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ABSTRACT

Background: Knowledge of the genetic etiology of epilepsy can provide essential

prognostic information and influence decisions regarding treatment and management,
leading us into the era of precision medicine. However, the genetic basis underlying
epileptogenesis or epilepsy pharmacoresistance is not well-understood, particularly in
non-familial epilepsies with heterogeneous phenotypes that last until or start in
adulthood.

Methods: We sought to determine the contribution of known epilepsy-associated
genes (EAGs) to the causation of non-familial epilepsies with heterogeneous
phenotypes and to the genetic basis underlying epilepsy pharmacoresistance.

We performed a multi-center study for whole exome sequencing-based screening of
178 selected EAGs in 243 non-familial adult patients with primarily focal epilepsy
(122 drug-resistant and 121 drug-responsive epilepsies). The pathogenicity of each
variant was assessed through a customized stringent filtering process and classified
according to the American College of Medical Genetics and Genomics guidelines.
Results: Possible causal genetic variants of epilepsy were uncovered in 13.2% of
non-familial patients with primarily focal epilepsy. The diagnostic yield according to
the seizure onset age was 25% (2/8) in the neonatal and infantile period, 11.1%
(14/126) in childhood and 14.7% (16/109) in adulthood. The higher diagnostic yields
were from ion channel-related genes and mTOR pathway-related genes, which
does not significantly differ from the results of previous studies on familial or
early-onset epilepsies. These potentially pathogenic variants, which were identified in
genes that have been mainly associated with early-onset epilepsies with severe
phenotypes, were also linked to epilepsies that start in or last until adulthood in this
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study. This finding suggested the presence of one or more disease-modifying
factors that regulate the onset time or severity of epileptogenesis. The target
hypothesis of epilepsy pharmacoresistance was not verified in our study. Instead,
neurodevelopment-associated epilepsy genes, such as TSC2 or RELN, or structural
brain lesions were more strongly associated with epilepsy pharmacoresistance.
Conclusions: We revealed a fraction of possible causal genetic variants of
non-familial epilepsies in which genetic testing is usually overlooked. In this
study, we highlight the importance of earlier identification of the genetic etiology of
non-familial epilepsies, which leads us to the best treatment options in terms of
precision medicine and to future neurobiological research for novel drug
development. This should be considered a justification for physicians determining
the hidden genetics of non-familial epilepsies that last until or start in adulthood.

Subjects Genetics, Neurology
Keywords Non-familial epilepsy, Genetics, Whole exome sequencing, in silico analysis

INTRODUCTION

Epilepsy is one of the most common neurological conditions affecting approximately eight
of every 1,000 individuals worldwide (Fiest et al., 2017). Although its detailed pathogenesis
remains largely unknown, a cumulative understanding of the genetic basis of epilepsy
revealed that many epilepsies that were previously considered idiopathic should be
reclassified as having a genetic cause (Thomas ¢ Berkovic, 2014). Even acquired epilepsies
resulting from trauma, stroke, neoplasm, infection, or congenital malformation are now
known to be associated with genetic contributions (7Thomas ¢ Berkovic, 2014). Indeed,
hundreds of genes have already been associated with epilepsy to date (Wang et al., 2017),
and have now been incorporated into commercial clinical tests with comprehensive
gene panels for the rapid identification of causative genetic mutations of many forms of
epilepsy (Moller et al., 2016; Hildebrand et al., 2016; Dunn et al., 2018). This is highly
important, because knowledge of the genetic etiology can provide essential prognostic
information and influence decisions regarding treatment and management, leading us into
the era of precision medicine (Milligan et al., 2014; Pierson et al., 2014; Lindy et al., 2018).
Unlike neonatal- and childhood-onset epilepsy, in which both availability of genetic
testing and the actionability of test results are higher (Moller et al., 2016), enquiry into
genetic causes of epilepsy has been overlooked in adult patients with epilepsy (APEs) for a
number of reasons (Thomas ¢ Berkovic, 2014): underappreciation of the role of genetic
factors in certain epilepsies such as adult-onset focal epilepsy, an inexact causal attribution
such as mistakenly ascribing a developmental epileptic encephalopathy (DEE) to birth
trauma and, not least, unknown family history resulting from the absence of the oldest
living relative who tends to be the most accurate custodian of family history or excessive
social stigma leading to non-disclosure of seizures in the patient’s older relatives. It is
also notable that most non-familial APEs in practice are not willing to submit their
unaffected family members to genetic testing, resulting in the inheritance pattern of the
family often being inconclusive. Furthermore, in most APEs, particularly those who are
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not candidates for presurgical evaluations, either voluntarily or involuntarily, the detailed
epilepsy phenotypes are generally indistinct. All of these factors have contributed to
reluctance in genetic testing of APEs in practice, delaying our understanding of the genetic
basis of non-familial epilepsies and preventing APEs from having the opportunity to
receive potentially better treatment options.

However, the paradigm of genetically diagnosing non-familial APEs has shifted with
advances in sequencing technology. It is now well-known that genetic diagnosis is no
longer an exclusive property of certain familial Mendelian epilepsies. For example,
post-zygotic de novo mutations have been discovered in some sporadic focal epilepsies or
DEEs, thus indicating genetic causation in patients with epilepsy even without a family
history (Phillips et al., 2000; Claes et al., 2001; Bisulli et al., 2004; Nava et al., 2014).
Furthermore, this paradigm shift provides us with optimistic but reasonable prospects.
There might be undetermined causal variants in non-familial APEs, particularly those
experiencing earlier onset of seizures, as their epilepsy diagnosis was likely made in the
non-genomic era when adequate genetic testing was not available, and as such were not
genetically diagnosed. In addition, there might be a hidden native genetic basis of
non-familial adult-onset epilepsy, as suggested by surprising genetic causes in pediatric
patients with non-familial DEEs (Claes et al., 2001; Nava et al., 2014).

The higher diagnostic yield of genetic testing in DEEs has been associated with
primarily drug-refractory seizures (Moller et al., 2016; Ko et al., 2018; Rim et al., 2018),
which indicates that causal genes of DEEs could be linked to pharmacoresistance.
Indeed, the target hypothesis is one of the most frequently cited theories of epilepsy
pharmacoresistance, and postulates that alterations in the properties of antiepileptic
drug (AED) targets, such as compositional changes in voltage-gated ion channels and
neurotransmitter receptors, result in decreased drug sensitivity and thus leads to
refractoriness (Tang, Hartz & Bauer, 2017). Interestingly, the genes encoding the
voltage-gated ion channels and neurotransmitter receptors have also been most commonly
associated with epilepsy (Wang et al., 2017; Lindy et al., 2018). This indicates that there
might be a common pathway underlying both epileptogenesis and epilepsy
pharmacoresistance.

In the present study, we sought to determine the contribution of known
epilepsy-associated genes (EAGs) to the causation of non-familial epilepsies with
heterogeneous phenotypes and to the genetic basis underlying epilepsy
pharmacoresistance.

MATERIALS AND METHODS
Study design and participants

In this multi-center study, consecutive patients with an established clinical diagnosis of
epilepsy as defined by a practical clinical definition of epilepsy (Fisher et al., 2014) and who
had been managed by epilepsy specialists over a period of 2 years were recruited from
10 tertiary epilepsy referral centers in Korea. All study participants were eligible if they
had drug-resistant (DR group) or drug-responsive (DS group) epilepsy according to the
following definitions and criteria. To enhance the contrast of phenotype between DS and
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DR group, we defined drug resistance more stringently than the conventional definition
(Kwan et al., 2010) as the occurrence of at least 12 unprovoked seizures over the course of
1 year before recruitment, with trials of two or more appropriate AEDs at the maximal
tolerated doses, which were established on the basis of the occurrence of clinical side effects
at supramaximal doses. Patients who underwent surgical treatment for DR group
epilepsy were classified as having DR group epilepsy, regardless of the surgical outcome.
In patients treated with a single AED, drug responsiveness was defined as complete
freedom from seizures for at least 1 year up to the date of the last follow-up visit. However,
patients who had a definite history of epilepsy in first- or second-degree relatives, were
frequently in poor compliance with AED therapy, had reported non-motor seizures
only without consciousness impairment, or had progressive DEEs were excluded.

An extensive historical assessment was performed in all participants using a
standardized form, detailing the epidemiology, seizure characteristics, epilepsy
syndrome, electroencephalography and magnetic resonance imaging findings, family
history, treatment, and treatment-emergent adverse events.

This study was approved by the institutional review boards at Chonnam National
University Hospital (CNUH-20160028). All research was performed in accordance with
relevant guidelines and regulations, and written informed consent was obtained from
all study participants.

Whole exome sequencing

Following genomic DNA (gDNA) extraction from whole blood, the Agilent SureSelect
Target Enrichment protocol for Illumina paired-end sequencing (ver. B.3, June 2015;
Agilent Technologies, Santa Clara, CA, USA) was used together with 200 ng input gDNA
for the generation of standard exome capture libraries. In all cases, the SureSelect Human
All Exon V5 probe set was used. For exome capture, 250 ng of DNA library was mixed
with hybridization buffers, blocking mixes, RNase inhibitors, and five pl of the SureSelect
all exon capture library, according to the standard Agilent SureSelect Target Enrichment
protocol. Hybridization to the capture baits was conducted at 65 °C using the heated
thermal cycler lid option at 105 °C for 24 h on a polymerase chain reaction (PCR)
machine. The captured DNA was amplified, purified, quantified and then sequenced using
the HiSeq™ 2,500 platform (Illumina, San Diego, CA, USA). For sequence alignment,
paired-end sequences were first mapped to the human genome (UCSC assembly hg19;
original GRCh37 from NCBI, February 2009) using BWA (Burrows-Wheeler Alignment
Tool, v0.7.12). The programs packaged in PicardTools (v1.130; Broad Institute,
Cambridge, MA, USA) were then applied to remove PCR duplicates. Base quality score
recalibration and local realignment around indels were performed using the Genome
Analysis Toolkit (GATK; Broad Institute, Cambridge, MA, USA) to locally realign reads
such that the number of mismatching bases was minimized across all reads. Based on the
previously generated binary alignment map file, variant genotyping for each sample

was performed using the Haplotype Caller in the GATK. Those variants are annotated by
another program called SnpEff (v4.1g, http://snpeff.sourceforge.net/), converted to the
vcf file format, filtered through the single nucleotide polymorphism (SNP) database
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243 WES

532,403 variants

Deletions: 41,864
Insertions: 27.897
SNPs: 462,642

Read Depth =230

142.147 variants

Predicted to be Damaging to Protein

49,504 variants

Epilepsy-Associated Genes (178 genes)

558 variants

Novel or Allele Frequency =<1%

414 variants

Pathogenic or Likely Pathogenic According to

the ACMG Guideline

26 variants

Figure 1 Workflow of variants filtering process. WES, whole exome sequencing; SNPs, single
nucleotide polymorphisms; ACMG, American College of Medical Genetics and Genomics.
Full-size k&) DOT: 10.7717/peerj.8278/fig-1

(dbSNP, v142) and compared to SNPs from the 1,000 Genome Projects. Our in-house
program and SnpEff were then applied to filter the data through additional databases,
including ESP6500, ClinVar and dbNSFP2.9.

Whole exome sequencing interpretation

The workflow for whole exome sequencing (WES) data interpretation to identify high
confidence candidate variants with higher predicted potential for pathogenicity in epilepsy
is provided in Fig. 1. Briefly, variants satisfying all of the following conditions were further
analyzed: variants with a read depth of >30x, variants predicted to be disruptive or
damaging to the protein for which they code (frame-shifted, nonsense, non-synonymous
missense, small indels, or canonical splice site variants) and variants of 178 known EAGs
(Table 1). The selection criteria of the EAGs were as follows: (1) epilepsy genes that
cause pure or relatively pure epilepsies or syndromes with epilepsy as the core symptom
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Table 1 Epilepsy associated genes.

Epilepsy genes AARS, ADRA2B, ADSL, ALDH7A1 ALG13, ARV1, ATP6AP2, CACNAIA, CACNA1H, CACNB4, CASR, CDKL5, CERSI1, CHD2,
CHRNA2, CHRNA4, CHRNB2, CLCN2, CLN3, CLN5, CLN6, CLN8, CNTN2, CPA6, CSTB, CTSD, DEPDC5, DNM1, DOCK7, EEF1A2, EFHCI,
EPM2A, FGF12, FOXG1, FRRS1L, GABRA1, GABRBI, GABRB3, GABRD, GABRG2, GAL, GAMT, GATM, GNAOI1, GOSR2, GPR98, GRIN2A,
GRIN2B, GRIN2D, GUF1, HCN1, ITPA, KCNA2, KCNB1, KCNCI, KCNMA1, KCNQ2, KCNQ3, KCNT1, KCTD7, LGI1, LMNB2, MFSD8, NECAPI,
NHLRCI, NPRL2, NPRL3, NRXN1, PCDH19, PLCBI1, PNPO, POLG, PPT1, PRDMS8, PRICKLEI, PRIMA1, PRRT2, SCARB2, SCN1A, SCN1B,
SCN2A, SCN8A, SCN9A, SIK1, SLCI12A5, SLC13A5, SLC1A2, SLC25A12, SLC25A22, SLC2A1, SLC6A1, SLC9A6, SPTAN1, ST3GAL3, ST3GALS5,
STX1B, STXBP1, SZT2, TBC1D24, TCF4, TPP1, UBA5, UBE3A, WWOX, ZEB2

Neurodevelopment-associated epilepsy genes ANKLE2, AMPD2, ARFGEF2, ARX, ASPM, ATN1, CASK, CCDC88C, CDK5, CENPE, CENP]J, CLPI,
CNTNAP2, COL4A2, DCX, DIAPH1, EMX2, ERMARD, EXOSC3, FIG4, FLNA, GPR56, HERC1, IER3IP1, KATNBI, KIF11, KIF2A, KIF5C, LAMBI,
LAMC3, MED17, MFSD2A, MPDZ, NDE1, NSDHL, OCLN, OPHN1, PAFAH1BI, PCLO, PIK3R2, PLEKHG2, PNKP, PPPIRI15B, PTCHI, QARS,
RELN, RTTN, SASS6, EPSECS, SLCI12A6, SLC20A2, SNIP1, SPATAS5, SRPX2, STAMBP, STRADA, SYN1, TRMTI10A, TSCI1, TSC2, TSEN15, TSEN2,
TSEN54, TUBA1A, TUBAS, TUBB2A, TUBB2B, TUBB3, TUBGI, VPS53, WDR62, WDR73, XPRI

(n = 105) and (2) neurodevelopment-associated epilepsy genes that produce gross
neurodevelopmental malformation and epilepsy (n = 73), which may vary in severity
(Perucca et al., 2017; Wang et al., 2017).

Of the selected variants, variants with a minor-allele frequency of >1% in the Korean
Reference Genome Database (KRGDB; http://152.99.75.168/KRGDB/) or Exome
Aggregation Consortium (ExAC; http://exac.broadinstitute.org/) were excluded from
further analysis, as an allele frequency in a control population that is, greater than expected
for the disorder is considered strong support for a benign interpretation (Richards
et al, 2015).

The deleteriousness of the selected variants was predicted by 11 current deleteriousness-
scoring methods, including eight function prediction methods (Polyphen-2_HDIV,
Polyphen-2_HVAR, SIFT, MutationTaster, Mutation Assessor, LRT, FATHMN and
PROVEAN), one conservation score method (GERP++) and two ensemble score methods
(MetaSVM and MetaLR). The variants predicted by two or more prediction scores as
deleterious or damaging to the protein for which they code were included in further
analysis. The pairs of prediction scores, Polyphen-2_HDIV and Polyphen-2_HVAR and
MetaSVM and MetaLR, received a single score each in the scoring of the deleteriousness of
a variant because the two prediction scores in each pair have a strong linear correlation
(Dong et al., 2015; Liu et al., 2016). Known pathogenic variants or synonymous
variants causing the same amino acid change were determined by searching ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/) and the latest professional version of the Human
Gene Mutation Database (http://www.hgmd.cf.ac.uk/). Any inconsistency among the
sources was considered as uncertain in the functional significance of the variants.

The final variants selected via the filtering steps were classified using a five-class scheme
of pathogenicity (pathogenic, likely pathogenic, uncertain significance, benign, or likely
benign) according to the latest guidelines for the interpretation of sequence variants by the
American College of Medical Genetics and Genomics (ACMG) (Richards et al., 2015).
Among the variants classified as pathogenic or likely pathogenic (P/LPs), a heterozygous
variant alone in exclusively recessive genes presenting as a typical recessive disorder
was tested for compound heterozygosity using CNVKkit (Talevich et al., 2016) for copy
number detection. All variants selected as P/LPs were validated by Sanger sequencing.
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Table 2 Characteristics of the study participants.

Drug-responsive Drug-resistant p-value
(n=121) (n=122)
Age (years)
At recruitment 39.3 £ 15.1 (range, 20-84) 39.9 + 11.3 (range, 20-68) 0.706
At seizure onset 25.4 + 15.2 (range, 0-68) 15.9 + 10.1 (range, 0-45) <0.001
Gender (male) 65 (53.7%) 64 (52.5%) 0.898
Epilepsy classification
Generalized 19 (15.7%) 4 (3.3%)
Focal 95 (78.5%) 118 (96.7%) <0.001
Unknown 7 (5.8%) 0 (0%)
Statistics

Of the approximately 600 APEs that were consecutively enrolled in this study,

age- and gender-matched APEs were randomly assigned to the DR and DS groups.
The two groups were compared by Fisher’s exact test for categorical data or Student’s
t-test for continuous data. A p-value of <0.05 was considered significant. The
Statistical Package for the Social Sciences (v23.0; SPSS, Chicago, IL, USA) was used for
all analyses.

To determine whether the prevalence of the selected EAG variants in APEs was
significantly increased compared to the control group, the odds ratio (OR) of each variant
was calculated using the adjusted allele frequency of the variant in the EXAC database.
If the OR was >5.0 and the confidence interval (CI) around the estimate of the OR did not
include 1.0, the difference in prevalence between the groups was considered to be
statistically significant (Richards et al., 2015).

RESULTS

Participant characteristics

A total of 243 APEs (121 in the DS group and 122 in the DR group) were randomized
and their epidemiological and clinical characteristics are provided in Table 2. Briefly, the
mean ages at recruitment and at seizure onset were approximately 40 (median; 38, range;
20-84) and 20 (median; 17, range; 0-68) years, respectively. According to the seizure
onset age, 3.3% (8/243) experienced their first seizure in the neonatal and infantile period
(aged 0-1 year), 51.9% (126/243) in childhood (aged 2-18 years) and 44.9% (109/243) in
adulthood (aged >19 years). The mean age at seizure onset was significantly different
between the DS and DR groups, but was similar between APEs with and without P/LPs
(21.1 £ 14.4 and 20.6 * 13.7 years, respectively).

Identification of pathogenic variants

All participants underwent high-coverage WES and yielded a total of 532,403 variants
from which, after a customized stringent six-step filtering process (Fig. 1), 26 variants in
15 EAGs were determined to be P/LPs (three pathogenic and 23 likely pathogenic)
according to the ACMG guideline (Richards et al., 2015) in 32 of 243 APEs (13.2%) (Table 3).
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Table 3 Pathogenic or likely pathogenic variants according to the ACMG guideline.

Gene Chr. Position HGVS.p OR 95% CI ACMG Criteria Interpretation
ADGRV1 chr5 89,977,183 p-His1859Arg 11.7 3.6-37.6 PS4, PM6, PP3, PP5 Likely pathogenic
CHRNA4 chr20 61,981,730 p-Arg345Cys NA NA PS1, PS3, PM2, PM6, PP3 Pathogenic
CNTNAP2 chr7 146,741,111 p-lle172Thr 35.7 4.3-290.5 PS4, PM6, PP3, PP5 Likely pathogenic
chr7 148,112,574 p-Argl1288Cys 83.3 8.6-802.2 PS4, PM6, PP3, PP5 Likely pathogenic
DEPDC5 chr22 32,215,100 p-Arg587X NA NA PVS1, PS3, PM2, PM6, PP3 Pathogenic
chr22 32,242,890 p.Prol031His 7.0 1.7-28.7 PS4, PM6, PP3 Likely pathogenic
EFHCI chr6 52,319,049 p.Arg294Cys 125.2 11.3-1382.9 PS4, PM5, PP3, PP5 Likely pathogenic
GABRG2 chr5 161,495,029 p-Ser8Arg 250.6 35.2-1782.6 PS4. PM6, PP3, PP5 Likely pathogenic
HCN1 chr5 45,695,898 p-Ser100Ala 235.5 14.7-3770.7 PS4, PM5, PM6, PP3 Likely pathogenic
KCNBI chr20 47,990,709 p.Ile463Thr 14.7 1.9-110.8 PS4, PM6, PP3 Likely pathogenic
KCNT1 chr9 138,670,613 p.Glug92Lys 24.9 3.1-194.6 PS4, PM6, PP3, PP5 Likely pathogenic
PRICKLEI chr12 42,858,215 p-Ala541Ser 376.9 62.8-2260.6 PS4, PM6, PP3, PP5 Likely pathogenic
RELN chr7 103,197,510 p-Thr1904Met 23.6 5.5-100.9 PS4, PM6, PP3, PP5 Likely pathogenic
chr7 103,276,733 p.Lys751Thr 9.6 1.3-71.1 PS4, PM6, PP3, PP5 Likely pathogenic
SCNIA chr2 166,850,785 p-Argl575Cys 553 11.9-256.8 PS4, PM6, PP3, PP5 Likely pathogenic
chr2 166,903,464 p.-Thr398Met 250.3 15.6-4007.8 PS4, PM6, PP3 Likely pathogenic
chr2 166,894,321 p-Val971lle 55.3 11.9-256.7 PS4, PM6, PP3, PP5 Likely pathogenic
SCN9A chr2 167,141,015 p.Asn641Ser 123.3 11.2-1362.3 PS4, PM5, PM6, PP3 Likely pathogenic
TSC1 chr9 135,771,689 p-Prol143Leu 83.4 8.7-803.3 PS4, PM6, PP3, PP5 Likely pathogenic
chr9 135,772,927 p-Thr899Ser 41.8 9.3-187.3 PS4, PM6, PP3, PP5 Likely pathogenic
chr9 135,776,993 p-Ser829Arg 62.4 13.2-294.6 PS4, PM6, PP3, PP5 Likely pathogenic
TSC2 chrl6 2,134,649 p.Glu1476GIn 62.1 6.9-556.7 PS4, PM5, PM6, PP3, PP5 Pathogenic
chrl6 2,135,247 p-Argl529GIn 13.3 1.8-100.2 PS4, PMe6, PP3, PP5 Likely pathogenic
chrl6é 2,127,648 p-Val963Met 41.7 5.0-347.2 PS4, PM6, PP3, PP5 Likely pathogenic
chrl6 2,129,146 p-Leul027Pro NA NA PM2, PM6, PP3, PP5 Likely pathogenic
chrl6 2,134,692 p.Glu1490Gly 14.5 1.9-108.7 PS4, PM6, PP3, PP5 Likely pathogenic
Note:

ACMG, American College of Medical Genetics and Genomics; Chr, chromosome; HGCV.p, Human Genome Variation Society nomenclature for protein; OR, odds ratio;
CI, confidence interval; NA, not available.

The diagnostic yield according to seizure onset age was 25% (2/8) in the neonatal
and infantile period, 11.1% (14/126) in childhood and 14.7% (16/109) in adulthood

(Table 4).

Three of the twenty-six P/LPs identified in this study were novel variants (absent from

controls in the EXAC database), and the remaining 23 P/LPs were known but extremely
rare variants of which the mean OR was 85.5 (range; 7.02-376.9) and the CI around
each estimate of the OR did not include one. The classification criteria for the

pathogenicity of each P/LP applied according to the ACMG guideline in this study are

described in Table 3. Thirty heterozygous variants classified as P/LPs of 19 recessive genes
(ALDHDA1, ASPM, CCDC88C, CENPJ, CLN3, CLN8, GPR56, LAMBI, MECP2,

MFSD8, NHLRC1, NRXN1, POLG, RTTN, SLC12A6, TBC1D24, TRMTI10A, TUBAS8 and
WWOX) were not included in the diagnostic yield calculation.
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Table 4 Presumed disease-causative genes of non-familial epilepsies.

P/LP variants’ Pt_ID* Sex/Age”, years Drug Febrile Epilepsy Etiology
response seizure classification

ION CHANNEL-RELATED GENES

CHRNA4 p-Arg345Cys DKO085 M/26 (12) DS N Focal Non-lesional
GABRG2 p.Ser8Arg JNO086 M/22 (4) DR N Focal Tumor
JN167 M/68 (10) DR Y Focal Non-lesional
HCNI p-Ser100Ala SC009 M/24 (15) DS N Focal Non-lesional
KCNBI p-lle463Thr JN134 F/52 (29) DS Y Focal FCD
KCNT1 p.Glu892Lys SU059 M/25 (20) DR N Focal Non-lesional
SCNIA p.Thr398Met IN129 F/43 (29) DR N Focal HS
p-Val9711le JN168 M/30 (1) DR N Focal Non-lesional
KGO012 M/43 (38) DR N Focal Trauma
p-Argl575Cys JN046 F/54 (16) DS N Focal Non-lesional
JN166 F/43 (29) DS N Focal Non-lesional
SCN9A p-Asn641Ser DKO098 F/35 (12) DR NA Focal HS
mTOR PATHWAY-RELATED GENES
DEPDC5 p-Arg587X DK023 F/26 (19) DS N Focal Non-lesional
p-Prol031His SU059 M/25 (20) DR N Focal Non-lesional
JN114 M/38 (11) DS N Focal Non-lesional
TSCI p-Ser829Arg SU036 M/40 (1) DR N Focal FCD
KHO15 F/45 (37) DS N Focal HS
p-Thr899Ser SU023 M/33 (21) DR N Focal FCD
JNo036 M/51 (41) DS Y Focal Trauma
p-Prol143Leu JN224 F/65 (55) DS N Focal Encephalitis
TSC2 p-Val963Met KHO16 F/42 (34) DR N Focal HS
p-Leul027Pro JNO056 M/37 (7) DR N Focal TS
p.Glu1476Gln JN051 M/49 (28) DR N Focal HS
p.Glu1490Gly EW001 F/64 (8) DR N Focal HS
p.Argl1529GIn JN006 F/31 (18) DS N Focal Non-lesional
ADHESION MOLECULE/RECEPTOR-RELATED GENES
ADGRV1 p-His1859Arg JNO036 M/51 (41) DS Y Focal Trauma
JN023 F/25 (5) DR Y Focal Hs
DKO066 F56 (46) DS N Generalized Non-lesional
CNTNAP2 p-lle172Thr SU023 M/33 (21) DR N Focal FCD
p-Argl1288Cys JNO41 M/38 (17) DR N Focal Non-lesional
SIGNAL TRANSDUCTION-RELATED GENES
EFHCI p.Arg294Cys JN172 M/36 (32) DS Y Focal Trauma
PRICKLEI p-Ala541Ser JNO072 M/60 (33) DR Y Focal Non-lesional
JN224 F/65 (55) DS N Focal Encephalitis
YC009 M/34 (2) DR Y Focal Non-lesional
EXTRACELLULAR MATRIX-RELATED GENES
RELN p-Lys751Thr SU018 F/44 (7) DR N Focal Non-lesional
p-Thr1904Met DKo021 F/44 (25) DR N Focal HS
JNO056 M/37 (7) DR N Focal TS
Notes:

' Bold denotes variants classified as pathogenic.
" Bold denotes participant with two P/LPs.
Age at recruitment (at seizure onset).
Abbreviations: DR, drug refractory group; DS, drug responsive group; FCD, focal cortical dysplasia; HS, hippocampal sclerosis; NA, not available; P/LP, pathogenic/likely
pathogenic variant; TS, tuberous sclerosis; mTOR, mammalian target of rapamycin.
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Presumed disease-causative genes of non-familial epilepsies

Three variants were classified as pathogenic, including CHRNA4 p.Arg345Cys and two
variants of mTOR pathway-related genes (DEPDC5 p.Arg586X and TSC2 p.Glul476Gln).
Among the 23 variants classified as likely pathogenic, eight were variants of ion
channel-related genes (GABRG2, HCN1, KCNBI, KCNT1, SCNIA and SCN9A), eight of
mTOR genes (DEPDC5, TSC and TSC2), three of cell adhesion molecule/receptor-related
genes (ADGRV1 and CNTNAP2), two of extracellular matrix-related genes (RELN) and
two of signal transduction-related genes (EFHCI and PRICKLEI) (Table 4) (Myers ¢
Mefford, 2015; Wang et al., 2017; GeneCards, 2018). Three genes (SCNIA, TSC1 and TSC2)
were found to have a higher diagnostic yield of genetic testing, with each accounting for
15.6% (5/32) of the total yield. Five of two hundred and forty-three APEs (2.1%) had two
independent P/LPs simultaneously, the functional categories of which differed from each
other (Table 4). All five APEs with two P/LPs simultaneously had one of the mTOR gene
variants.

Pathogenic potential of EAGs in AED responsiveness

The diagnostic yield was 10.7% in the DS group and 15.6% in the DR group (p > 0.05).
Six genes were commonly associated with both the DS and the DR group, including
ADGRYV1, DEPDC5, PRICKLEI, SCNIA, TSCI and TSC2. Structural brain lesions were
seen in 17 of the 32 APEs (53.1%) with P/LPs, which are highly likely to have caused their
epilepsies, whereas 63.2% of the DR group but 38.5% of the DS group had potentially
causal lesions.

Two APEs with SCNIA p.Argl575Cys were seizure-free with monotherapy with
carbamazepine (CBZ) while three APEs with SCNIA p.Thr398Met or p.Val9711Ile were
resistant to drugs with various mechanisms of action, including CBZ. Four of five P/LPs of
TSC2 were associated with DR group epilepsy, while drug responsiveness differed even
among patients with the same variant of TSCI. All three APEs with RELN variants were
multi-drug resistant (Table 4).

Genotype-phenotype correlation

Thirty-one of the thirty-two APEs with P/LPs had focal epilepsies. Of the three APEs with
the ADGRV1 p.His1859Arg variant, two were diagnosed with focal epilepsy and one with
generalized epilepsy.

In five of the 12 APEs with ion channel-related gene variants, potentially
disease-causative lesions were identified, including a tumor, focal cortical dysplasia (FCD),
hippocampal scleroses (HS) and traumatic brain tissue loss. Two had a definite history of
tebrile seizures (FS) and one (JN168 in Table 4) had a history of what was considered
to be an early infantile EE (i.e., seizure onset during infancy, autistic behaviors, mental
retardation and multi-drug resistant seizures).

Eight of ten APEs (80%) with TSC1I or TSC2 variants but none of the three APEs with
DEPDCS5 variants had brain malformations including FCD, HS, or TS. Only one of ten
APEs with TSCI or TSC2 variants had clinical presentations fitting the diagnostic criteria
of tuberous sclerosis complex (Samueli et al., 2015). In six of the eight APEs with
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malformations, the seizures were multi-drug resistant and the mean duration from seizure
onset to genetic diagnosis was approximately 27.7 years. One of the thirteen APEs with
P/LPs of mTOR genes had a history of FS (Table 4).

DISCUSSION

Possible causal genetic variants of non-familial epilepsy

In the present study, we discovered possible causal genetic variants in 13.2% (32/243) of
non-familial epilepsy cases. Insofar as non-familial focal epilepsy only and non-familial
adulthood-onset epilepsy only were concerned, the diagnostic yields were 14.6% (31/213)
and 14.7% (16/109), respectively. Although other study designs varied such that direct
comparison to our study may not be suitable, there was a distinct tendency of higher
genetic yields to associate with early childhood epilepsy with a distinct phenotype such as
early onset DEEs, a positive history of familial epilepsy, or a generalized epilepsy (Lemke
et al., 2012; Carvill et al., 2013; Kodera et al., 2013; Wang et al., 2014; Della Mina et al.,
2015; Mercimek-Mahmutoglu et al., 2015; Hildebrand et al., 2016; Moller et al., 2016; Dunn
et al., 2018; Ko et al., 2018; Rim et al., 2018; Lee, Lee & Lee, 2018). Given that the present
study examined primarily non-familial focal epilepsies with heterogeneous phenotypes,
of which almost half were adulthood-onset epilepsies, and adopted WES for genetic testing
that encompasses only a proportion of all mutations, the genetic yields found in our study
were beyond our expectation. This should be considered a justification for physicians
determining potentially causal genetic variants in non-familial APEs that are frequently
encountered in clinical practice.

Targeted gene panels have been most frequently used for genetic testing as they are
rapid and cost-efficient (Lemke et al., 2012). However, target genes must be limited to
known mutations at the time of diagnosis, thus posing a challenging task with regard to
keeping pace with newly identified genes after genetic testing, which often results in
false-negative findings. Advancements in sequencing technology continuously and rapidly
extend the list of novel epilepsy-causing genes and the cost of sequencing technology
continues to drop. Therefore, WES or even whole genome sequencing offers substantial
advantages in identifying potential causal epilepsy-related variants, particularly those of
genetically undetermined non-familial epilepsies with heterogeneous phenotypes because
new hypotheses for identifying novel epilepsy genes can be simply tested by reanalyzing
previous WES or WGS data in silico.

Genotype-phenotype correlation

The mTOR genes including DEPDC5, TSCI and TSC2 have been associated with focal
epilepsy, as was the case in our study in which the mTOR genes had the highest yield
(13/32), although the yield was relatively low in some previous studies (Lindy et al., 2018;
Perucca et al., 2017; Carvill et al., 2013). It is known that activating the mTOR pathway
causes the epileptogenicity of brain malformations, specifically FCD, TS, and HS

(Liu et al., 2014), which is supported by our finding that 80% of APEs with TSCI or
TSC2 variants had such malformations.
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The ion channel-related genes are well-known to be the common genetic causes of
early-onset epilepsies such as early-onset DEEs or genetic focal or generalized epilepsies,
and were frequently identified as the presumed causative genes of epilepsy in most of
the corresponding pediatric studies (Lembke et al., 2012; Carvill et al., 2013; Kodera et al.,
2013; Wang et al., 2014; Della Mina et al., 2015; Mercimek-Mahmutoglu et al., 2015;
Hildebrand et al., 2016; Mpller et al., 2016; Perucca et al., 2017; Dunn et al., 2018; Ko et al.,
2018; Rim et al., 2018; Lee, Lee ¢ Lee, 2018). Ion channel-related genes had a higher yield
(12/32) even in the present study, in which almost half of cases were adulthood-onset
epilepsies. Given that five of 12 APEs with P/LPs of ion channel-related genes had
adulthood-onset epilepsies, it seems plausible that these genes are implicated more
frequently than expected in non-familial focal epilepsies in adulthood. While this needs to
be functionally validated, it may widen our concept of the genetic spectrum of epilepsy in
adulthood, which may in turn guide the development of adequate treatment options.

ADGRV1 haploinsufficiency may be an important contributor to the development of
genetic epilepsies, particularly those with myoclonic seizures (Myers et al., 2018). In our
study, three APEs with the ADGRV1I heterozygous variant (p.His1859Arg) had either
focal or generalized epilepsy, which might be plausible if a focal myoclonic seizure was
confused with a focal motor seizure, as is occasionally the case in outpatient clinics.
CNTNAP2 has been associated with cortical dysplasia-focal epilepsy syndrome (CDFES;
OMIN#610042) or autosomal dominant epilepsy with auditory features (Pippucci et al.,
2015). Although the original CDFES is an autosomal recessive trait, the APE (SU023 in
Table 4) with the heterozygous CNTNAP2 p.Ile172Thr variant in our study exhibited
the typical CDFES features of FCD and focal epilepsy. The other APE with CNTNAP2
p-Arg1288Cys had non-lesional focal epilepsy without auditory aura. A compound
heterozygosity test using CNVKkit was negative in these two cases. It is known that EFHCI
Arg294His is a genetic cause of childhood absence epilepsy and juvenile myoclonus
epilepsy (Von Podewils et al., 2015). However, APEs with EFHCI1 Arg294Cys, an allelic
variant of Arg294His, had acquired posttraumatic epilepsy in our study. De novo
heterozygous PRICKLE] variants have been linked to congenital brain malformations or
myoclonic epilepsies (Bassuk ¢ Sherr, 2015; Todd ¢ Bassuk, 2018), while two of three
APEs with PRICKLEI p.Ala541Ser variants in our study had non-lesional focal epilepsy
and the other had acquired postencephalitic epilepsy. Although RELN has been associated
with brain malformations and autosomal dominant lateral temporal lobe epilepsy, one
of two APEs with RELN p.Thr1904Met variants had hippocampal sclerosis, one of the
main pathological feature of mesial temporal lobe epilepsy, and the other had typical
dermatological and radiological features of TS but the genetic test for TSCI or TSC2 was
negative. Further study is needed to elucidate whether RELN contributes to TS.

Disease-modifying potential

The higher yield of genetic testing for familial epilepsies or early-onset DEEs has been
associated with an earlier seizure onset or severity of the epilepsy (Moller et al., 2016;
Perucca et al., 2017). However, such correlations were not evident in our study.

This inconsistency may highlight characteristics of the genetic contribution to non-familial
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epilepsies with a later age of onset or that are not so severe as to last until adulthood.
Although most ion channel-related genes or mTOR genes have been associated with
early-onset epilepsy syndromes with severe phenotypes such as Dravet’s syndrome or
intractable epilepsy with brain malformations that can lead to a grave outcome in early life,
most APEs with P/LPs of ion channel-related genes or mTOR genes in our study
experienced a later age of epilepsy onset or epilepsies that continued into adulthood.
This suggests that these genes must somehow be linked to a disease-modifying mechanism
that regulates the onset time or severity of the relevant epilepsy.

It is known that mTOR inhibitors such as rapamycin or everolimus have
anti-epileptogenic effects rather than a simple seizure-suppression effect, as well as
anti-tumor effects in TS (Franz ¢» Krueger, 2018). Interestingly, in our study, all APEs with
two P/LPs simultaneously had an mTOR gene variant. Although it requires validation in
future studies, this finding, together with the mTOR inhibitors’ modulating effects on
epileptogenesis and tumor growth in TS (Franz ¢ Krueger, 2018), suggests that mTOR
genes are implicated in epileptogenesis or brain malformations (or both) as a key
modulator of epistasis (gene-to-gene interaction). This could be supported by a recent
report that DEPDCS, as a single mTOR gene, is a key contributor to a broad spectrum of
lesional and non-lesional epilepsies, with variable but highly consistent phenotypes
(Baldassari et al., 2019). Furthermore, considering that most APEs with TSCI or TSC2
variants in our study experienced brain malformations and multi-drug resistant epilepsy
for approximately 30 years on average, the notion of mTOR inhibitors with
disease-modifying effects is a reminder of the importance of early identification of mTOR
gene variants in patients with epilepsy or other dermatological mimics of TS to treat or halt
disease progression.

Many of the P/LPs identified in our study were associated with atypical phenotypes or
inheritance patterns that have not yet been reported in relation to their relevant epilepsies
or epilepsy syndromes. This raises the possibility that the genetic basis of non-familial
epilepsies, regardless of seizure onset time, differs from that of known familial epilepsies or
pediatric DEEs. Given that five APEs with a mean seizure onset age of 44.2 years (range:
32-55 years) in whom possible genetic causes were identified had definitely acquired
etiologies prior to seizure onset, including traumatic brain tissue loss or encephalitis, it is
plausible that one variant of the relevant genes (SCNIA, TSCI, ADGRV1, EFHCI and
PRICKLEI) alone may not be sufficient to cause the relevant epilepsies in the absence of
acquired brain damage. This also reinforces the implication of disease-modifying factors—
whether they are genetic, environmental, or something yet to be identified—in the
pathogenesis of epilepsies that start in or last until adulthood.

Pathogenic potential of EAGs in epilepsy pharmacoresistance

It is known that SCN1A variants are associated with poor surgical outcomes and
CBZ-induced seizure aggravation (Franco ¢ Perucca, 2015; Skjei et al., 2015). In our study,
the treatment response to CBZ varied according to individual variants, suggesting that
SCN1A-associated drug responsiveness may be an allele-specific phenomenon, not
gene-specific, although this is inconclusive due to the small sample size. Nevertheless, the
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results of our study can be used to guide a trial to halt CBZ use in APEs with multi-drug
resistance.

Unlike our expectation, the target hypothesis of epilepsy pharmacoresistance was not
verified in our study. Instead, most APEs with P/LPs of neurodevelopment-associated
epilepsy genes such as TSC2 or RELN, or with structural brain lesions, were multi-drug
resistant. This suggests that pharmacoresistance in APEs may, at least in part, be linked to
neural network rearrangement by structural lesions or potential somatic mutations in situ.
An international collaboration of epilepsy studies could uncover these results.

The present study has several limitations. First, WES is not the best option for detecting
copy number variants, large-sized indels, trinucleotide repeats, intronic alterations,
intergenic variants, structural chromosomal rearrangements, or epigenetic modifications
associated with epilepsy (Biesecker ¢» Green, 2014). This suggests that the diagnostic yield
of our study may be the minimum yield possible with WES for non-familial APEs.
Second, although all identified P/LPs are seemingly post-zygotic de novo mutations
defined by the absence of family history of epilepsy, the possibilities of unknown family
histories, somatic mutation, genetic mosaicism, or lower penetrance were not validated
owing to limitations in DNA or tissue sampling. Third, although the variants were
selected via a customized stringent filtering process and classified as pathogenic or likely
pathogenic according to ACMG guidelines, the pathogenicity of each variant should be
confirmed in future studies. Fourth, this study selected target genes for analysis from
known epilepsy-related genes, which precludes the chance to identify novel epilepsy genes.
However, detecting mutations in known epilepsy genes in patients with an uncommon
or unspecific presentation of a seizure disorder may help reveal the true phenotypic
spectrum of the disorder (Lembke et al., 2012).

CONCLUSIONS

Our study possibly reveals causal genetic variants in 13.2% of non-familial patients with
predominantly focal epilepsy in which mTOR genes and ion channel-related genes are
most commonly associated. These potentially pathogenic variants, identified in the genes
that have been associated with early-onset epilepsies with severe phenotypes, were also
linked to epilepsies that start in or last until adulthood in this study, thereby suggesting the
implication of one or more disease-modifying factors that regulate the onset time or
severity of the disease during epileptogenesis. Neurodevelopment-associated epilepsy
genes, such as TSC2 or RELN, or structural brain lesions were more strongly associated
with epilepsy pharmacoresistance. Our results highlight the importance of earlier
identification of the genetic etiology of non-familial epilepsies in adulthood, leading us to
the best treatment option in terms of precision medicine and to future neurobiological
research for novel drug development.
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