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Abstract

Background: Manual delineation of volume of interest (VOI) is widely used in current radiomics analysis, suffering
from high variability. The tolerance of delineation differences and possible influence on each step of radiomics
analysis are not clear, requiring quantitative assessment. The purpose of our study was to investigate the effects of
delineation of VOIs on radiomics analysis for the preoperative prediction of metastasis in nasopharyngeal carcinoma
(NPC) and sentinel lymph node (SLN) metastasis in breast cancer.

Methods: This study retrospectively enrolled two datasets (NPC group: 238 cases; SLN group: 146 cases). Three
operations, namely, erosion, smoothing, and dilation, were implemented on the VOIs accurately delineated by
radiologists to generate diverse VOI variations. Then, we extracted 2068 radiomics features and evaluated the effects
of VOI differences on feature values by the intra-class correlation coefficient (ICC). Feature selection was conducted
by Maximum Relevance Minimum Redundancy combined with 0.632+ bootstrap algorithms. The prediction
performance of radiomics models with random forest classifier were tested on an independent validation cohort by
the area under the receive operating characteristic curve (AUC).

Results: The larger the VOIs changed, the fewer features with high ICCs. Under any variation, SLN group showed
fewer features with ICC ≥ 0.9 compared with NPC group. Not more than 15% top-predictive features identical to
the accurate VOIs were observed across feature selection. The differences of AUCs of models derived from VOIs
across smoothing or dilation with 3 pixels were not statistically significant compared with the accurate VOIs (p >
0.05) except for T2-weighted fat suppression images (smoothing: 0.845 vs. 0.725, p = 0.001; dilation: 0.800 vs. 0.725,
p = 0.042). Dilation with 5 and 7 pixels contributed to remarkable AUCs in SLN group but the opposite in NPC
group. The radiomics models did not perform well when tested by data from other delineations.

Conclusions: Differences in delineation of VOIs affected radiomics analysis, related to specific disease and MRI
sequences. Differences from smooth delineation or expansion with 3 pixels width around the tumors or lesions
were acceptable. The delineation for radiomics analysis should follow a predefined and unified standard.
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Background
As an emerging non-invasive tool, radiomics has shown
gratifying performance in phenotype diagnosis and clas-
sification [1, 2], tumor prognosis [3, 4], treatment deci-
sion [5, 6], and molecular marker estimation [7, 8] by
permitting comprehensive quantification tumor hetero-
geneity on radiographic imaging [9–11]. The process
mainly consists of six consecutive steps including image
acquisition, image preprocessing, tumor segmentation,
feature extraction, feature selection, and radiomics
model development. Each step can be an uncertain
factor contributing to an unreasonable result due to a
lack of standardization in radiomics analysis. Recent
studies have focused on identifying the factors that affect
radiomics analysis. Vallieres et al. investigated the
impact of six parameters of feature extraction on the
prediction of lung metastases in soft-tissue sarcomas of
the extremities [12]. Lu et al. evaluated the effects of
segmentation and discretization methods on radiomics
features in 2-deoxy-2-[18F] fluoro-D-glucose and [11C]
methyl-choline positron emission tomography/computed
tomography (PET/CT) imaging of nasopharyngeal
carcinoma (NPC) [13]. In the process of image prepro-
cessing for patients with head and neck cancers, Bagher-
Ebadian et al. evaluated changes in radiomics features
from images subject to smoothing, sharpening, and noise
relative to baseline datasets [14]. In a recent study, Shiri
et al. considered the need of reliable feature values
against image reconstruction and assessed the variability
of radiomics features extracted from multi-scanner
phantom and patient PET/CT images over a wide range
of different reconstruction settings [15].
Among the factors that affect radiomics analysis, delin-

eation of tumors or lesions occupy an important
position, as the volume of interest (VOI) is directly used
to extract quantitative features [9]. The accuracy may
affect subsequent radiomics analysis. Usually, VOIs are
manually outlined by radiologists with labor intensive as
well as time-consuming. The work in [16] showed that
the delineation of VOIs for radiotherapy currently was
imprecise with high inter-operator variability, even for
experienced observers. Most prior studies have focused
solely on the effects of inter-observer variability in man-
ual tumor delineation to identify radiomics features with
high robustness [17, 18]. In fact, quantification of tumor
delineation and tolerance assessment of the differences
are likely more important in developing standardized
research. Recently, Kocal et al. [19] determined the influ-
ence of segmentation with margin shrinkage of 2 mm on
CT-based radiomics analysis for distinguishing low and
high nuclear grade renal clear cell carcinomas (RcCCs).
However, in most cases, delineation tends to overesti-
mate the lesion volume to ensure that the entire lesion
is identified [20]. The delineation differences that can be

accepted and possible influence on radiomics analysis have
not been unexplored, requiring quantitative assessment.
The aim of this work is to investigate the effects of

delineation of VOIs on each step of radiomics ana-
lysis in detail, including feature extraction, feature se-
lection, and prediction performance of radiomics
models. Simultaneously, the tolerance of delineation
differences of VOIs was assessed for reference in
radiomics analysis.

Methods
Patients
Two datasets were collected to investigate the effects of
delineation of VOIs on radiomics analysis. The first
problem is to distinguish whether metastasis occurs in
patients with NPC before radiotherapy. In clinical prac-
tice, the majority of NPC patients with metastasis before
radiotherapy suffer from poor prognosis [21–23]. Hence,
it will be beneficial to improve prognosis if the risk of
transfer before treatment can be distinguished accurately
and take timely intervention on patients with high risk
of metastasis. Our study retrospectively recruited 238
patients with NPC who had been diagnosed by histo-
pathology between August 2009 and January 2013. All
patients were divided into two groups in accordance
with the metastasis status: (i) metastasizing (TM) group
with 126 patients; (ii) non-metastasizing (NM) group
with 112 patients.
The second problem is the prediction of sentinel

lymph node (SLN) metastasis in patients with breast
cancer, as described in [24]. It is of great significance
using radiomics analysis to predict SLN metastasis for
treatment decision making in breast cancer. A total of
146 consecutive patients with histologically confirmed
breast cancer between March 2014 and June 2016 were
retrospectively enrolled in this work. The patients con-
sisted of two groups on the basis of SLN metastasis: (i)
TM group with 55 patients; (ii) NM group with 91
patients. The inclusion criteria are available in
Additional file 1: Note S1.
The patients were divided into a strictly training co-

hort for radiomics model building and an independent
validation cohort (25% in NPC group and 33% in SLN
group) for evaluating the final prediction performance.
The detailed demographic characteristics and clinical
information are summarized in Table 1.

Image acquisition protocol
All analyses were carried out in accordance with the
relevant guidelines and regulations, and the require-
ment to obtain informed consent was waived. This
retrospective study was approved by the local institu-
tional review board.
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a) NPC group: All patients had scanned axial contrast-
enhanced T1-weighted (CET1-w) and T2-weighted
(T2-w) images acquired from a 1.5-T GE scanner
(Signa EXCITE HD, TwinSpeed, GE Healthcare,
Milwaukee, WI, USA) and a 1.5-T Philips scanner
(Achieva, Philips Healthcare, The Netherlands). The
GE MRI acquisition parameters were as follows:
CET1-w images (TR/TE: 410/Min Full ms, FOV =
230 × 230 mm2, NEX = 2.0, slice thickness = 4 mm,
spacing = 1 mm); T2-w images (TR/TE: 5000/85 ms,
FOV = 230 × 230 mm2, NEX = 2.0, slice thickness =
4 mm, spacing = 1 mm). The Philips MRI acquisi-
tion parameters were as follows: CET1-w images
(TR/TE: 636/20 ms, FOV = 220× 220 mm2, NEX =
4.0, slice thickness = 4.5 mm, spacing = 1 mm); T2-w
images (TR/TE: 3700/100 ms, FOV = 220 × 220
mm2, NEX = 3.0, slice thickness = 5 mm, spacing =
1 mm).

b) SLN group: All patients underwent pretreatment
T2-weighted fat suppression (T2-FS) and diffusion-

weighted images (DWI) scan. The anatomical MRI
data were acquired on a 1.5-T MR scanner
(Achieva, Philips Healthcare, Best, The
Netherlands) equipped with a 4-channel SENSE
breast coil in prone position. Axial DWI with bilat-
eral breast coverage were obtained (TR/TE = 5065/
66 ms, FOV = 300 × 300 mm2, matrix = 200 × 196,
slice thickness = 5 mm, slice gap = 1mm, b values of
0 and 1000 s/mm2) by using single-shot spin-echo
echo-planar imaging. T2-FS images of breast were
collected (TR/TE = 3400/90 ms, FOV = 320 × 260
mm2, matrix = 348 × 299, slice thickness = 3 mm,
slice gap = 0.3 mm).

Image pre-processing
As for the subjects in two datasets enrolled in our study,
multi-sequence MR images are required from several
MR scanners with different protocols, hence image
standardization are essential for all images to avoid the
inhomogeneity. Prior to analyzing MR images, additional

Table 1 Demographic characteristics and clinical information of two disease groups

Dataset Characteristic Training cohort Independent validation cohort

NPC group NM (n = 84) TM (n = 95) p-Value NM (n = 28) TM (n = 31) p-Value

Sex 0.903 0.398

Male 63 72 21 26

Female 21 23 7 5

Mean age (SD) 43.95 (11.72) 45.40 (10.26) 0.394 40.54 (9.74) 45.10 (10.27) 0.121

Histologic grade < 0.001* 0.009*

I 3 (3.57%) 0 (0.0%) 1 (3.57%) 0 (0.0%)

II 9 (10.72%) 4 (4.21%) 6 (21.43%) 2 (6.45%)

III 47 (55.95%) 19 (20.0%) 14 (50.0%) 8 (25.81%)

IV 25 (29.76%) 72 (75.79%) 7 (25.0%) 21 (67.74%)

Metastatic sites – –

Lung – 36 (33.03%) – 11 (30.56%)

Liver – 30 (27.52%) – 12 (33.33%)

Bone – 43 (39.45%) – 13 (36.11%)

SLN group NM (n = 60) TM (n = 37) p-Value NM (n = 31) TM (n = 18) p-Value

Mean age (SD) 46.70 (11.85) 46.59 (11.04) 0.935 47.32 (9.18) 50.33 (10.06) 0.339

Histologic grade 0.261 0.254

I 7 (11.7%) 2 (5.4%) 7 (22.6%) 1 (5.6%)

II 23 (38.3%) 20 (54.1%) 12 (38.7%) 7 (38.9%)

III 30 (50.0%) 15 (40.5%) 12 (38.7%) 10 (55.6%)

HER2 0.592 0.061

Positive 21 (35.0%) 11 (29.7%) 6 (19.4%) 8 (44.4%)

Negative 39 (65.0%) 26 (70.3%) 25 (80.6%) 10 (55.6%)

Ki67 (SD) 36.30 (24.34) 26.32 (15.61) 0.100 30.68 (25.19) 35.06 (27.26) 0.545

ADC (SD) 0.86 (0.20) 0.82 (0.16) 0.331 0.84 (0.16) 0.86 (0.19) 0.442

TM metastasizing, NM non-metastasizing, HER2 human epidermal growth factor receptor 2, Ki67 proliferation index, ADC apparent diffusion coefficient
* p < 0.05 representing statistically significant difference in NM and TM group
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image standardization involving bias field correction and
intensity normalization were conducted to avoid inhomo-
geneity. First, the N4ITK algorithm [25] was applied to
remove the bias field artifacts in the MR images. Subse-
quently, intensity normalization [26] was utilized to reduce
the variability across image acquisitions from different
manufactures. Fig. 1 illustrates the schematic framework of
the radiomics analysis in this work.

Volume of interest segmentation
All MR images were imported into the ITK-SNAP soft-
ware designed by Yushkevich et al. [27] to define the VOI
of each tumor. The tumor contours were individually first

outlined slice-by-slice by two radiologists (Z.L., 4 years of
experience, and Z.B., 6 years of experience) and then
reviewed by a senior radiologist (Z.S., 12 years of experi-
ence). Any disagreement between the readers was
discussed until a final consensus was generated. During
the session 30 cases randomly selected from each dataset
were used for the inter-observer analysis of the segmenta-
tion. For each selected region of interest (ROI), the
smallest rectangle that best fits the tumor region was used
to calculate margin distance of two kinds of manual
segmentation in four directions (up, down, left, and right),
resulting in multiple calculated values (number of selected
ROIs × 4) for analysis together.

Fig. 1 Overall schematic framework of the radiomics analysis: (a) MR images across preprocessing of bias field correction and intensity
normalization; (b) Margin variations consisting of erosion, smoothing, and dilation of various sizes on each slice of volume of interest (VOI), which
represent diverse VOI delineations; (c) Radiomics features extracted from varying parameter settings and feature selection; (d) Radiomics analysis
mainly consisting of feature robustness analysis, feature selection analysis, and predictive performance comparison of models from diverse VOIs
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Changes of volume of interest
On the basis of the original segmented regions, erosion,
dilation, and smoothing were performed on the VOIs
slice-by-slice to generate diverse VOIs. For the dilation
operation, the radius sizes (number of pixels) of the circu-
lar structural element to dilate the VOIs were separately
set as 3, 5, and 7. Given that certain tumors were ex-
tremely small, the size for the erosion operation was only
set to 3. Image smoothing for VOIs was implemented by a
Gaussian smoothing filter configured with correlation op-
erator, where sigma was set as 3 and the template size was
7 × 7. Pixel values outside the bounds of the region of
interest were set to the value of the nearest border. The
three types of operations were respectively implemented
using the functions imdilate, imerode, and imfilter of
MATLAB version 8.5 (MathWorks, R2015a). No add-
itional processing was implemented on the contours. For
the sake of analysis, five operations on VOIs were abbrevi-
ated as Erosion, Smoothing, Dilation, Dilation5, Dilation7,
respectively. The VOIs accurately delineated by radiolo-
gists were denoted as Baseline. Fig. 2 exemplifies the VOI
in a single slice of the original tumor and presents the cor-
responding drawing of partial enlargement under different
operations simultaneously. The degree of tumor volume
change of diverse delineations in relation to the accurate
delineation is summarized in Table 2.

Feature extraction
A total of 2068 radiomics features were extracted for
each VOI. In reference to [12], four non-texture features

that describe the geometric characteristics were calcu-
lated, including tumor volume, size, solidity, and eccen-
tricity. In view of the effects of varying extraction
parameters on texture features, three extraction parame-
ters, respectively, isotropic voxel size, quantization of
gray levels, and quantization algorithm, were adopted,
thereby leading to 2064 textural features for each
patient. The textural features consisted of Global (ex-
tracted from the intensity histogram with 100 bins of the
tumor region), grey-level co-occurrence matrix (GLCM),
grey-level run length matrix (GLRLM), grey-level size
zone matrix (GLSZM) and neighbourhood grey-tone dif-
ference matrix (NGTDM) [28–30]. The extraction was
conducted with a MATLAB toolkit for radiomics ana-
lysis (https://github.com/mvallieres/radiomics). The de-
tailed extraction parameters and description are
available in Additional file 1: Note S2 and Table S1.

Feature selection
The feature selection was performed within the training
cohort. Maximum Relevance Minimum Redundancy
(mRMR) [31], which has good trade-off between the
maximum relevance and minimum redundancy, was
firstly explored to identify a well-ranked feature set that
included 100 features. Referring to [12, 32], the 0.632+
bootstrap method combined with the area under the
receiver operating characteristic curve (AUC) metric
were adopted to evaluated the predictability of features
(Additional file 1: Note S3). One thousand iterations
were performed with 63.2% random data resampling

Fig. 2 Segmentation of volume of interest and differences in processing: (a) Example illustrating the VOI in a single slice of tumor delineated by
the radiologists (indicated in yellow); (b) Corresponding drawing of partial enlargement under diverse operations (indicated in blue). Erosion
represents erosion operation on VOIs while Smoothing represents smoothing operation. Dilation, Dilation5, and Dilation7 indicate dilation
operation, for which the size of structural elements is set as 3, 5, and 7, respectively. Application of various operations to VOIs slice-by-slice
corresponds to diverse delineations
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from the training cohort between runs. The features se-
lected in the previous step were ranked through
maximizing the 0.632+ bootstrap AUC to determine the
final twenty top-predictive features that maximally
distinguished two classes.

Development of radiomics model
Once the discriminative features were identified, radio-
mics models were built based on different feature sets. A
new feature set was composed when one feature from
higher to lower rank was added, which contributed to 20
radiomics models. We used the random forest classifier
[33] to evaluate the capability of foregoing radiomics
models across 10-fold cross-validation in the training co-
hort, with 150 decision trees used for training ultimately.
The model that possessed the most superior properties
was determined for further analysis.

Statistical analysis
First, Mann-Whitney U test was used to compare the
difference in age and other continuous variables between
TM and NM. Chi-square test was performed to analyze
the differences based on factors, such as gender and clin-
ical stages. Statistical analysis was performed on SPSS
version 22.0 (IBM, Armonk, NY, USA).
The robustness of features against delineation differ-

ences versus the accurate VOIs was quantified using the
intra-class correlation coefficient (ICC). Features with
ICC ≥ 0.9 were considered excellent robust. The
performance of diverse VOI-derived radiomics models
were assessed by AUC, and the differences were com-
pared by the method of DeLong et al. [34] using the
MedCalc version 15.2.2 (MedCalc Software bvba,
Ostend, Belgium). Note that a two-tailed p value less
than 0.05 indicated statistical significance in this work.

Results
For the metastasis differentiation in NPC before radio-
therapy, no significant differences were observed be-
tween NM and TM groups except in histologic grade
(p < 0.05; Table 1). In the prediction of SLN metastasis
in breast cancer, NM and TM groups had no significant
differences in all characteristics (p > 0.05; Table 1). Inter-

observer differences are summarized in Fig. 3. Colors in
the heatmap indicated that margin differences of ROIs
from two radiologists were concentrated between 0 and
8 pixels for all datasets.

Feature robustness analysis
ICCs for features against all VOI variations were distrib-
uted in a wide range for all scans (Fig. 4a and b). ICC
values in Smoothing which represented the smallest
differences were most concentrated with the smallest ef-
fect on feature values, except for T2-FS images, for
which Dilation had more concentrated distribution with
the narrowest ICC range of 0.134–0.999. Dilation7
which changed the most in VOIs, revealed the largest
ICC range with the great effect on feature values. The
features extracted from breast cancer data were more
sensitive to VOI variations compared with NPC, show-
ing fewer robust features as a whole (Fig. 4c). Smoothing
resulted in the maximum number of robust features,
whereas Dilation7 worked the other way around.

Feature selection analysis
As a matter of convenience, the top-predictive features se-
lected from diverse VOIs were re-indexed according to
feature type. Each symbol in Fig. 5 represents one type of
feature, and features in area filled with gray represent the
same top-predictive features as accurate VOIs. The fea-
tures selected under diverse VOIs showed considerable
differences (Fig. 5), which indicated great effects of delin-
eation differences on feature selection. Under any vari-
ation in the two tasks, not more than 15% top-predictive
features were identical to the accurate VOIs, particularly
for CET1-w images. This result was the case for no com-
mon features. Analogously, there was a large difference in
features contributing the best radiomics models (see solid-
filled symbols in Fig. 5).

Prediction performance analysis
As seen in Table 3, the differences of AUCs in Smooth-
ing and Dilation models were not statistically significant
with the Baseline model except for T2-FS images in SLN
group, the average AUCs of which were much higher
(Smoothing: 0.845 vs. 0.725, p = 0.001; Dilation: 0.800 vs.

Table 2 Tumor volume change under diverse operations in relation to the accurately outlined tumor

Dataset Erosion Smoothing Dilation Dilation5 Dilation7

NPC group CET1-w 0.767 (0.757–0.777) 0.991 (0.989–0.992) 1.350 (1.334–1.366) 1.606 (1.579–1.634) 1.976 (1.932–2.021)

T2-w 0.745 (0.734–0.757) 0.987 (0.985–0.988) 1.388 (1.369–1.407) 1.675 (1.641–1.708) 2.089 (2.035–2.144)

SLN group DWI 0.664 (0.639–0.674) 0.959 (0.952–0.964) 1.578 (1.531–1.598) 2.080 (1.979–2.107) 2.858 (2.654–2.882)

T2-FS 0.788 (0.773–0.802) 0.985 (0.983–0.987) 1.333 (1.307–1.358) 1.609 (1.560–1.658) 2.019 (1.933–2.105)

Note that the value (mean with 95% confidence interval) in the table represents the ratio of the tumor volume after corresponding operations to the
original volume
Erosion erosion operation, Smoothing smoothing operation, Dilation dilation with structural element radius size of 3, Dilation5 dilation with structural element
radius size of 5, Dilation7 dilation with structural element radius size of 7

Zhang et al. Cancer Imaging           (2019) 19:89 Page 6 of 12



0.725, p = 0.042). Erosion, which performed similarly to
Smoothing and Dilation model in NPC group, performed
the worst in SLN group, especially for DWI with significant
differences in comparison with Baseline model (p < 0.001).
Besides, Dilation5 and Dilation7 model contributed re-
markable predictive AUCs in SLN group but the opposite
in NPC group. The prediction performance of the training
cohorts is shown in Additional file 1: Table S2.

Model performance across testing data from diverse VOIs
On the basis of feature parameters obtained from the
radiomics models, we assessed stability by validating the
model using data from diverse VOIs, as shown in Fig. 6.
The predictive AUCs using CET1-w images, trained by
data from the Dilation7 model and tested by data from
other VOIs, were all above 0.7 and seemed relatively
stable. Poor prediction results were still represented by
Dilation5 and Dilation7 models using T2-w images. The

prediction results changed in relatively large ranges
across different VOI-operated validation data in SLN
group. The model with training and validation data
undergoing the same delineation outperformed other
models in most cases.

Discussion
In this work, we investigated the influence of tumor de-
lineation on radiomics analysis in detail within two dis-
ease groups. The tolerance of the delineation differences
was explored to provide references for tumor delineation
in future radiomics studies. Application of various oper-
ations to VOIs corresponded to diverse delineations in
clinical practice. The results illustrated that delinea-
tion differences of VOIs had an effect on the radio-
mics feature values, feature selection, and prediction
performance which depended on specific disease as
well as MRI sequences.

Fig. 3 Heatmap for the inter-observer analysis of the segmentation. 30 cases with segmentation by two radiologists were randomly selected
from each dataset. For each selected region of interest (ROI), the smallest rectangle that best fits the tumor region was used to calculate margin
distance of two kinds of manual segmentation in four directions (up, down, left, and right), resulting in multiple calculated values (number of
selected ROIs × 4) for analysis together. Colors in the heatmap indicated that margin differences of ROIs were concentrated between 0 and 8
pixels for all datasets
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Fig. 4 Comparison of the effects of VOI differences on radiomics feature values. ICC violin plots of the radiomics features derived from diverse
VOIs for (a) NPC group and (b) SLN group. The dashed lines represent the median, and the solid lines represent interquartile range. (c) Number
of robust features identified from diverse VOIs. Features with ICC≥ 0.9 were considered robust

Fig. 5 Top-predictive features across feature selection from diverse VOIs: (a) NPC group and (b) SLN group. Each symbol represents one type of
feature, and the area filled with gray represents the range of feature types selected using accurate VOIs. Twenty top-predictive features are
identified for each scan, and features in area filled with gray represent the same top-predictive features as accurate VOIs. Note the solid-filled
symbols represent features that contribute to the best radiomics models
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The experiment results provided strong evidence that
the larger the VOIs changed, the greater the influence
on the feature values (Fig. 4). According to the number
of robust features, different diseases had discrepant
sensitivity to VOI variations, consistent with a previous
discovery [18]. This result could be explained from the
fact that the tumors in breast cancer are larger with ill-
defined margins, which cause great changes on the fea-
ture values across larger variation. A comparison of top-
predictive features showed that even slight smoothing
on VOIs could lead to large differences in feature selec-
tion. This agrees with the discovery in [19], only one
texture feature appeared on both contour-focused seg-
mentation and the one with shrinkage of 2 mm. Probably
because the variations exactly weaken the correlation
with the class of certain features by changing the feature
values, which resulted in a new order of top-predictive
features. A feature possessing good distinguishing char-
acteristics does not stand out under all conditions, and
thus depended on the specific analysis task.

The study also demonstrated that delineation differ-
ences of VOIs affected prediction performance of radio-
mics models. Stable and prominent performance from
VOIs across Smoothing and Dilation indicated the toler-
ance of corresponding differences for radiomics models
and corroborated the feasibility that the radiologists
smoothly outline the lesions or slightly larger of 3 pixels
width around the tumor. Note that it is not that bigger
is better for VOIs. The worse performance from VOIs
across Dilation5 and Dilation 7 in NPC group (Fig. 2)
could be explained by the dilated area that contained
more areas of the nasal cavity which exhibits low-signal
intensity. This increased the effect of certain features,
tending to confusion classification and facilitating
feature sets with poor differentiation property. However,
in breast images, more soft tissues containing complex
textures were associated to capture heterogeneity for
predicting SLN metastasis, indicating that the peritu-
moral regions had a positive influence to a certain
extent. This finding is consistent with past researches

Table 3 Prediction results of radiomics models from diverse VOIs on the independent validation cohorts

Dataset Image Radiomics model Feature number AUC 95% CI p-Value SEN SPE ACCU

NPC group CET1-w Baseline 15 0.778 0.720–0.830 – 77.4% 75.0% 72.7%

Erosion 9 0.806 0.750–0.855 0.403 77.4% 85.7% 76.9%

Smoothing 11 0.803 0.746–0.852 0.412 80.6% 75.0% 74.1%

Dilation 10 0.810 0.754–0.858 0.268 80.6% 71.4% 72.0%

Dilation5 20 0.751 0.691–0.805 0.437 87.1% 53.6% 68.1%

Dilation7 14 0.738 0.678–0.793 0.220 77.4% 67.9% 68.3%

T2-w Baseline 11 0.748 0.688–0.802 – 74.2% 71.4% 70.8%

Erosion 19 0.710 0.647–0.767 0.359 71.0% 71.4% 68.3%

Smoothing 15 0.702 0.639–0.759 0.279 74.2% 60.7% 66.1%

Dilation 20 0.718 0.656–0.774 0.447 77.4% 60.7% 65.8%

Dilation5 14 0.596 0.530–0.659 0.003* 54.8% 53.6% 53.4%

Dilation7 18 0.588 0.522–0.651 0.002* 61.3% 64.3% 57.3%

SLN group DWI Baseline 15 0.734 0.666–0.794 – 77.8% 67.7% 69.0%

Erosion 10 0.536 0.500–0.607 < 0.001* 55.6% 58.1% 54.7%

Smoothing 20 0.711 0.642–0.773 0.617 72.2% 67.7% 63.9%

Dilation 20 0.737 0.670–0.798 0.934 77.8% 64.5% 66.7%

Dilation5 20 0.744 0.677–0.803 0.934 66.7% 80.6% 68.2%

Dilation7 8 0.789 0.725–0.843 0.269 83.3% 74.2% 72.9%

T2-FS Baseline 19 0.725 0.657–0.786 – 61.1% 74.2% 66.5%

Erosion 20 0.696 0.627–0.760 0.319 55.6% 77.4% 61.0%

Smoothing 4 0.845 0.787–0.893 0.001* 72.2% 74.2% 70.6%

Dilation 20 0.800 0.737–0.854 0.042* 66.7% 74.2% 70.8%

Dilation5 18 0.868 0.813–0.912 < 0.001* 77.8% 87.1% 76.5%

Dilation7 13 0.802 0.739–0.855 0.028* 83.3% 67.7% 72.9%

Baseline no processing with the accurate VOIs, Erosion erosion operation, Smoothing smoothing operation, Dilation dilation with structural element radius size of 3,
Dilation5 dilation with structural element radius size of 5, Dilation7 dilation with structural element radius size of 7, AUC area under receiver operating
characteristic curve, CI confidence interval, SEN sensitivity, SPE specificity, ACCU accuracy, * p < 0.05 with DeLong test representing statistically significant
difference in VOI-operated model and Baseline model
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[35, 36]. Braman et al. showed that the textural analysis
of peritumoral regions contributed to the prediction of
pathological complete response in neoadjuvant chemo-
therapy on pretreating breast cancer DCE-MRI [36].
This explanation also holds true for the worse perform-
ance from VOIs across erosion.
The radiomics models with good predictive properties

might not necessarily perform well on the validation
data from VOIs of diverse delineations, which implied
that the VOIs of training and validation data should be
outlined on the basis of the same criterion. In this
regards, a unified standard should be referred in the de-
lineation of VOIs, e.g., slight larger delineation with 3
pixels width around the tumors or lesions for all images.
We suppose this assists in more accurate analysis, as the
same proposal by Welch et al. [37]. In particular, the Dila-
tion7 model distinctly reflected stable performance against
all the variations using CET1-w images. The modeling fea-
tures are shown in Additional file 1: Table S3. Beyond our
expectation, no features showed high robustness, whether
in one or all variations. We can infer that features which

are not robust to the differences in VOIs may not result in
poor prediction performance, which is similar with the ob-
servation of past researches [38, 39]. The results also
confirmed the insufficiency of simply analyzing the effects
of differences on features robustness. In fact, whether the
final performance of the radiomics models exist substan-
tial differences is the most important issue, as emphasized
in [40].
The present work also has several generalizability

issues and limitations. First, while the number of patient
population was small, an independent validation cohort
was divided for radiomics model evaluation devoid of
information leakage between feature selection/training
phases. We believe this makes the results reliable and
generalizable. It is in demand of more patient data for
stronger verification in future research. Second, we used
simple morphological operations to change tumor mar-
gin. Other contour randomization processing methods
that provide stochastic components in the delineation of
VOIs are lacking. For the purpose of determining the
feasibility of alternative delineation of VOIs, relative

Fig. 6 Prediction performance of the radiomics models across different VOIs-operated validation data. NPC group: (a) CET1-w images and (b) T2-
w images; SLN group: (c) DWI and (d) T2-FS images. Note that the abbreviation marked with an asterisk represents a training model. For example,
Erosion* is the training model built with data and parameters obtained from VOIs with erosion. The results in the first row represent the
prediction performance of the Baseline model tested by different VOIs-operated data
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changing of the tumor-focused delineation is easier to
implement from a medical point of view. Third, regard-
ing the differences in image resolutions between MR im-
ages, we changed the size of VOIs at pixel level to better
adapt to the delineation of different scenarios. As radiol-
ogists delineate the VOIs in term of the original images,
which does not involve image resampling and additional
preprocessing. Fourth, the effects of the diverse delinea-
tions were analyzed and synthesized in spite of differ-
ences in tumor location and imaging manifestations
within two disease groups. More types of diseases should
be further assessed to provide more comprehensive
references. Additionally, we only assessed the effects of
diverse delineations of VOIs using MRI. The effect on
the radiomics analysis for other modalities, such as PET/
CT, is still unclear.

Conclusions
The differences in delineation of VOIs could lead to
considerable differences in feature value and feature se-
lection. The influence on prediction depended on spe-
cific disease as well as MRI sequences, among which
smooth or slight larger delineation with 3 pixels width
around the tumors or lesions were feasible. In addition,
predefining a unified standard is suggested in the delin-
eation to promote reliable analysis. Despite several limi-
tations, we believe these findings are of great
significance as a reference for tumor delineation in
future radiomics analysis.
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1186/s40644-019-0276-7.
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