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Protein multivalency can provide increased affinity and specificity
relative to monovalent counterparts, but these emergent bio-
chemical properties and their mechanistic underpinnings are
difficult to predict as a function of the biophysical properties of
the multivalent binding partners. Here, we present a mathematical
model that accurately simulates binding kinetics and equilibria of
multivalent protein–protein interactions as a function of the kinet-
ics of monomer–monomer binding, the structure and topology of
the multidomain interacting partners, and the valency of each
partner. These properties are all experimentally or computation-
ally estimated a priori, including approximating topology with
a worm-like chain model applicable to a variety of structurally
disparate systems, thus making the model predictive without pa-
rameter fitting. We conceptualize multivalent binding as a pro-
tein–protein interaction network: ligand and receptor valencies
determine the number of interacting species in the network, with
monomer kinetics and structural properties dictating the dynamics
of each species. As predicted by the model and validated by sur-
face plasmon resonance experiments, multivalent interactions can
generate several noncanonical macroscopic binding dynamics, in-
cluding a transient burst of high-energy configurations during as-
sociation, biphasic equilibria resulting from interligand competition
at high concentrations, and multiexponential dissociation arising
from differential lifetimes of distinct network species. The transient
burst was only uncovered when extending our analysis to trivalent
interactions due to the significantly larger network, and we were
able to predictably tune burst magnitude by altering linker rigidity.
This study elucidates mechanisms of multivalent binding and estab-
lishes a framework for model-guided analysis and engineering of
such interactions.
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Multivalency is a recurrent structural feature of biomolecules.
Be it through domain accretion (1, 2), mRNA splicing (3),

posttranslational modification (4, 5), supramolecular assembly (6,
7), or combinations thereof (8), instances of multivalency are ev-
ident across all biological systems. Multivalent interactions play
central roles in the functional compartmentalization of the cell (9–
11), in establishing cooperative and ultrasensitive binding dy-
namics (12, 13), and as the basis for information coding (14–18),
enabling receptors to discriminate among a pool of downstream
effectors. Inspired by these biological displays, multivalency ad-
ditionally serves as an immensely useful and easy-to-implement
design feature in engineered systems. Therapeutic antibodies
(19, 20) and related biologics (21, 22) have leveraged the mul-
tivalency effect to achieve ultrahigh affinity and selectivity and to
create novel ligands and scaffolds for cellular differentiation (23,
24), patterning (25), and tissue engineering (26).
However, the structural and combinatorial complexity of mul-

tivalent systems poses significant challenges in developing and
implementing mechanistic models of interaction dynamics, which
limits our understanding of natural systems and often leaves in-
tuition and trial and error as the most accessible approaches when

incorporating multivalent features into synthetic designs (27).
Despite these challenges, the numerous applications of multi-
valency have led to many iterations of experimental and theo-
retical model systems designed to describe, predict, and explore
particular aspects of these interactions (28–30). However, because
the biophysical features are unique to each interaction pair,
multivalent models are often tailored in a system-specific manner
(31, 32), having an in-depth focus on a subset of the parameter
space (33–35) and using fitted parameters to account for nonideal
behaviors and unmeasurable properties (36, 37). For example,
many descriptions have focused on the important role of valency
in the binding mechanisms of complexes such as dimeric zinc-
finger transcription factors and bivalent IgG antibodies (30). Here,
the low valencies and relative absence of conformational hetero-
geneity can enable the effective use of simplified models de-
scribing a single bivalent species driven through a single effective
concentration. In systems where higher valencies and complex,
heterogeneous topologies occur, multivalency can be simplified in
1 of 2 ways (13, 36). In a “disordered” multivalent system, there
are no steric effects imposed that favor a subset of states over
others (i.e., all possible binding configurations are regarded as
being equally probable). Conversely, a “rigid” multivalent system
permits only those receptor–ligand interactions that are precisely
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in register (i.e., the intramolecular distances between adjacent
receptor and ligand binding domains are fixed and equal). How-
ever, multivalent molecules—especially multidomain proteins and
even multichain antibodies—have variable topologies, conforma-
tional flexibility, and interaction domains with steric bulk. Thus,
multivalent binding phenomena exist on a continuum, ranging
from completely disordered to uniformly rigid, that dictates the
accessibility of each binding configuration within a network of
combinatorial possibilities.
Here, we constructed a general mechanistic model of multi-

valent binding kinetics based on the dynamic evolution of a net-
work of configurational states. In contrast to prior approaches, we
use a structure-guided, odds ratio-based determination of effective
concentrations to more accurately model the steric permissibility
and interconversion of every possible binding configuration within
the multivalent network. While the model is designed to be ap-
plicable to a range of multivalent systems, we experimentally
tested our model predictions using synthetic proteins containing
SH3 domains, which are integral organizers of cell signaling with
instances of multivalency playing important roles in such processes
as receptor tyrosine kinase and T cell receptor signaling cascades.
For example, experimental and model-guided studies have iden-
tified central roles for bivalent, trivalent, and higher-order SH3
scaffolds in mediating high effective concentrations of signaling
components through scaffolding and receptor clustering (38, 39).
Not exclusive to SH3-containing proteins, diverse bivalent, tri-
valent, and tetravalent architectures are recurrently observed with
other protein interaction domains such as those in SH2, WW, zinc
finger, BTB, and PDZ domain-containing proteins (40–43).
We hypothesized that, by using an explicit treatment of the

structures of multivalent proteins coupled with measured binding
rate constants of the single domains, we could predict multiva-
lent interaction dynamics without post hoc fitting. Our model
predictions of binding association and dissociation were vali-
dated with our synthetic experimental system, in which valency
and linker structure were systematically varied, and with dispa-
rate examples of multivalency in the literature. Our results not
only reveal a number of noncanonical binding features—tran-
sient burst during association, biphasic equilibria, and multi-
exponential dissociation—but our model also identifies specific
classes of species that drive these behaviors, which would be
difficult to determine experimentally. Notably, our studies on
trivalent–trivalent interactions provided unexpected insights into
an underlying mechanism of binding, namely the importance of
relative binding orientation in modulating early-stage binding
dynamics. This mechanistic insight was further tested through
model-guided design of a trivalent ligand with increased linker
rigidity that exhibited a more pronounced early-stage transient
burst during association, as computationally predicted. Our work
thus elucidates kinetic mechanisms of binding in multivalent
protein–protein interactions and can be used for rational engi-
neering of binding dynamics.

Results
Zero-Fit Model of Multivalent Binding Dynamics. The complexity of
binding that occurs among multivalent receptors and ligands can
be understood, and subsequently modeled, as the interplay among
3 foundational biochemical and biophysical molecular properties.
First, monovalent rate constants of association and dissociation
determine the initial encounter between multivalent molecules
(Fig. 1A). Second, the domain architecture and topological con-
straints of the molecules establish the relative proximity and ef-
fective concentrations that either drive or impede subsequent
“intracomplex” interactions (Fig. 1B). Third, the valencies of the
species define the combinatorics of the interaction, and thereby
the number of binding configurations and interconversions within
the network (Fig. 1C). Together, these 3 properties can generate

avidity enhancement by populating the configurational ensemble
and anchoring the interacting species within it (36).
In contrast to prior efforts to model multivalent interactions,

which have typically focused on bivalent interactions and employ
a single effective concentration to model “inline” binding con-
figurations (33–35), our network modeling approach explicitly
tracks the evolution of all possible binding configurations for
both bivalent and trivalent interactions (Fig. 1D and SI Appendix,
Fig. S1). To do so, each configuration is enumerated and rep-
resented as a node (Fig. 1 D, i and SI Appendix, Fig. S1A). We
assume that transitions between configurations occur stepwise
through a single association or dissociation event at a time. This
yields topological connections among the configurational nodes
(Fig. 1D, ii and SI Appendix, Fig. S1B)—effectively, a multivalency-
driven interaction network—that can be represented as a matrix of
intracomplex association and dissociation constants (SI Appendix,
Figs. S2 and S3). The magnitudes of the intracomplex kinetic
constants are represented as edge thickness values in the config-
urational network and are proportional to an effective concen-
tration (Fig. 1 B and D, iii and SI Appendix, Fig. S1C). In the
instance of a bivalent ligand engaging a bivalent receptor, for
example, 2 effective concentrations are generated: 1 for the inline
configuration (A2

1/A2
2 in our nomenclature, described in SI Ap-

pendix, Supplemental Methods) and 1 for the twisted state (A2
2/A2

1)
(Fig. 1C and SI Appendix, Fig. S4). By contrast, 12 effective
concentrations are required to fully describe the configurational
transitions in a trivalent receptor–trivalent ligand system (SI Ap-
pendix, Figs. S5 and S6). Mapping these calculated effective con-
centration values to the appropriate species in the multivalent
network allows the system of ordinary differential equations to be
solved, yielding the time-dependent evolution of each configura-
tion during association and dissociation phases (Fig. 1 D, iv and SI
Appendix, Fig. S1D).
Modeling the effective concentrations requires the probability

density function (PDF) for the binding surfaces of each of the
domain-linker-domain motifs (Fig. 1B). To calculate these PDFs,
we approximated the receptors and ligands as rods with a dis-
tance rprot between the binding surface and the protein–linker
interfacial point, and we modeled the end-to-end distance using
a worm-like chain model (44) for a given amino acid linker se-
quence (SI Appendix, Fig. S1C). The PDF for the distance be-
tween the complementary active sites is then computed as the
joint PDF of the linker PDF and the 2 rods with length rprot
joined to each end of the linker. Though an idealized repre-
sentation, this description of multivalent topology can be readily
extended to higher valencies by appending additional linkers and
rods to the ligands and receptors. The resulting receptor and
ligand PDFs are then used to generate an effective ligand con-
centration, [Leff], by an odds ratio between such a tethered ligand
and a uniformly distributed ligand (SI Appendix, Supplemental
Methods). Notably, this treatment enables zero-fit estimates of
each effective concentration for each unique intracomplex as-
sociation using a minimal set of theoretical geometric parame-
ters and constraints: the contour length (rmax) and persistence
length (lp) of the interdomain linkers (Fig. 1B), the hinge-like
rotation and excluded volume about the binding domain–linker
interface, and the end-to-end distances of the receptor/ligand
binding domains themselves. Moreover, in cases where the
binding domain consists of a peptide (e.g., SH3 domain ligands),
the disordered-to-ordered conformational change that occurs upon
receptor binding is explicitly treated through configuration-
dependent persistence length values. Finally, because our frame-
work treats the PDF calculation of [Leff] as a modular mathematic
step (Fig. 1B and SI Appendix, Fig. S1C), our model is compatible
with an array of polymer end-to-end density functions (e.g., freely
jointed, Gaussian, and spatially inhomogeneous chain models) that
may befit the topology of the multivalent system of interest (45, 46).
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Fig. 1. The modeling framework treats multivalent receptor–ligand interactions as a dynamic network of microstate configurations controlled through
3 tunable molecular parameters. (A) Affinity relates to the monovalent rate constants of association, kon, and dissociation, koff, that dictate the nature of the
initial encounter between a multivalent ligand and receptor. (B) Linkage describes the topological constraints that favor or disfavor subsequent intracomplex
interactions computed using an odds ratio of probability density functions (SI Appendix). (C) Valency establishes the total number of microstates that a
multivalent ligand and receptor can sample within their interaction network (nomenclature for the microstates is described in SI Appendix, Supplemental
Methods). (D) The multivalent network model features 4 fundamental computational steps (see SI Appendix for a detailed description): (i) for a set of
specified receptor–ligand valencies, all binding configurations are enumerated; (ii) configurational transitions are identified and represented as connections
(edges) between pairs of microstates (nodes); (iii) effective ligand concentrations, [Leff], are calculated for each intracomplex association; and (iv) the system of
ordinary differential equations (ODEs) is solved to yield the association and dissociation kinetics of the multivalent network.
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Parameter Sensitivity of Model Simulations. At their simplest, short
flexible linkers and high monovalent affinities in bivalent and
trivalent systems drive an apparently concerted transition to a
single multivalent state that is described well by single-exponential
kinetics (SI Appendix, Fig. S7). Exploration of the parameter space
manifests the linker length-dependent transition from low avidity
to high avidity configurations (SI Appendix, Fig. S8). A 300 amino
acid flexible linkage tethering the bivalent ligand and receptor
yields a system with largely monovalent character (SI Appendix,
Fig. S8A). Shortening the flexible linkers increases [Leff], yields a
high avidity interaction by driving the formation of the bivalent
species, and reduces the bivalent twisted configuration by impos-
ing steric constraints (SI Appendix, Fig. S8 B and C).
Further, the interdomain linkages that create effective con-

centrations are the basis for multivalent cooperativity via the
“chelate effect” (47, 48). Here, rather than having to explicitly treat
cooperativity in our model, our simulations show that positive and
negative cooperativity are inherent to our linker-driven framework.
Specifically, under conditions of competitive dissociation of a bi-
valent complex by a monovalent inhibitor (SI Appendix, Fig. S9A),
positive cooperativity is observed (SI Appendix, Fig. S9B). The
multivalent chelate effect approaches perfect cooperativity (i.e., a
Hill coefficient of 2 for a bivalent system) as [Leff] is maximized
through very short, in-register linkers (SI Appendix, Fig. S9B).
Conversely, with receptors and ligands of differing linker lengths the
multivalent interactions become increasingly out of register as the
2 linkers are rigidified (SI Appendix, Fig. S9C). This results in [Leff]
falling below the spatially uniform ligand concentration, causing
linker inhibition whereby multivalent modes of binding become less
favorable than the monovalent association of a freely diffuse ligand.
With a higher valency, complex modes of binding become

more apparent. The 12 intracomplex effective concentrations
underlying a trivalent network (SI Appendix, Fig. S6) yield an
ensemble of 78 unique configurations (SI Appendix, Fig. S10). Of
these, 23 entail twisted topologies, which constitute nearly a third
of the network and suggest the potential for fundamentally dif-
ferent modes of binding as valency is increased, a point that we
explore in greater detail below. Simulated association and dis-
sociation kinetics show complex configurational transitions in early
association (SI Appendix, Fig. S10A), with the relative distribution
of states in the ensemble dependent upon the receptor–ligand
input parameters (SI Appendix, Fig. S10B). Importantly, this
modeling framework identifies conditions under which multiva-
lent interactions do not possess canonical, single-exponential
kinetics and provides a means for more nuanced understanding
of the mechanisms of multivalency.

Experimental Testing of Model Predictions with an SH3-Peptide
System. To assess the accuracy of our model, we benchmarked
the simulations against an experimental, biomimetic signaling
complex comprising variable repeats of the Gads SH3 domain
and its cognate peptide as the receptor–ligand pair. This pair was
also chosen based on its monovalent binding kinetics (experi-
mentally measured to be kon = 913,000 M−1 s−1, koff = 1.35 s−1;
SI Appendix, Fig. S11), which are within a region of parameter
space that exhibits noncanonical binding features based on our
model simulations (SI Appendix, Fig. S10A). A modular construc-
tion congruent with the model enabled facile incorporation of
linkers with desired biophysical properties.
Surface plasmon resonance (SPR) quantifies, in real time, the

mass of ligand bound to a receptor surface and is thus especially
attuned to multiple ligands engaging a single multivalent receptor.
Such interactions constitute a significant fraction of the configu-
rational network (SI Appendix, Fig. S10B), so their accurate
modeling is essential for a complete description of multivalency.
Simulations performed with monovalent ligands yield binding re-
sponses with approximately 1-, 2-, and 3-fold mass amplitude in-
creases against receptor valencies of 1, 2, and 3, in agreement with

experimental sensorgrams for mono, bi, and trivalent SH3 domain-
containing receptors, with no change to the binding kinetics (SI
Appendix, Fig. S12A). SPR is additionally sensitive to avidity effects
through crosslinking. Here, at sufficiently high receptor density, a
multivalent ligand may interact with 2 or more receptors simulta-
neously. This phenomenon can be observed biologically in areas of
high local concentrations, such as within clustered signaling molecules
present at the plasma membrane. To account for crosslinking—both
artifactual and biologically relevant—the model simulates pairwise
distances between individual receptors as a function of their
density (SI Appendix, Fig. S12B). The crosslinking-induced
multivalency of the system is sensitive to receptor density and
linker length and results in biphasic dissociation kinetics (SI Ap-
pendix, Fig. S12B).

Bivalency versus Trivalency: Mechanistic Description of Atypical
Multivalent Phenomena. The combinatorial complexity of multi-
valent interactions makes experimental quantification of these
systems challenging. This is notable in SPR-based approaches.
While benefitting from label-free, real-time quantification, SPR
signals represent the summation of multiple interconverting con-
figurations that can produce seemingly spurious kinetics. Because
our model of multivalency explicitly tracks the evolution of each
possible configurational state, we sought to use the model to un-
derstand the mechanistic underpinnings of these atypical signal
features.
Simulations performed on bivalent receptor–bivalent ligand

pairs display largely monoexponential association and dissocia-
tion kinetics (Fig. 2 A, Left). This behavior was similarly observed
experimentally (Fig. 2 B, Left) and is indicative of a largely
concerted transition from the unbound to the inline and twisted
bivalent states, with intermediate, monovalent configurations
very lowly populated (Fig. 2 C, Left). Performing these simula-
tions and experiments with a trivalent receptor introduces an
added, accessible binding domain in the presence of a bivalent
ligand. The simulations demonstrate the formation of multi-
liganded receptors as the ligand concentration approaches the
monovalent dissociation constant. This results in a second satu-
rable mode of binding followed by a significant biphasic dissocia-
tion phase (Fig. 2 A, Middle), again in agreement with experiment
(Fig. 2 B, Middle). Assessing the simulated configurations in this
trivalent–bivalent interaction demonstrates that the system is able
to exceed its bivalent equilibrium (∼25 resonance units [RU]; Fig.
2 A–C, Middle) as the configurational network populates mono-
valent states (Fig. 2 C, Middle). Upon dissociation, networks with
significant populations of high-stoichiometric configurations dis-
play multiexponential macroscopic decay. At the microstate level,
class “11” and “111” states undergo rapid dissociation of mono-
valently bound species, followed by a degree of first-order reas-
sociation to bivalent configurations, which, in turn, contribute to
the slower phase of dissociation. As linker length increases (and
effective concentration decreases), transitioning from the bivalent
configurations to the higher stoichiometric monovalent configu-
rations becomes more permissible (SI Appendix, Fig. S13). Simu-
lations performed on trivalent ligand–trivalent receptor systems
(Fig. 2 A, Right) display a significantly reduced proportion of
monovalent states, as they are effectively outcompeted for re-
ceptor binding by the high-avidity trivalent configurations. The
small transient burst at the start of the association phase is
quickly followed by signal decay as the system reconfigures to a
more thermodynamically favorable state (Fig. 2 A, Right). During
the dissociation phase, the system exhibits modest biphasic ki-
netics due to the loss of monovalent configurations. SPR experi-
ments performed on a trivalent–trivalent interaction (Fig. 2 B,
Right) show good agreement with the features observed in the
simulation.
To further evaluate model-experiment agreement, we sought

to alter parameters affecting the computed set of [Leff] values

25662 | www.pnas.org/cgi/doi/10.1073/pnas.1902909116 Errington et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902909116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1902909116


because this should alter ligand dynamics throughout the con-
figurational network (SI Appendix, Fig. S14). First, removing the
steric constraints that the model can impose on twisted config-
urations results in proportional representation of the inline and
twisted configurations resulting in a diminished burst of associ-
ation that overshoots the equilibrium state (SI Appendix, Fig.
S14B). Second, we imposed a more significant restriction on the
simulated evolution of the configurational network by only per-
mitting “nearest neighbor” intracomplex associations (SI Ap-
pendix, Fig. S14C). Because such a network evolves through only
1 effective rate constant of association (out of a total of 12), a

significant amount of the network is inaccessible. This alteration
to the model creates an overrepresentation of monovalent “11”
and bivalent “21” class configurations, resulting in a jump to a
higher stoichiometric equilibria and a prominent biphasic dis-
sociation (SI Appendix, Fig. S14C), in contrast to the experimental
data (Fig. 2 B, Right). Third, altering the [Leff] calculations to
forbid all twisted configurations yields simulations that signif-
icantly overpopulate transient monovalent and bivalent states
at the expense of twisted trivalent states, leading to an exag-
gerated and erroneous initial burst of association (SI Appendix,
Fig. S14D). Together, these tests of the model demonstrate the

Fig. 2. Simulations provide quantitative and mechanistic descriptions of the characteristics unique to multivalent interactions that can present as spurious
binding events in experimental kinetic studies. (A) Simulated kinetics using the network-based model of multivalency. Simulations were performed at 2,000,
1,000, 250, 60, 15, 5, and 1 nM ligand; the 2,000-nM trace is highlighted in black. (B) Experimental sensorgrams performed on bivalent–bivalent (Left), tri-
valent–bivalent (Center), and trivalent–trivalent (Right) SH3 receptor and peptide ligand interactions. Experiments were performed with the same ligand
concentrations as in A. Atypical features are indicated that result from high-stoichiometric and the burst of high-energy configurations. (C) Underlying
microstate ensembles are shown for each 2,000-nM trace (black).
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importance of accurate assessments of effective concentration
for a meaningful mechanistic description of multivalency.
Notably, simulations and experiments with the trivalent system

were critical in identifying the phenomenon of a transient burst
during association. As with the other atypical manifestations of
multivalency, our simulated binding kinetics not only reveal this
behavior but also provide a mechanistic explanation for its oc-
currence (Fig. 2 C, Right). Here, the simulations reveal a rapid
initial phase of association populated predominantly by monovalent,
bivalent, and twisted trivalent configurations. These configurations
undergo conversions to the thermodynamically favored inline,
trivalent configuration. The mechanistic insights from the trivalent

simulations indicate that the kinetically driven burst phase can be
significantly enhanced by favoring the formation of monovalent and
inline bivalent configurations and by impeding the formation of
twisted bivalent and trivalent configurations (Fig. 3A). We sought to
validate this prediction of the model by experimentally restricting
the formation of twisted configurations through the incorporation
of rigid, alpha-helical linkers into both receptor and ligand. Here, in
close agreement with the simulation, rigidly tethered trivalent re-
ceptor–ligand interactions display a far more prominent transient
burst compared with the flexibly tethered constructs (Fig. 3B).
Depicting the transient burst as its composite microstates (Fig. 3C)
indicates that a trivalent system that is hindered from accessing

Fig. 3. Atypical binding kinetics manifest prominently in trivalent interactions and can be tuned through controlled sampling of the configurational net-
work. (A) Simulations were performed for a trivalent receptor–ligand interaction as in B. The sensorgrams are represented with colored lines indicating ligand
concentrations ranging from 2,000 nM (green trace) to 2 nM (light blue trace). Simulations were performed with either the standard model (i.e., twisted
configurations allowed; Left) or an altered model (Right) restricting twisted configurations with low [Leff] values. (B) To experimentally approximate the simu-
lations performed in A, SPR binding kinetics were measured for trivalent receptor–ligand pairs with either flexible, random-coil linkages (i.e., allowing twisted
configurations; Left) or rigid, alpha-helical linkages (i.e., hindering twisted configurations; Right). The ligand concentration series is the same as in A. Insets
highlight the region of the initial transient burst. (C) Mechanism of atypical binding kinetics is identified by inspection of the underlying binding configurations
through simulation. Simulated kinetics for the 2,000-nM ligand concentration (green trace) and composite microstates (subordinate colored traces). Inset
highlights the microstates that comprise the transient burst. The kinetic traces for the allowed and hindered simulations are animated in Movie S1.
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twisted configurations is entropically driven to regions of the net-
work (i.e., high-stoichiometric states) not significantly populated in
a sterically unhindered system. Populating these configurations
additionally enables the hindered system to undergo the intra-
complex rearrangements needed to form the single, accessible low-
energy configuration (the inline trivalent species), which predomi-
nates the network at equilibrium (Movie S1).
Taken together, our results indicate that this expanded and

idealized treatment of effective concentrations within multiva-
lent networks reflects experimental observations, elucidates mech-
anisms behind these observations, and demonstrates that our core
modeling framework gives qualitatively and quantitatively differ-
ent results when applied to increasing receptor–ligand valencies.

Application of the Model to Structurally Disparate Multivalent Systems.
The direct correlation between multivalent topology and effective
concentrations led us to examine our use of the worm-like chain
model with system topologies that differ significantly from our SH3
“beads-on-a-string” constructs. The major limitation of the worm-
like chain model is its treatment of multivalent species as “per-
sistent” polymers (i.e., composed of linear, noninteracting, and
hinged segments with a uniform stiffness). In reality, multivalent
species display widely varying types of connectivity, degrees of
nonuniform stiffness, and local and long-range self-interaction.
However, we reasoned that if the multivalent system of in-
terest were sufficiently well described structurally, our model
could be parameterized with linkers, hinged-rods, and contour
and persistence lengths to reasonably approximate the in-
teraction volume and the regions within it that the binding do-
mains sample. To examine the utility of our zero-fit framework in
this regard, we assessed the model’s ability to simulate SPR sen-
sorgrams from 2 disparate systems described in the literature.
As a first case study, we examined the multivalent interactions

between the trivalent TNF family ligand, BAFF, and bivalent Fc
fusions of its receptors, BCMA and BAFFR, as reported by Day
et al. (49). Here, notably, the nature of the multivalency arises
through multimeric assembly (SI Appendix, Fig. S15 A–C).
Moreover, through multimerization, BAFF’s trivalency exists
with 3-fold radial symmetry rather than a linear, beads-on-a-
string topology. The radial symmetry of BAFF results in an equal
pairwise distance between all 3 of the binding domains (∼33 Å, SI
Appendix, Fig. S15B). We simulated this unique topology by using
a single PDF calculation for each of the 2 inline and 2 twisted
effective concentrations. Additionally, the linkage connecting the
2 BCMA/BAFFR domains was modeled as a linker-rod-linker
segment, in which the rod represents the rigid 15 Å spanning
the 2 C-termini of the Fc dimer (SI Appendix, Fig. S15C). Using
this structure-guided parameterization, we observed good agree-
ment between our zero-fit simulations and the experimental
dataset, particularly with regard to the calculated effective equi-
librium dissociation constants (SI Appendix, Fig. S15D).
As a second case study, we explored the potential applicability of

our computational framework beyond protein–protein interactions by
modeling the intercalation of bivalent DAPI analogs into double-
stranded DNA (dsDNA) with tandem “AATT” motifs, as reported
by Liu et al. (50). Notably, the uniform rigidity of the dsDNA makes
this systemmore sensitive to linker inhibition (SI Appendix, Fig. S16A).
Making use of structure-based parameters (e.g., the dimensions and lp
values for dsDNA and alkyl ether linkers) again resulted in good
agreement between our simulations and the experimental data, both
in regard to the binding enhancement seen with the increase in valency
(SI Appendix, Fig. S16B vs. SI Appendix, Fig. S16C) and the reduction
of bivalent avidity, as the shortening linkages place the binding do-
mains increasingly out of register (SI Appendix, Fig. S16 C–E).

Tailoring the Multivalent Effect with Model-Guided Exploration of the
High-Dimension Parameter Space. Having established the utility of
our mechanistic computational framework, we sought to use the

model to more broadly explore the biophysical landscape of mul-
tivalency through sensitivity analyses of the parameters underlying
the affinities, avidities, and structural topologies of complex bio-
molecules. Here, we use class summation to provide a simplified
representation of the 78 configurations in a trivalent receptor–
ligand ensemble (Fig. 4 A–C).
Our multivalent simulations indicate that when linkages be-

tween binding domains of the receptor or ligand are flexible and
large relative to the diameter of the binding domains, the en-
semble is insensitive to modest changes in their length (Fig. 4 D,
i–iv). Similarly, adding rigidity to the receptor–ligand linkages
imposes a strong sensitivity to their relative positioning. When
helical linkers of equal length are simulated (Fig. 4 E, v and vi),
the resulting ensemble is able to fully populate the trivalent
configurations. Positioning the receptor–ligand binding domains
out of register with rigid linkers of differing lengths (Fig. 4 E, vii
and viii) nearly completely forbids the formation of trivalent
states, favoring instead misaligned bivalent configurations (SI
Appendix, Fig. S17). The model’s use of structure-guided, linker-
driven calculations of [Leff] was the basis for describing the out-
of-register linkage effects. Simplifying the model by describing
these interactions with a uniform model, in which [Leff] is rep-
resented by soluble ligand confined to a sphere bounded by the
linker contour lengths, failed to properly account for out-of-register
steric constraints between receptor and ligand due to inaccurate as-
signments of effective ligand concentrations to individual microstates
(SI Appendix, Fig. S18). Further, the importance of binding site
registration for avid interactions is highly sensitive to the length
and flexibility of the linkages (SI Appendix, Figs. S9C and S16).
Additionally, because the avidity enhancement caused by

multivalency derives from the ability to anchor a receptor–ligand
complex within the configurational network, the avidity benefits
of a large network can be offset by a koff that operates on a
sufficiently fast timescale such that intramolecular reassociations
are less likely despite favorable effective ligand concentrations
(Fig. 4 F and G). This functions to expedite a ligand’s path from
a fully bound state to freely dissociated, thus reducing the half-
life of the multivalent assembly. Conversely, while the avidity
effect and half-life increase with decreasing koff, the time required
for high-valency configurations to achieve maximum occupancy at
equilibrium can increase by several orders of magnitude, from
seconds to days (SI Appendix, Fig. S17).
Together, these sensitivity analyses demonstrate that topo-

logical constraints and the monovalent rate constants impose sig-
nificant effects on the size, distribution, and stability of the
multivalent network.

Discussion
The numerous instances of multivalency in natural biological
systems and synthetic designs derive from its abundant utility and
ease of implementation. The physical linkage of intermolecular
binding events creates a network of effective concentrations that
can profoundly alter the overall kinetics and energetics of a
molecular interaction—without the need to mutate or otherwise
alter specific intermolecular contacts. Further, the introduc-
tion of added layers of posttranscriptional and posttranslational
modification can create a multivalency coding language that
specifies the type, nature, and duration of a biomolecular in-
teraction. While straightforward to implement, predicting the
behavior of specific instances of multivalency is hindered by the
combinatorial complexity of these systems and by the effects of
the structures and topologies of the interacting species.
Here, we found mechanistic utility in explicitly modeling the re-

lationship between domain topology and effective concentration,
combined with a complete description of the multivalent network.
By limiting assumptions about the steric permissibility of configu-
rational transitions, good agreement between our zero-fit model
and experiment was observed across a range of concentrations,
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valencies, and topologies. We show that small accretions in valency
cause large increases in network size. Through simulation and ex-
periment, we further link the ability of a multivalent system to
traverse and populate its network to the topological constraints
imposed by the receptor and ligand structures. Here, the diameter
of the binding domain relative to the length of the linker, the linker
rigidity, and degree of registration between receptor and ligand
have substantial effects on the rates of intracomplex association and
the ability to form high-avidity configurations.
In addition to the insights obtained from these parameter

sensitivity analyses, our model enables mechanistic descriptions
of kinetic phenomena that would otherwise be poorly described
by conventional 1:1 or rigid-bivalent curve fitting procedures.
With our network model, these noncanonical features become
quantitative markers of multivalency. For example, the magni-
tude, duration, and decay of the transient burst at the outset of
the association phase describe the paths through the network
that receptor–ligand complexes take to reach their lowest-energy
configurations. Further, the ligand concentration-dependent transi-
tions between configurational classes of differing stoichiometries

provide a means to backcalculate interdomain effective concentra-
tions and linker lengths for structurally uncharacterized molecules.
Additionally, the multiphasic dissociation kinetics yield mechanistic
insights into the composition of the configurational network, and
how a receptor may “process” ligands of differing valency.
Finally, the modular construction of our network model enables

its integration with specialized treatments of multivalency not
explicitly addressed here. For example, distributive binding (51)
and statistical rebinding (52, 53) can enhance the multivalency
effect in nonintuitive ways. Similar to our treatment of receptor
crosslinking, models of these effects can be incorporated into the
terminal configurational transitions connecting the network to the
unbound receptor state. Additionally, rule-based modeling has
powerful applications for combinatorial systems (54, 55). Here,
local rules governing topology-driven binding can be determined
from our network model and incorporated into a larger rule-based
network that is extensible to much higher valencies and longer
linker lengths without the computational demand required to
calculate full sets of probability density functions and differential
rate equations. Such extensions should enable increasingly expansive

Fig. 4. Mapping of a cross-section of themultidimensional, trivalent receptor–ligand interaction space details the parameter sensitivities of themultivalent effect. Overview
of simplified representation: Microstate concentrations (A) were binned based on “class” of interaction (B) and represented as a summed color intensity with inline and
twistedmicrostate conformations separately indicated for the 3 classes in which they occur (C). Sampling of the parameter space for simulated trivalent–trivalent interactions
after a 50-s association with a monovalent KD = 10 mM of either fast on/off (D and E) or slow on/off (F and G). Linkers were either flexible “random coil” (D and F) or rigid
“alpha-helical” (E and G), each with lengths of either 20 or 5 amino acids. Ensemble simulations were performed with low (50 nM) or high (50 μM) ligand concentrations.
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descriptions of multivalency over large ranges of chemical and bi-
ological space, leading to a more detailed understanding of the ele-
gant power of multivalency in natural and engineered systems (56).

Materials and Methods
Computational Model. The mechanistic model was formulated with mass-action
kinetic equations to describe the formation and loss of each species through
binding and dissociation. Intracomplex binding utilized a structure-based
effective ligand concentration that was calculated via an odds ratio of
probability density functions between a tethered ligand and a uniformly
distributed ligand. The resulting set of ordinary differential equations was solved
using ode15s in MATLAB to simulate association and dissociation kinetics.

Experimental Methods. Multivalent receptors were constructed using the
C-terminal SH3 domain of the human adaptor protein Gads, and multivalent

ligands incorporated a peptide sequence from the Gads cognate ligand,
SLP-76 (57). Association and dissociation kinetics between ligand and receptor
constructs were quantified by surface plasmon resonance measurements on
a Biacore S200 instrument.

More detailed descriptions of the computational and experimental methods are
provided in SI Appendix. All materials and data are available upon request.
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