag-mediated 

Liebeskind-Srogl reaction (Fig 1B).

Classical tetrazine synthesis involves the condensation of Pinner salts or nitriles with excess 

hydrazine followed by oxidation.37–38 Catalytic nitrile condensation with neat anhydrous 

hydrazine, most notably with Zn(OTf)2 and Ni(OTf)2, has expanded access to 

unsymmetrical tetrazines.39 Further, thiol catalysis has been shown to promote tetrazine 

synthesis from nitriles using hydrazine-hydrate.40 The most practiced procedures utilize 

excess acetonitrile or formamidine acetate and produce volatile tetrazine byproducts with 

high-nitrogen content (Fig 2A). Recently, a sulfur-catalyzed reaction of nitriles with 

hydrazine hydrate and dichloromethane has been described for 3-aryltetrazine synthesis.41 A 

Lambert et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



safety consideration for all of these procedures is the direct addition of an oxidant to a 

reaction mixture containing hydrazine. While these methods for preparing tetrazines have 

been transformative to the field of bioorthogonal chemistry, there is a continuing need for 

safer alternatives with complementary functional group compatibility.

Tetrazines have been used in a limited number of metal catalyzed CH activations,42–43 cross-

couplings,32–33,44–51 and in Heck reactions with in situ generated 3-vinyl-6-

methyltetrazine32. Recently, 3-amino-6-chlorotetrazines have been cross-coupled under 

Suzuki conditions (Fig 2B).45 Liebeskind-Srogl cross-couplings have also been reported 

with 3-amino-6-thiomethyl-tetrazines at 200 °C (Fig 2B).46 The 3-aminotetrazine products 

of these methods are valuable in medicinal chemistry, but their utility in bioorthogonal 

chemistry is attenuated by the deactivating amino substituent.21, 32 The tetrazines most 

useful to bioorthogonal chemistry are also sensitive to basic conditions, making them 

incompatible with many conditions commonly associated with cross-coupling chemistry. 

Currently, there is a single method of cross-coupling to introduce a 3-methylte-trazine 

fragment via Stille coupling with 3-bromo-6-methylte-trazine, which is prepared from 3-

hydrazino-6-methylte-trazine (Fig 2B).33

We considered that 3-thioalkyl-6-methyltetrazines might serve as useful reagents for the 

preparation of 3-aryl-6-methylte-trazines, which are attractive bioorthogonal reagents due to 

their balance of rapid kinetics toward dienophiles and high stability in the cellular 

environment.17, 21, 52 By modifying a method for the synthesis of 3-thiomethyl-6-

methyltetrazine,53 we prepared compounds 1a-g with the rationale that a sacrificial S-

benzylic substituent could serve to tune cross-coupling efficiency and improve the safety 

profile of the tetrazine. As shown in Figure 3, the 4-phenylbenzyl derivative b-Tz (1a) was 

prepared on large scale via alkylation of commercially available thiocarbohydrazide54 with 

4-bromomethylbiphenyl followed by one-pot condensation with triethylorthoacetate and a 

novel Cu(OAc)2-catalyzed air-oxidation of the dihydrotetrazine intermediate. b-Tz was 

isolated on 27 gram scale with a 47% overall yield after simple silica plug filtration and is a 

bench-stable crystalline solid (m.p. 141°C). The differential scanning calorimetry (DSC) 

profile of b-Tz has an onset temperature of 170 °C and a transition enthalpy of 900 J/g and is 

not flagged as potentially shock sensitive or explosive by a modified Yoshida correlation 

(Fig S-11).55

After extensive screening (Fig S-3 thru S-8), we found copper(I)-mediated Liebeskind-Srogl 

conditions56,57 could promote cross-coupling of benzylic thioether tetrazines with 

PhB(OH)2, PhSnBu3, and PhSi(OMe)3 (Fig 4C entries 1–3). Under Cu-mediated conditions 

tetrazine 1b was the best substrate; however, the generality under these conditions was 

modest. The rapid consumption of tetrazine starting materials during the reaction led us to 

test if Cu(I) was causing decomposition of the reagent. Indeed, heating b-Tz with Cu(I)-

thiophene carboxylate (CuTC) at 70 °C resulted in rapid decomposition and produced 4-

phenylbenzaldehyde as the only identifiable side product (Fig 4A).

Copper has been proposed to promote the Liebeskind-Srogl reaction by facilitating 

transmetallation as shown in Figure 4B.57–58 We hypothesized that silver(I) salts might be 

similarly capable as promotors, whereby transmetallation would be promoted in a dual role 
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by the thiophilic capture of benzylic thiolate by silver and the borophilic capture by oxygen. 

Ag(I) additives have been shown to promote Rh-catalyzed coupling of arylboronic acids 

with arylmethylsulfides bearing ortho-directing groups59–60, and the Cu-catalyzed coupling 

of arylboronic acids with aromatic thioesters61. To our knowledge, a Ag-mediated variation 

of the Liebeskind-Srogl reaction has not been reported. After extensive optimization (Fig 4C 

entries 4–7, S-1 and S-2), PdCl2(dppf) (15 mol%) was found to be especially effective for 

cross-coupling of 3-thioalkyl-6-methylte-trazines with arylboronic acids in polar, aprotic 

solvents (DMF, DMSO) at 60 °C. A screening of silver(I) additives revealed Ag2O as the 

most general promotor, although Ag2CO3 was also effective (Fig 4D). Substitution of Ag2O 

by Cu2O gave only trace product formation. Arylboronic acids are particularly effective 

nucleophiles, whereas PhBF3K and PhBPin were both less effective under identical reaction 

conditions (Fig 4C entries 8–9). Further, a series of 3-arylmethyl-6-methyltetrazines 1a-g 
were evaluated as coupling partners (Fig 4E). Of these, the 4-phenylbenzyl derivative b-Tz 

(1a) was identified as the substrate with both the best cross-coupling yield as well as most 

favorable thermal stabiliy. We also note that the cost of Ag2O (currently <$3/g) is similar to 

the common promotor CuTC, and is minor in the context of bioorthogonal chemistry 

reagents which are typically required only in small amounts.

The scope of the Ag-mediated, Pd-catalyzed coupling of b-Tz with arylboronic acids is 

summarized in Figure 5A. Successful reactions were observed for arylboronic acids 

containing chloro-, fluoro-, secondary and tertiary amino-, alcohol, ether, nitro, sulfonyl, 

thioether, nitrile, aldehyde, ester, ketone, carbamate, and styryl groups. Heterocyclic 

functionality tolerated on the boronic acid component included quinoline, indole, pyridine, 

triazole, N-methylimidazole, furan and thiophene groups. The protected amino acid 2ae 
coupled with b-Tz in 96% yield. Estrone-tetrazine 2ag was also synthesized in 61%. In 

general, couplings were carried out using 1.9 equiv. of boronic acid, but 3.0 equiv. were 

utilized in reactions where homocoupling of the boronic acid was pronounced. ortho-

Substituted heteroatoms had a deleterious impact with a relatively low yield observed for 

ortho-methoxy tetrazine 2k and only trace product with N-Boc-2-aminophenylboronic acid 

and 2-hydroxyphenylboronic acid. While protected thiol and amine functionality was well 

tolerated (Fig 5), additives with free thiol or primary alkyl amine groups were not (Fig 

S-19). Also unsuccessful were 2-pyridyl- and 4-pyridylboronic acids which are regarded as 

problematic across other cross-coupling reactions.62

This cross-coupling method is not limited to S-benzylic thioethers or methyl-substituted 

tetrazines. 3-(Methylthio)-6-phenyl-tetrazine (3) was prepared from triethyl orthobenzoate 

and evaluated as a reagent in the synthesis of diaryltetrazines (Fig 5B). Successful reactions 

were observed for arylboronic acids bearing chloro-, alcohol, carbamate, ester, indole and 

ether groups with yields comparable to b-Tz. Included is an improved synthesis of 3-(4-

hydroxymethylphenyl)-6-phenyltetrazine (4c), which is used to create cell-contact guiding 

micro-fibrous materials for tissue-culture applications.27

We sought to demonstrate the application of b-Tz for the construction of fluorophore-

tetrazine conjugates—compounds that have utility in live cell imaging.15 BODIPY-dye 6 
with a directly attached tetrazine has been developed as ‘superbright’ bioorthogonal probe 

for fluorogenic labeling in live cells.31 The condensation of nitriles with hydrazine produces 
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6 in 8% yield.31 As shown in Figure 6, compound 6 can be accessed in 78% yield through 

the Ag-mediated cross-coupling of boronic acid 5 with b-Tz.

To demonstrate the utility of b-Tz in synthesizing chemical probes for studying endogenous 

levels of a protein in a native biological system, we constructed a tetrazine probe for 

monoacylglycerol lipase (MAGL). MAGL is a serine hydrolase in the endocannabinoid 

signaling pathway, and has attracted increasing interest as a target for neurological and 

metabolic disorders.63 We designed a MAGL probe (9) by appending a 6-methyltetrazine 

moiety to a pyrazolylpiperidine scaffold with an electrophilic hexafluoroisopropyl (HFIP) 

carbamate warhead for covalently labeling the active site serine (Fig 7A).64 Synthesis was 

accomplished by cross-coupling of b-Tz with boronic acid 7 resulting in a 77% yield of 8. 

The reactive HFIP carbamate was installed by Boc deprotection followed by in situ addition 

to a triphosgene and hexafluoroisopropanol mixture, giving the MAGL reactive probe 9 in 

78% yield. The reaction rate of 9 toward trans-cyclooctene is similar to that of 3-methyl-6-

[4-aminomethyl]tetrazine (krel 1.1, Fig S-20).65 Probe 9 inhibited MAGL activity with 31 

nM IC50 in an in vitro assay.66

To test the labeling of endogenous MAGL in live cells, human brain vascular pericytes were 

treated with probe 9 for 1 h, followed by labeling with 2 μM of TCO-TAMRA for 30 min in 

live cells (Fig 7B). After cell lysis, MAGL labeling was assessed with a gel-based activity-

based protein profiling (ABPP) analysis (Fig 7C–E).67 Strong fluorescence signals were 

observed for MAGL with minimal non-specific labeling from TCO-TAMRA. The labeling 

by probe 9 was dose responsive with a cellular IC50 of 8 nM, and was competed by a 

MAGL inhibitor, KML29.64 The HFIP warhead also labeled an additional protein at ~35 

kDa, which is consistent with its reactivity with α/β-hydrolase domain 6 (ABHD6), and 

other off-targets at higher concentrations.64, 67

In summary, a method has been described for installing a minimal 6-methyltetrazinyl-3-yl 

group through the first Ag-mediated Liebeskind-Srogl cross-coupling. A combination of 

PdCl2(dppf) catalyst and Ag2O mediator was found to be uniquely effective for coupling 3-

thioalkyl-6-methyltetrazines with arylboronic acids. Safety-testing guided our design of the 

reactive substrate b-Tz (1a), which can be synthesized from commercially available 

materials on decagram scale in 47% overall yield. Cross-coupling of b-Tz with boronic acids 

proceeds under mild conditions with broad functional group tolerance. Alternatively, 3-

(Methylthio)-6-phenyl-tetrazine (3) undergoes cross-coupling with arylboronic acids to give 

3,6-diaryltetrazines. Application to the synthesis of chemical biology tools was 

demonstrated. A BODIPY-tetrazine conjugate was synthesized in 78% yield—substantially 

higher than what is possible using traditional hydrazine-based synthesis. Finally, a tetrazine-

functionalized probe for MAGL was synthesized in high yield and was shown to covalently 

label endogenous MAGL with good selectivity in live cells. We anticipate that this method 

for introducing minimal tetrazines to chemical probes will serve as an important tool for 

studying protein targets at endogenous levels in their native environment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(A) The most common approach to tetrazine conjugation uses bulky linkers to attach 

molecules of interest. (B) Cross-coupling approach described here.
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Figure 2: 
(A) Tetrazine synthesis based on condensation of nitriles or Pinner reagents with hydrazine 

(B) Cross-couplings of tetrazine electrophiles with arylboronic acids have been limited to N-

substituted tetrazines, which are deactivated for bioorthogonal chemistry applications. Stille 

coupling has been used to couple 3-bromo-6-methyl-tetrazine to fluorophores.
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Figure 3: 
Decagram synthesis and thermal stability of b-Tz (1a).
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Figure 4: 
(A) Rapid decomposition of b-Tz in CuTC. (B) Proposed Liebeskind-Srogl transmetallation 

mechanism. (C) Optimized Pd-catalyzed cross-coupling of tetrazines b-Tz and 1b with 

various nucleophiles (yields determined by GC w/dodecane as a standard). Conditions: (a) 

Pd2dba3 (12.5 mol%), Cs2CO3 (3.0 eq.), dioxane, 70 °C, 90 min. (b) [Pd(allyl)Cl]2 (10 mol

%), THF, 70 °C, 2 h. (c) Pd(OAc)2 (10 mol%), TBAF (1.0 eq.), dioxane, 70 °C, 2.5 h. (d) 

Pd2dba3 (15 mol%), DMF, 60 °C, 20 h. (e) DMF, 60 °C, 20 h. (D) Screening of silver(I) and 

copper(I) additives for condition e. (E) Screening of tetrazines 1a-g under condition e.

Lambert et al. Page 13

J Am Chem Soc. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Reaction scope of b-Tz (5A) and 3 (5B). Typical conditions: thioalkyl tetrazine b-Tz or 3 
(1.0 equiv.), RB(OH)2 (1.9 equiv.), PdCl2(dppf) (15 mol%), Ag2O (2.5 equiv.), DMF 

(0.1M), 60°C, 19–21h, average isolated yields of duplicate synthesis (± 5%). a 3.0 equiv. of 

RB(OH)2. b 3.0 equiv. of RB(OH)2 did not significantly improve yield (< 5%), 1.9 equiv. of 

RB(OH)2 was used.
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Figure 6: 
Synthesis of 3-BODIPY-6-methyltetrazine 6.
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Figure 7: 
(A) Synthesis of MAGL reactive probe 9. (B) Live cells were treated with probe 9 for 1 h, 

followed by 2 μM TCO-TAMRA for 30 min, cell lysis, and analysis by in-gel fluorescence 

(C) In-gel fluorescence signals for a dose response of probe 9. Probe 9 (32 nM, 1 h) was 

competed by pre-treatment with MAGL inhibitor KML29 (300 nM, 1 h). (D) KML29 also 

incorporates a HFIP carbamate warhead. (E) Dose response fitting of the fluorescence 

signals of MAGL normalized by the total protein amount indicated by Coomassie staining. 

Data are reported as mean ± SEM (n = 2). See Fig S-21 for Coomassie staining.
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