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Understanding the stability of ecological communities is a matter
of increasing importance in the context of global environmen-
tal change. Yet it has proved to be a challenging task. Different
metrics are used to assess the stability of ecological systems,
and the choice of one metric over another may result in con-
flicting conclusions. Although each of the multitude of metrics
is useful for answering a specific question about stability, the
relationship among metrics is poorly understood. Such lack of
understanding prevents scientists from developing a unified con-
cept of stability. Instead, by investigating these relationships
we can unveil how many dimensions of stability there are (i.e.,
in how many independent components stability metrics can be
grouped), which should help build a more comprehensive concept
of stability. Here we simultaneously measured 27 stability met-
rics frequently used in ecological studies. Our approach is based
on dynamical simulations of multispecies trophic communities
under different perturbation scenarios. Mapping the relationships
between the metrics revealed that they can be lumped into 3
main groups of relatively independent stability components: early
response to pulse, sensitivities to press, and distance to thresh-
old. Selecting metrics from each of these groups allows a more
accurate and comprehensive quantification of the overall stability
of ecological communities. These results contribute to improv-
ing our understanding and assessment of stability in ecological
communities.
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S tability has been a core topic of research in complex systems
across disciplines. From socioeconomic models of political

regimes (1, 2), to financial systems (3–5), social organizations
(6, 7), or biological systems of genetic regulatory circuits (8,
9), the study of dynamical stability keeps drawing the attention
of the scientific community. This interest has been particu-
larly prominent in ecology, where it has fuelled decades of
research (10–15). Yet, progress in understanding what deter-
mines the stability of complex systems such as ecological com-
munities has been hampered by unclear and sometimes con-
flicting results. One of the main reasons has proved to be the
broad definition of the concept of stability itself (12), which
has led to confusion and a lack of clear guidelines about the
practical quantification of stability in empirical studies (14,
16). Probably one of the best examples of this confusion is
the long-standing controversy of how stability varies with species
diversity (17). While some studies have shown that biodiversity
can enhance stability (18–20), others have found the oppo-
site result (21–23), both effects (24), or even nonmonotonous
relationships (25). The explanation behind this apparent con-
tradiction is that stability is a multidimensional concept: it has
several facets and can be described by different metrics, which
do not all vary positively with biodiversity (13, 24, 26). While
the multidimensional nature of the stability concept has been
well recognized in the literature (10–12), our understanding
of it has remained limited (14). The vast majority of studies
typically include only 1 metric of stability at a time, and the
few studies that have simultaneously measured multiple met-
rics of stability have considered them as independent when, in

fact, it has been acknowledged that they could be interdepen-
dent (27). This possible interdependence implies that measuring
multiple metrics may more broadly estimate stability to the
extent that these metrics quantify relatively independent com-
ponents of stability. Therefore, to advance toward a thorough
and more systematic assessment of ecological stability, we need
to understand how stability can be decomposed into different
components—also referred to as dimensions in the literature
(27)—and if so, how many there are and how they can be best
measured.

We tackle this challenge from a theoretical perspective by
investigating the interdependence of stability metrics in trophic
ecological networks. Combining structural food web models (28)
with bioenergetic consumer–resource models (29, 30), we sim-
ulate the dynamics of multispecies trophic communities under
different perturbation scenarios. Perturbations are changes in
the biotic or abiotic environment that alter the structure and
dynamics of communities (14, 31). We consider 3 main types of
perturbations: pulse (32), i.e., instantaneous disturbances, after
which community recovery can be measured (e.g., forest fires
or floods); press (32), i.e., lasting disturbances after which post-
perturbed communities can be compared to preperturbed ones
(e.g., climatic changes or extinction of a species); and environ-
mental stochasticity (33–35), where communities are constantly
affected by small external changes. We quantify the stability of
our simulated communities to these perturbations with 27 met-
rics frequently used in the ecological literature (see Table 1). We
then explore how these metrics correlate with each other. If met-
rics are found to be uncorrelated, that would mean that they all
inform very different aspects of stability of an ecological com-
munity and that a more coherent concept of stability currently
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lacks empirical support. In the opposite case, if all metrics are
found to be perfectly correlated with each other, considering only
a single metric would be enough to assess the overall stability of
an ecological community. Therefore, by studying the correlations
between stability metrics, we can evaluate whether the different
metrics considered provide similar information about the sta-
bility of an ecological community or whether they form distinct
groups that reflect partly independent dimensions of community
stability.

Results and Discussion
Community Size and Stability Metrics’ Correlations. Community
size (i.e., the number of species) has been shown to play a fun-
damental role in the stability of ecological networks, although
it is not entirely clear if it promotes their stability, hinders it
(13), or both (24, 25). For example, a food web simulation study
showed that persistence (i.e., the fraction of surviving species)
and population variability were either negatively or positively
correlated depending on the species richness of the community
(25). We therefore start by investigating if the pairwise corre-
lations between the stability metrics are affected by community
size in our simulated trophic communities. Overall, many pair-
wise correlations (∼44% out of the 351 correlation pairs) are
not highly affected by community size (Fig. 1A). Some pair-
wise correlations (∼32%) become weaker as community size
grows (Fig. 1B), while others (∼20%) become stronger (Fig. 1C).
In a few cases (∼3%), the correlation between 2 metrics can
switch sign as community size changes (Fig. 1D). The depen-
dence of pairwise correlations on community size is especially
present in communities with fewer than 50 species. In contrast,
most correlations (∼94%) remain largely constant in species-
rich communities (>50 species; SI Appendix, Fig. S1). Given
the dependence of pairwise correlations on community size,
we next study stability metric correlations across 3 levels of
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Fig. 1. Spearman’s ρ pairwise correlation coefficient between stability met-
rics as a function of community size (i.e., number of species at steady state).
(A) Some pairwise correlations are not affected by community size, e.g., cor-
relation between 2 metrics of tolerance to increased mortality at a global
(i.e., community) and local (i.e., species) scale (TMG and < TML >, respec-
tively). (B) Some metrics are only strongly correlated in small communities,
e.g., correlation between stochastic invariability (Is) and time to maximum
amplification (tmax). (C) Other metrics are only strongly correlated in large
communities, e.g., correlation between resilience (Rinf ) and the average
strength of the sensitivity matrix (< sij >). (D) Some pairwise correlations
change sign with community size, e.g., correlation between the resistance
of total biomass (RMG) and the sensitivity of species biomass to a global
increase in mortality (SMG). See Table 1 and Materials and Methods for
metrics’ definitions.

species richness: small (5 to 15 species), medium-sized (45 to
55 species), and large communities (85 to 95 species). In what
follows, we present the results for medium-sized communities,
while the results for small and large communities can be found in
SI Appendix.

Three Groups of Stability Metrics. To explore if there is any struc-
ture in the way metrics are correlated with each other, we build a
network of stability metrics in which nodes represent the met-
rics and links their weighted (unsigned) pairwise correlations
(Materials and Methods). Using a community detection algorithm
based on maximizing modularity (Materials and Methods), we
find that metrics form 3 distinct groups such that metrics that
belong to the same group are more strongly correlated with each
other than with metrics outside of their group (Fig. 2A and SI
Appendix, Fig. S3).

The early response to pulse group (light green in Fig. 2A)
contains measures of the initial and short-term deviations of a
community from its reference state after a pulse perturbation.
The sensitivities to press group (green in Fig. 2A) includes met-
rics that quantify changes in total and individual species’ biomass
between postperturbed and preperturbed communities after a
press perturbation. The distance to threshold group (blue in
Fig. 2A) consists of metrics that measure how easily a system
crosses thresholds to new dynamical states, for example, the
amount of external pressure before a community experiences an
abrupt change, the closeness of the rarest species to extinction,
the population variability, and secondary extinctions caused by
random extinctions.

Three metrics (in gray in Fig. 2A) were not clearly assigned
to any of the 3 groups (SI Appendix, section 2). These metrics
include measures of the initial and transient responses of the
most abundant species to pulse perturbations. Because of their
idiosyncratic correlations with the rest of the metrics, we kept
them apart from the other metrics.

Interestingly, the 3 emergent groups split metrics in terms of
both the temporal scale of the response and the type of pertur-
bation. Indeed, the early response to pulse group only contains
metrics describing transient behavior, while the sensitivities to
press and distance to threshold groups contain metrics describ-
ing long-term (asymptotic) dynamics. Furthermore, the early
response to pulse and sensitivities to press form 2 contrasting
groups containing metrics that refer to pulse and press pertur-
bations, respectively, while metrics in the distance to threshold
group refer to both types of perturbations. The weak correlations
between the 3 groups of metrics (with an average correlation of
∼0.13; SI Appendix, Fig. S2 and section 3) suggests that the met-
rics within a group can be considered as relatively independent
from metrics in other groups. Therefore, these 3 groups reflect
major components that constitute different dimensions of the
stability of trophic communities (27) that should be measured
in an ecological community to comprehensively assess its overall
stability.

Further studying the degree of (dis)similarity between the
different stability metrics with a hierarchical clustering analy-
sis (36, 37) (Materials and Methods) confirms the partitioning
found by the modularity algorithm, except for 1 outlier met-
ric (striped in Fig. 2B), which was not attributed to the same
group by both analyses (SI Appendix, section 4) and is there-
fore not considered to clearly belong to 1 of the 3 groups for
subsequent analyses. The generated dendrogram allows one to
visualize a more detailed structure, with subgroups of highly
similar metrics within the 3 groups identified by the modular-
ity algorithm (SI Appendix, section 4). Practically, this implies
that for these sets of highly similar metrics, only 1 of the
metrics could be selected interchangeably. Moreover, some of
these close similarities could also be of theoretical interest.
For example, in the distance to threshold group, we find 5
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Fig. 2. (A) Network of stability metrics for medium-sized communities (45 to 55 species). Nodes represent stability metrics and the thickness of links their
unsigned pairwise Spearman’s ρ correlation coefficients. Node colors distinguish the 3 groups identified by the modularity algorithm, with a modularity of
Q = 0.177: early response to pulse group in light green, distance to threshold group in blue, and sensitivities to press group in darker green. In gray are
metrics that the modularity algorithm was not able to unambiguously place in any group. (B) Hierarchical clustering applied to the network of stability
metrics. Correlations are used to compute a distance between all pairs of metrics, which are represented here by a dendrogram. The key to interpreting
such a dendrogram is to focus on the first branch at which any 2 metrics are joined together; the farther away 2 metrics are from this common ancestor, the
less similar they are. The goodness of fit of distances based on the dendrogram to the distances in the original data (pairwise correlations) is quantified by
the cophenetic coefficient (c= 0.85). Metrics are clustered similarly as by the modularity partitioning, except for the resistance to extinction metric (< RE>)
represented with a striped pattern, which is therefore considered to not clearly belong to one of the groups in upcoming analyses. See Table 1 for metrics’
definitions.

strongly connected metrics of very different nature: resilience
(a metric of dynamical stability, Rinf ), tolerance metrics (which
assess structural stability; TMG , TM L

min), and sensitivity metrics
(which are based on the inverse Jacobian; S , < sij >). Some
of these connections have been previously reported (38, 39),
but we still lack a complete theoretical map of most metrics’
relationships.

The Sign of the Correlations Between Stability Metrics. The sign of
the correlations between metrics is important because negative
correlations between metrics would suggest trade-offs: promot-
ing stability according to 1 of the metrics would happen at the
expense of stability according to another metric. In our simu-
lated trophic communities, however, we only find a few negative
correlations (SI Appendix, section 5 and Fig. S4). Most of the
negative correlations are identified in small communities (below
20 species) between metrics of resistance (i.e., total change in
aggregated community biomass before and after a press per-
turbation) and sensitivity (total change in species’ populations
after a press perturbation; see Table 1). In fact, in communities
of more than 20 species, there is only 1 relatively strong nega-
tive correlation (ρ∼−0.4) between reactivity (R0) and time to
maximum amplification (tmax). The relationship between these
2 metrics has been previously studied and found to be complex
(40). Our results here suggest that communities whose abun-
dant species initially deviate fast from their original state (i.e.,
high R0) are also those that tend to start recovering early (i.e.,
low tmax); conversely, communities with abundant species that
are less reactive tend to take longer before they start their
recovery.

The vast majority of positive correlations (from ∼86% of all
351 pairs in small communities to ∼93% in large communi-

ties) found here is in line with recent experimental findings,
where multiple positive correlations between stability metrics
were found in communities of similar size to our simulated com-
munities (24, 27). For example, we find a positive correlation
(ρ= 0.54) between invariability (Is) and resistance to small press
perturbations (S ) in agreement with ref. 24. We also find a pos-
itive correlation (ρ= 0.57) between invariability (Is) and the
number of secondary extinctions (<CE >), in communities of
similar sizes to those studied by ref. 27. In light of this, stabil-
ity trade-offs seem to be a rare exception in complex trophic
communities.

Mapping the Stability Metrics. Past reviews of stability in ecology
have highlighted the multidimensional nature of stability and
have attempted to group metrics in a few stability facets based
on the similarity in their definition (10–13). Here, 3 relatively
independent groups of metrics emerged from the analysis of the
correlations between metrics, and we argue that these groups can
be interpreted as different dimensions of stability. In what fol-
lows, we map all metrics according to their stability group (or
dimension), perturbation type, and stability facet in an attempt
to better understand the relationships between these different
categories (Fig. 3).

This mapping reveals that the stability facets and the stabil-
ity groups do not map 1-to-1. For example, resistance metrics
can belong to all 3 stability groups, while metrics from the 4
stability facets can be highly correlated with each other and
belong to the same stability group (e.g., the distance to threshold
group). More strikingly, our mapping shows that it is not pos-
sible to simultaneously capture the 3 stability dimensions with
an experiment that would involve only 1 type of perturbation.
Early response to pulse, i.e., transient responses (Fig. 3, Left),
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Fig. 3. Classification of the stability metrics according to 3 axes: the pertur-
bation type (pulse, press, or environmental stochasticity), the stability group
(early response to pulse, distance to threshold, and sensitivities to press), and
the stability facets typically describing stability properties in the literature.
There is currently no consensus on the names of these facets; we here refer
to them as resistance in purple (how much the system changes under a press
perturbation), attractor in green (the type and number of attractors of the
system), constancy in yellow (how variable the system is), and recovery in
red (if and how the system recovers from a pulse perturbation) (15). Colors
of the groups of stability metrics are the same as in Fig. 2. Metrics not clearly
associated to 1 of the 3 groups in Fig. 2 (i.e., the metrics in gray and< RE>)
were not included here. See Table 1 for metrics’ definitions.

can only be studied in communities that experience a pulse per-
turbation, while all resistance and sensitivity of biomass metrics
are, by definition, the results of a press perturbation. The fact
that knowledge about stability to a given type of perturbation
does not extend to another type of perturbation confirms that we
cannot get away from specifying the stability “of what” and “to
what” (14, 16).

Conclusion
Perhaps the most important finding of our analysis is that the
multiplicity of stability metrics can essentially be mapped into
3 relatively independent groups that reflect 3 different compo-
nents, or dimensions, of stability. This suggests that the dimen-
sionality of the stability of trophic ecological communities is
much lower than the number of metrics used to quantify it and
that stability could therefore be assessed using a small number of
metrics.

Each of the many stability metrics allows addressing spe-
cific questions by quantifying a given aspect of stability. At the
same time, however, the grouping of many metrics in just a
few components raises the question of which specific metrics to
choose if one wants to assess the overall stability of an ecolog-
ical system. An intuitive guess is that combining metrics from
each of the 3 groups could be a way of decreasing the amount
of metrics used, while still accurately estimating the multiple
dimensions of the stability of an ecological community. Pre-
liminary analyses suggest that using only 3 metrics—those with
the highest explained variance in each of the groups—explains
54%, 52%, and 59% of the original variance in small, medium,
and large communities, respectively (see SI Appendix, section
6, for more details). Moreover, analyses of the volume of the

covariance ellipsoid confirm that selecting metrics from the 3
different groups, rather than the same number of metrics from
the same group, best describes the different stability dimensions
(see SI Appendix, section 7 and Fig. S7). However, due to the
high correlations between metrics within a group, it is difficult
to propose a single best way of selecting metric(s) in each of the
groups. Although the choice of the metrics will always depend
on the system studied and on practical constraints, hierarchi-
cal analyses (Fig. 2B and SI Appendix, Fig. S3) and explained
variance analyses (SI Appendix, section 6) can help making
informed choices.

Interestingly, our analysis confirms previously known relation-
ships between metrics, but it also reveals unexpected dependen-
cies, which could be either due to mathematical relationships yet
to be investigated or because the metrics actually expose latent
dimensions of stability. Although, our approach does not eluci-
date the causes for the metrics’ correlations, it does point toward
future areas of research. In that sense, our results are of inter-
est to both theoreticians—because they hint toward yet unknown
mechanisms underlying correlations between stability metrics—
and experimentalists, who can use the patterns of correlations to
choose which metrics to evaluate in their experiments.

Finally, although our study focuses on the stability of food
webs, the relationships found here could be of interest to under-
stand the stability of other types of networks, in ecology as
well as in other disciplines. In fact, even if the exact number
of identified groups of metrics could be altered in other sys-
tems or by the incorporation of additional stability metrics, the
framework we propose is flexible enough to accommodate to dif-
ferent conditions and opens a way toward simplifying the study of
overall stability in different types of complex dynamical system.
After all, directed networks of many kinds describe transport
of matter, information, or capital in a similar way to how food
webs describe fluxes of biomass from primary producers to apex
predators.

Materials and Methods
Stability Metrics. We review the ecological literature to identify the most
frequently used metrics for assessing community stability. Specifically, we
consider metrics that quantify stability in communities that yield stable
(fixed equilibrium) dynamics. We do not consider measures of community
invasibility. For metrics that can be quantified in multiple ways, we only
retain a single way of measuring that metric. With these criteria, we obtain
27 metrics that are described in Table 1, specifying their temporal scale
(below the name) and the type of perturbation they are associated to
(in bold letters in the description). Metrics include analytical responses to
small pulse perturbations—i.e., instantaneous disturbances causing a sud-
den change in species abundances—obtained from the community matrix
(or Jacobian) covering initial (reactivity), transient (maximum amplification
and time to maximum amplification), and asymptotic (resilience) temporal
regimes, both quantified at the individual species level and at the commu-
nity level (21, 40, 41). Responses to environmental noise are assessed with
the stochastic invariability metric (34). Analytical responses to small press
perturbations—i.e., lasting disturbances causing the abundance of species to
be permanently changed—are measured by means of the sensitivity matrix
(inverse of the Jacobian matrix) (32, 38, 42). We also apply 2 different types
of more intense press perturbations empirically: an increase in mortality
both at the local (i.e., only on 1 individual species at a time) and at the
global (i.e., on all species of the community simultaneously) scales and ran-
dom extinctions of species. Structural stability (43, 44) to these 2 types of
press perturbations is assessed with the tolerance metrics (Table 1). Toler-
ance to mortality is measured as in previous studies (45, 46), and tolerance
to extinctions is measured with robustness (47). We also include metrics
of community resistance to random extinctions (48) as cascading extinc-
tions. Empirical measures of resistance to both types of press perturbations,
named resistance of total biomass and sensitivity of species’ biomass, are
also quantified in a similar fashion as in previous studies (49). All of the
metrics are defined in such a way that an increase in their value means
an increase in community stability. Definitions of metrics can be found in
SI Appendix, section 10, and the dataset of stability metrics can be found in
Dataset S1.
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Table 1. Stability metric’s names (characteristic time scales), definitons, and, when relevant, reference to the equation in SI Appendix,
section 10

Name Acronym [equation in
(time scale) SI Appendix, section 10] Description

Reactivity (initial) R0 [6], MR0 [11] Maximum instantaneous rate at which perturbations can be amplified.
Measures the velocity of the system when initially going away from
the equilibrium after a pulse perturbation. Driven by the most
abundant species. Median reactivity over all species (MR0) represents
the whole community.

Maximum amplification Factor by which the perturbation that grows the largest is amplified
(transient) Amax [9], MAmax [12] after a pulse perturbation. The factor by which the median

displacement over all species deviates (MAmax) represents the
whole community.

Time to maximum amplification Time to achieve the maximum amplification and time to achieve the
(transient) tmax , Mtmax maximum amplification of the median displacement after a pulse

perturbation (Mtmax).
Resilience (long-term) Rinf [10], MRinf [13] Asymptotic (i.e., long-term) return rate to the reference state after a pulse

perturbation. Metric driven by the least abundant species. The median
resilience over all species (MRinf) represents the whole community.

Stochastic invariability Measures if the environmental noise (assumed to be white noise) is
(long-term) Is [14] amplified, i.e., if the fluctuations in species’ biomass are larger than

the environmental noise.
Sensitivity matrix (long-term) Average change in the biomass of species i after a press perturbation is

< sij > [16], S [15] applied to species j (assuming that postperturbed and preperturbed
systems are at nearby fixed-point steady state and that perturbations
are sufficiently small). The accumulated change over all species (S)
represents the whole community.

Tolerance (long-term):
To mortality TMG [17] Minimum global increase in mortality (press perturbation applied on all

species) that leads to at least 1 extinction.
< TML >, TML

min Minimum local increase in mortality (press perturbation applied on
1 species) that leads to at least 1 extinction. Each species is attacked in
turn. The average (over all species) and the minimum increases that
caused an extinction are measured.

To extinctions < TE> Measured as robustness, i.e., the number of actively performed (random)
extinctions (press perturbation) required to reduce the number of
surviving species to 50% of the original number.

Resistance of total biomass (long-term):
To mortality RMG [18] Relative change in total biomass before and after a global increment of

10% mortality (press perturbation applied on all species).
<RML >, RML

max Relative change in total biomass before and after a local increment of
10% mortality (press perturbation applied to 1 species). Each species
is attacked in turn. The average and maximum changes in total
biomass are measured.

To extinctions <RE> [20], REmax Relative change in total biomass before and after each of the species
goes extinct (and subsequent secondary extinctions have taken place)
(press perturbation). The average and maximum changes in total
biomass (over all extinction events) are measured.

Cascading extinctions (long-term) <CE>, CEmax Average number of secondary extinctions following 1 extinction (press
perturbation). Each species is removed in turn. The average and
maximum number of secondary extinctions over all extinction events
are measured.

Sensitivity of species’ biomass (long-term):
To mortality SMG [19] Total accumulated change in species’ biomass before and after a global

increment of 10% mortality (press perturbation applied to all species).
< SML >, SML

max Total accumulated change in species’ biomass before and after a local
increment of 10% mortality (press perturbation applied to 1 species).
Each species is attacked in turn. The average and maximum
accumulated changes (over all events) are measured.

To extinctions < SE> [21], SEmax Total accumulated change in individual biomass before and after each
of the species goes extinct (and subsequent secondary extinctions take
place) (press perturbation). Each species is attacked in turn. The
average and maximum accumulated changes (over all extinction
events) are measured.

See Material and Methods for a guide to the metrics’ acronyms. Stability metrics’ names (characteristic time scales), definitions, type of perturbation they
are associated to (in bold letters in the description), and when relevant, reference to the equation in SI Appendix, section 10.
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The acronyms of the metrics that quantify responses to empirical press
perturbations are encoded as follows: the first letter represents if they are
a measure of tolerance (T), resistance (R), or sensitivity (S), followed by the
initial letter of the perturbation, which is either mortality (M) or random
extinctions (E). The superscript differentiates, when needed, if the pertur-
bation is global (G) (i.e., applied on all species of the communities as the
same time) or local (L) (i.e., applied on 1 species at a time). When noth-
ing is indicated, the perturbation is assumed to be local. In the case of
local perturbations, the subscripts min and max indicate whether the met-
ric is the extreme (minimum or maximum, respectively) value observed,
while the brackets <> indicate that the metric is the average of all
observed values.

Generating Communities and Model Simulations. We use the niche model (28)
to construct food web communities. We then use the produced commu-
nity structure to simulate the biomass of each species using a bioenergetic
consumer–resource model with allometric constraints (30):

dBi

dt
= riGiBi + Bi

∑
j∈prey

e0jFij −
∑

k∈pred

BkFki − xiBi − diBi , [1]

where the interaction term Fij is defined as

Fij =
wiaijB

1 + q
j

mi

(
1 + wi

∑
k∈prey aikhikB1 + q

k

). [2]

During the simulations, species biomass adjusts dynamically, and some
extinctions may occur before a steady state is achieved. Thus, the species
that compose the final dynamical trophic networks are selected by struc-
tural constraints and energetic processes among the species. We fix the
parameter of the functional response to q = 0.3 and the predator/prey
body mass ratio to Z = 1.5. Values for all of the other scaling parameters
are averages of values presented in ref. 50. We generate networks with
an initial species richness ranging from 5 to 115 species and a fixed con-
nectance of c = 0.15. During the simulations, if species biomass crossed the
extinction threshold (1E−6mi , where mi is the mass of species i), we con-
sider that species extinct. If more than 10% of the initial number of species
goes extinct, we discard this community. Following this procedure, we simu-
late more than 10,000 different dynamical trophic communities with species
richness ranging from 5 to 105 species. For more details, see SI Appendix,
sections 8 and 9.

Pairwise Correlations and Networks of Stability Metrics. For each commu-
nity size, ranging from 5 to 100 species (with a step of 1), we sample 100
trophic communities of each size (Dataset S2) and compute the pairwise
correlations among all stability metrics using Spearman’s correlation rank,
ρ. We consider that pairwise correlations remain unchanged throughout

a gradient of species richness if the variation in the correlation between
the initial and final community sizes (∆ρ) is below 0.1. We use the pairwise
correlations to build a network of stability metrics. In this network, each
node is a metric and the links are the pairwise correlations between the
metrics. The links are weighted (i.e., the stronger the correlation, the thicker
the link) and unsigned (i.e., we consider absolute correlations and ignore if
2 metrics are negatively or positively correlated). We assemble in this way
networks of stability metrics for different classes of community sizes: small
(5 to 15 species), medium (45 to 55 species), and large (85 to 95 species)
communities by considering the average value of correlations (i.e., average
ρ) within these size ranges.

Grouping Stability Metrics. We search for groups of metrics in the stability
network such that pairs of metrics are more strongly correlated to other
metrics of the same group than to metrics in other groups. Modularity
quantifies the quality of a particular partition of a network into such clus-
ters (i.e., groups of nodes) (51). The modularity algorithm detects clusters
by searching over many possible partitions of a network and finding the
one that maximizes modularity (52). We apply such a community detec-
tion algorithm on our pairwise-correlation weighted networks using Gephi
(53). We repeat the computations 10 times for each network, and we select
the partition in clusters that renders the highest value of modularity (i.e.,
Q = 0.177).

Stability Metric (Dis)similarity. We use hierarchical clustering (36) to aggre-
gate stability metrics according to their similarity (based on correlation).
Starting with the closest pair of metrics, subsequent metrics are joined
together in a hierarchical fashion from the closest (i.e., most similar) to
the furthest apart (most different) until all metrics are included. The dis-
tance between a pair of metrics is defined as d = (1− ρ), where ρ is the
Spearman’s rank correlation. We constructed the dendrogram with the
hierarchical agglomerative clustering (HAC) algorithm in Python (54). We
selected the linkage method (average) that rendered distances in the den-
drogram closest to the original pairwise correlation (goodness of fit based
on the cophenetic correlation coefficient c = 0.85). The closer c is to 1, the
better the correspondence.

Data Availability. Datasets of stability metrics are included as Datasets S1
and S2. Analysis code is available in GitHub (55). Simulation code is available
upon request.

ACKNOWLEDGMENTS. The initial idea for this project emerged from discus-
sions with Colin Fontaine. We are very grateful for stimulating discussions
with him. We would also like to thank the 2 anonymous reviewers and
the editor for their very constructive comments, which have considerably
improved the manuscript. We also thank Stéphane Robin for his help and
advice on statistical analysis. This work was funded by the Agence Nationale
de la Recherche project ARSENIC (Adaptation and Resilience of Spatial
Ecological Networks to Human-Induced Changes) (ANR-14-CE02-0012).

1. T. Gross, L. Rudolf, S. Levin, U. Dieckmann, Generalized models reveal stabilizing
factors in food webs. Science 325, 747–50 (2009).

2. K. Wiesner et al., Stability of democracies: A complex systems perspective. Eur. J. Phys.
40, 014002 (2018).

3. J. P. da Cruz, P. G. Lind, The dynamics of financial stability in complex networks. Eur.
Phys. J. B 85, 256 (2012).

4. N. Arinaminpathy, S. Kapadia, R. M. May, Size and complexity in model financial
systems. Proc. Natl. Acad. Sci. U.S.A. 109, 18338–18343 (2012).

5. M. Bardoscia, S. Battiston, F. Caccioli, G. Caldarelli, Pathways towards instability in
financial networks. Nat. Commun. 8, 14416 (2017).

6. J. Hickey, J. Davidsen, Self-organization and time-stability of social hierarchies. PLoS
One 14, e0211403 (2019).

7. G. Prayag, M. Chowdhury, S. Spector, C. Orchiston, Organizational resilience and
financial performance. Ann. Tourism Res. 73, 193–196 (2018).

8. A. Becskei, L. Serrano, Engineering stability in gene networks by autoregulation.
Nature 405, 590–593 (2000).

9. E. Reznick, D. Segre, On the stability of metabolic cycles. J. Theor. Biol. 266, 536–549
(2010).

10. G. H. Orians, Diversity, Stability and Maturity in Natural Ecosystems, W. H.
van Dobben, R. H. Lowe-McConnell, Eds. (Springer Netherlands, Dordrecht, 1975), pp.
139–150.

11. S. L. Pimm, The complexity and stability of ecosystems. Nature 307, 321–326
(1984).

12. V. Grimm, C. Wissel, Babel, or the ecological stability discussions: An inventory and
analysis of terminology and a guide for avoiding confusion. Oecologia 109, 323–334
(1997).

13. A. R. Ives, S. R. Carpenter, Stability and diversity of ecosystems. Science 317, 58–62
(2007).

14. I. Donohue et al., Navigating the complexity of ecological stability. Ecol. Lett. 19,
1172–1185 (2016).
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46. T. Säterberg, S. Sellman, B. Ebenman, High frequency of functional extinctions in
ecological networks. Nature 499, 468–470 (2013).

47. J. A. Dunne, R. J. Williams, N. D. Martinez, Network structure and biodiversity loss in
food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
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