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Genomes represent the starting point of genetic studies. Since the discovery of DNA structure, scientists
have devoted great efforts to determine their sequence in an exact way. In this review we provide a com-
prehensive historical background of the improvements in DNA sequencing technologies that have accom-
panied the major milestones in genome sequencing and assembly, ranging from early sequencing
methods to Next-Generation Sequencing platforms. We then focus on the advantages and challenges
of the current technologies and approaches, collectively known as Third Generation Sequencing. As these
technical advancements have been accompanied by progress in analytical methods, we also review the
bioinformatic tools currently employed in de novo genome assembly, as well as some applications of
Third Generation Sequencing technologies and high-quality reference genomes.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A genome is the complete genetic information of an organism or
a cell. Single or double stranded nucleic acids store this informa-
tion in a linear or in a circular sequence. To precisely determine
this sequence, progressively more efficient technologies character-
ized by increased accuracy, throughput and sequencing speed have
been developed. Nonetheless, sequencers can generate sequences,
known as reads, comprised only in defined ranges of lengths, usu-
ally far shorter than the size of the genomes investigated. The com-
plete genome sequence has to be deduced from the overlaps of
these shorter fragments, a process defined as de novo genome
assembly. Historically, mostly due to time and cost constraints,
only an individual per species was addressed, and its sequence
generally represents the ‘reference’ genome for the species. These
reference genomes can guide resequencing efforts in the same spe-
cies, acting as a template for read mapping. They can be annotated
to understand gene function or used to design gene manipulation
experiments. Sequences from different species can be aligned
and compared to study molecular evolution. Due to the impact of
reference genomes in all these downstream applications, it is para-
mount that their sequence is as much complete and error-free as
possible. In the last 50 years of the XX century, available sequenc-
ing technologies allowed to focus mostly on relatively small gen-
omes. Since the new millennium, novel platforms, known as Next
Generation Sequencing (NGS), have been developed to address lar-
ger genomes, in a process called Whole Genome Sequencing
(WGS). In the two decades following the advent of WGS, NGS has
become increasingly more efficient and affordable. In parallel,
new sequencing technologies have emerged that promise to revo-
lutionize the field and generate genomes of higher quality.
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2. Historical background

2.1. Sequencing nucleic acids in the XX century

In 1953 Watson and Crick published their seminal paper unrav-
eling the double helix structure of DNA [1]. In their work they
noted ‘‘so far as is known the sequence of bases along the chain is
irregular” and ‘‘the sequence of bases on a single chain does not
appear restricted in any way”, two features that entail a role of
DNA in the storage of genetic information, and highlight the impor-
tance of determining the exact sequence of bases along the chain.
Year 1953 also marked the first sequencing of a biological mole-
cule. Thanks to a refined partition chromatography method, Sanger
was able to sequence the two chains of insulin protein [2,3]. In his
approach, proteins were randomly fragmented, the fragments were
individually read, and sequences from each fragment were over-
lapped to yield a complete, consensus sequence. Proteins were
sequenced before nucleic acids, but many principles remained
the same, paving the way to modern DNA sequencing. When in
1965 it came to nucleic acids, first it was the turn of the 76 bases
long alanine tRNA from Saccharomyces cerevisiae, as methods to
cleave RNA fragments were available since the 1940s [4]. As for
the insulin, RNA was first fragmented with RNAse A and RNAse
T1, the pieces were separated by chromatography, and the degra-
dation products were used to deduce its sequence. At the end of
the 1960s, RNA sequencing was still ahead of DNA sequencing. In
1968, the 12 bases long complementary extremities of phage k
cos-site were the first DNA molecules sequenced [5]. The same
year, a team including Sanger determined the 120 base pair (bp)
long 5s rRNA using 32P-labeled RNA and a paper fractionation-
based approach [6]. In 1972, Fiers sequenced the first gene, the
510 bp of the coat protein gene from the RNA virus phage MS2
[7]. In 1973, Gilbert and Maxam reported the 24 bases of Escheri-
chia coli lactose-repressor binding site by copying its DNA into
RNA [8]. In 1976, phage MS2 was the first organism to have its
3,569 bp RNA genome completely sequenced [9] (Fig. 1). In the
mid 1970s, DNA sequencing was about to flourish. In 1975, Sanger
and Coulson developed the ‘plus and minus’ method for DNA
sequencing and used it to determine two short regions in phage
uX174 single-stranded DNA [10]. In this method, four reaction
mixtures are prepared each containing the template DNA, a primer,
Fig. 1. Milestones in genome assembly. Timeline illustrating many of the major genom
large-scale genome projects currently ongoing. Each genome or genome project (GP)
adopted. Light red: early sequencing methods, Yellow: Sanger-based shotgun sequencin
figure legend, the reader is referred to the web version of this article.)
DNA polymerase and the four deoxynucleotides, one of which is
radiolabeled. These reactions generate a population of newly syn-
thesized DNA strands of different lengths. Reactions are then split
into four pairs of ‘‘plus” and ‘‘minus” mixtures: the minus mixtures
contain three deoxynucleoside triphosphates (dNTPs) and, as a
result, the DNA strand is extended up to the missing nucleotide.
In the ‘‘plus” reactions only one nucleotide is added to each of
the four aliquots and T4 DNA polymerase is used. The exonuclease
activity of the T4 DNA polymerase is harnessed to degrade DNA
from 3’-end up to the nucleotide that is supplied in the reaction.
The products of the eight reactions are loaded on polyacrylamide
gels [11]. X-ray films are used to produce carbon-copy images of
the gel slabs and migration distance is employed to determine
the nucleotide order. In 1977, using this approach Sanger deter-
mined the 5368 bp genome of phage uX174, the first DNA genome
to be sequenced [12] (Fig. 1). The same year, he developed a new
method that could decode fragments of approximately four hun-
dred bases in a day [13]. The ‘Sanger’ method relies on four sepa-
rate polymerization reactions performed using tritium-
radiolabeled primers, where each reaction is supplied with small
amounts of one chain-terminating 2,3-dideoxynucleoside triphos-
phate (ddNTP) to produce fragments of different lengths [13].
When the DNA polymerase incorporates a ddNTP at the 3’-end of
the growing DNA strand, it lacks a 3’-hydroxyl group and chain
elongation is terminated [14]. Similarly to the ‘plus and minus’
approach, the sequence is deduced by comparing the size of the
fragments. The same year, Maxam and Gilbert proposed an alterna-
tive, purely chemical, approach [15]. While extremely popular for
years, with the improvement of the chain-termination method,
this approach fell out of favor due to its technical complexity,
use of hazardous chemicals, and difficulties to be scaled up.
2.2. Shotgun sequencing

To hasten the sequencing process, in 1979 Staden proposed the
idea of ‘shotgun sequencing’, where bacterial vectors are used to
clone random fragments of a long DNA molecule. Fragments are
then sequenced in parallel and reads are assembled using their
overlaps [16], allowing to sequence larger genomes in shorter
times. In 1981, Messing developed the first shotgun sequencing
protocol using the single-stranded M13 phage vector [17]. Only
e assembly achievements ranging from the beginning of the sequencing era to the
is placed under a color-coded background according to the sequencing approach
g, Green: NGS, Light blue: TGS. (For interpretation of the references to color in this



Box 1. The industry of DNA sequencing

Box 1.1. Automation of Sanger Sequencing
In the early 1980s, DNA sequencing was performed with

the original Sanger method, involving four sequencing reac-
tions in four separate tubes using radiolabeled primers. In
1985, Smith and Hood synthesized fluorescent DNA primers
[117] and used them for the partial automation of Sanger
sequencing [118]. In this method, known as dye primer
sequencing, four dyes distinguished by their fluorescent
emission spectra are covalently attached to the oligonu-
cleotide primers and employed in distinct dideoxy extension
reactions. The products are then run together on a polyacry-
lamide gel and Fluorescent Energy Resonance Transfer is
used to read the sequence. In 1987, Prober described dye ter-
minator sequencing, a novel approach based on four chain-
terminating dideoxynucleotides, each carrying a succinyl flu-
orescein dye with a different emission spectra [119]. The dis-
tinct fluorescence signals allowed reactions to be performed
in a single tube. In 1986, Applied Biosystems, a company
founded in 1981 focused mostly on protein sequencing,
switched to nucleic acids and released the first commercially
available four-color fluorescence automated DNA sequencer
(ABI 370A) based on these advancements. A scanning system
allowed multiple samples to be run simultaneously, with
automatic computer-based base calling. The machine was
able to handle 32 samples per run, quadrupling the through-
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one year later, Sanger employed this method to assemble the
entire 48,502 bp-long genome of phage k [18]. In 1984, the genome
of Epstein–Barr virus B95-8 strain, comprising 172,282 bp, was
determined using the same approach [19]. Starting from the
1980s, many full-genome sequencing projects were launched and
succeeded (Fig. 1), as testified by the increasing availability of data
in dedicated repositories [20]. GenBank, the US National Institute
of Health (NIH) sequence database, was founded in 1982 with
about half a million bases, and by the end of the decade it included
over 40 million bases [20]. This growth rate has never ceased, with
almost 10-fold increases every 5 years. ‘‘Sequences, Sequences, and
Sequences” was the title of a Sanger’s article in 1988, suggestive of
the general excitement [21]. In the 1980s and 1990s, technological
breakthroughs combined with the adoption of industrial processes
increased throughput and reduced sequencing errors (Box 1.1).
These advancements were further accelerated by the Human Gen-
ome Project (HGP), which aimed to produce genetic maps, physical
maps, and finally the complete sequence of human chromosomes
(Box 2). Moreover, the competition with Celera, a private company
that also decided to assemble the human genome, stimulated both
initiatives to obtain results rapidly [22,23] (Box 2). With the HGP,
companies realized that sequencing could be a profitable business
and the market competition gave birth to a plethora of sequencing
technologies, collectively referred to as Next-Generation Sequenc-
ing (NGS) (Box 1.2).
put. The next year this approach was refined by introducing
an optimized T7 DNA polymerase [120]. This enzyme was
highly processive, lacked proofreading 30 to 50 exonuclease
activity and efficiently used nucleotide analogs, allowing to
generate around 1000 bases per day [121]. Two years later,
the introduction of the thermostable Taq DNA polymerase
and of cycle sequencing greatly reduced template require-
ments and facilitated miniaturization. Now the sequencing
reaction could be performed at 72 �C and repeated multiple
times in the same tube, achieving linear amplification of the
template [122]. The technological advancements of the
1980s were further reinforced and extended in the 1990s.
Major milestones included the introduction of fluorescent
boron-dipyrromethene dyes (bodipy) more effective than
conventional dyes [123], magnetic bead-based DNA purifica-
tion methods to simplify the automation of pre-sequencing
steps [124], and capillary electrophoresis, which eliminated
the pouring and loading of gels, while also simplifying the
identification and interpretation of the fluorescent signal
[125]. These rapid advancements were further prompted by
the HGP race (Box 2). In 1995, Applied Biosystems replaced
ABI 370A with another slab-gel electrophoresis system, ABI
Prism 377, which could deal with up to 96 lanes at a time.
One year later was released ABI Prism 310, the first capillary
DNA sequencer, and in 1998 the high-throughput ABI Prism
3700. In 2001, it was the turn of the 16-capillary ABI Prism
3100, and in 2002 that of ABI 3730xl provided with 48 to 96
capillaries, where sequences included QVs. By 1998, routine
DNA sequencing of 1000 bases was achieved in less than
one hour [126]. During the great period of excitement of the
80s and 90s, even a completely new method for DNA
sequencing by stepwise dNTP incorporation was developed
[127,128]. Known as ‘‘pyrosequencing”, this approach relies
on measuring the enzymatic luminometric signal generated
by pyrophosphate release during DNA polymerization [129].
This strategy has several advantages over Sanger’s
approach, including the use of natural nucleotides and the
possibility of observing nucleotide synthesis in real time
[130].
2.3. DNA sequencing in the third millennium

From a technical standpoint, the new generation of sequencing
approaches resulted from a combination of advancements in
microfabrication, high-resolution imaging and computational
power [24] (Box 1.2). All NGS approaches rely on a ‘library’ prepa-
ration using native or amplified DNA. In a classical protocol, after
DNA fragmentation and fragment size selection, adapters are
ligated to the ends of each fragment. This is generally followed
by a step of DNA amplification. The resulting library is loaded
on a flow cell and sequenced in Massive Parallel Sequencing reac-
tions [25]. Each reaction usually involves the stepwise,
polymerase-mediated incorporation of fluorescently labeled
deoxynucleotides in an elongating DNA chain immobilized on a
surface (Box 1.2). Results from the blossom of high-throughput
sequencing technologies have been innumerable. The power of
the new methods was proved by the cost-effective and rapid
resequencing of many milestone genomes. During this period of
excitement, genome drafts for most eukaryotic model species
were produced (Fig. 1). NGS also allowed extremely novel appli-
cations, including whole-exome sequencing [26], high-
throughput RNA sequencing (RNAseq) [27], chromatin immuno-
precipitation followed by sequencing (ChIP–seq) [28], and
genome-wide epigenetic landscape determination [29]. Human
genotyping became popular, with millions of Single Nucleotide
Polymorphisms (SNPs) from hundreds of individuals identified
by projects as the International HapMap Project [30]. Human gen-
ome resequencing started to become more affordable. The first
individuals to have their genome fully re-sequenced were Venter
in 2007 [31] and Watson in 2008 [32]. In 2011, six-year-old
Nicholas Volker was reported as the first patient saved by DNA
sequencing, as his one in 1 billion genetic mutation of XIAP gene
resulted to be treatable with cord transplant [33]. Efforts in
human genome sequencing were resumed by the 1000 Genomes
Project (2008–15) [34], and more large-scale human genome



Box 1.2. A $1000 genome
In the 1990s, Applied Biosystems was the undisputed mar-

ket leader. In contrast with this earlier monopoly, in the 2000s
many companies started to offer different technologies with
progressively higher sequencing throughput at lower costs.
These included 454, Solexa, Illumina, Agencourt, Complete
Genomics, Applied Biosystems and Ion Torrent. Following
the enthusiasm generated by the HGP (Box 2), the ultimate
goal became making the cost of sequencing a whole human
genome more affordable, achieving a price below $1000 per
genome. The first generation of NGS sequencers was based
on pyrosequencing and initially produced by Pyrosequencing
AB. Through a series of acquisition, this technology was later
commercialized by 454 Life Sciences, which in 2003 intro-
duced on the market the first NGS DNA sequencer, the
GS20. The GS20 used single-molecule template synthesis
of small, bead-bound DNA fragments in a water-in-oil emul-
sion clonal PCR (emPCR) [131], and dNTP incorporation
detection by CCD sensors beneath the surface of about one
million microwells [132]. The system produced approxi-
mately 400–500 bp-long reads, had 99% accuracy and could
sequence up to 25 million bp in a single 4-hour run at less
than one-sixth the cost of conventional methods. In 2003,
Solexa started to develop a new sequencing approach, later
known as Sequencing by Synthesis (SBS) [133]. Next year
Solexa acquired from Manteia the colony sequencing tech-
nology, also known as bridge amplification [134]. In bridge
amplification, tightly clustered copies of individual mole-
cules, or ‘‘polonies” [135], are produced on a surface from
an immobilized template library [136]. The resulting stronger
signal enhanced the accuracy of base calling, while reducing
the cost of the system optics. In 2005, Solexa added to its
method an engineered DNA polymerase [137] and the
recently developed reversible terminators that can be washed
away, allowing for continuous extension steps [138,139]. The
resulting platform was able to image and determine each sin-
gle nucleotide added to all the DNA fragments placed on the
surface of a flow cell. Genome Analyzer, the first Solexa com-
mercial sequencer, was launched in 2006. In contrast to
GS20, Solexa sequencer had a higher throughput of 1 Gbp
in a single run, but sequencing reads were shorter, only
35 bp long [140]. However, a great advantage was that these
represented paired end reads (i.e. both DNA strands were
simultaneously sequenced), allowing to size the gap between
relatively distant sequences in a DNA fragment. In 2007,
Solexa was acquired by Illumina, a company founded in
1998 that by 2001 had started offering SNP genotyping ser-
vices. The 2007 was also the year of SOLiD from Applied
Biosystems. This technology was based on a ligation strat-
egy, relying on the specificity of DNA ligases to ligate fluores-
cent oligonucleotides to templates in a sequence-dependent
manner [141]. This method was later reported to have some
issues in sequencing palindromic sequences [142] and was
consequently abandoned. A new approach based on proton
detection in semiconductors was released in 2011 by Ion Tor-
rent [143]. This approach generated 100 bp long reads by
measuring the pH variations induced by hydrogen ions
released during nucleotide addition in DNA synthesis, using
a semiconductor sensor. Parallel measurements of multiple
templates were carried out in microwell plates where each
of the four nucleotides was added in succession. The process
of reading each nucleotide could occur in a few seconds,
without imaging and therefore at a considerably lower cost.
Based on an advancement of this technology, in 2012 Ion Tor-
rent released a more powerful machine called Ion Proton,
which the company claimed could have allowed to sequence
a human genome in a single day for the price of $1000. How-
ever, similarly to SOLiD, Ion Torrent platforms often mismea-
sured the length of homopolymers [144] and were therefore
abandoned.

Due to the limitations of the other sequencing platforms, the
SBS approach commercialized by Illumina ultimately pre-
vailed. By 2014, the company appeared to have reached a posi-
tion of near monopoly [145], holding 70% of the market for
DNA sequencers and accounting for more than 90% of all
DNA data produced [146]. The same year, the company
announced the HiSeq X Ten, claiming that forty of these machi-
nes would have been able to sequence more genomes in one
year than had been produced by all other sequencers to date,
allowing large-scale WGS for $1000 per genome [147]. This
goal has been exceeded in 2017, when Illumina released Nova-
Seq, a sequencer that can output over 3000 Gbp in a single run.
However, these short read-based genomes are partially incom-
plete and represent only draft assemblies, that can be
improved through complementary sequencing and scaffolding
approaches (Section 3). Consequently, the new frontier is
becoming to make hybrid genome assembly also more
affordable.

Box 2. The reference human genome
In 1988, the US Department of Energy (DOE) and NIH

received funding and formalized an agreement to ‘‘coordinate
research and technical activities related to the human genome”
[148]. Watson was appointed to lead the NIH component
and the official kickoff was in 1990 with the publication of a
joint research plan for the next five years. The deadline for
project completion was set to 2005, however Watson
resigned in 1992 due to the persistent confrontations with
the NIH Director [149]. The following year Collins was
appointed in his place and traced a new five-year plan for
the HGP [150]. By 1994 the HGP team published the first link-
age map of the human genome [151]. Despite the successes
with smaller genomes, in 1998, formally halfway through the
schedule for completing the HGP, only 50 Mb of human
sequence had been determined [152]. The HGP team had
developed an accurate but laborious strategy named ‘‘hier-
archical shotgun” sequencing. The pipeline involved cloning
large fragments of human genome into Bacterial Artificial
Chromosomes (BACs). BACs were then fragmented, size-
selected and subcloned. DNA from individual clones was
used as a template for automated Sanger sequencing [22].
Nonetheless, HGP leaders announced the intent to complete
the project in 2003, two years ahead of previous projections
[153]. However, a private effort led by Venter’s company Cel-
era decided to rival the public HGP, accelerating the events.
Counter to HGP leaders, the team at Celera believed direct
shotgun sequencing without BAC intermediates to be the
fastest and most effective approach also to sequence larger
genomes [154]. Building upon the experience gained at The
Institute for Genomic Research (TIGR) with bacteria, Celera
team rapidly sequenced the 175 Mbp of Drosophila melanoga-
ster genome using an internally-developedWGS strategy and
a new genome assembler based on a more effective OLC
approach [155] (Box3). The success with D. melanogaster
prompted Venter to turn to the human genome. In March
1999, HGP leaders announced the successful completion of
the pilot phase and at the beginning of 2000 the HGP team
deposited two of the three Gbp of the human genome
[156]. Progress was fast also at Celera, and in less than two
years they generated their draft of the human genome. The
race culminated in June 2000 with a joint announcement.
The HGP officially released the sequence in February 2001
[22] and Celera published its genome assembly one day later
[23]. At that time, both the HGP and Celera teams had pub-
lished only working drafts of the human genome. The most
complete assembly, from the HGP, represented about 90%
of the human genome, with only 25% in curated form [22].
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Due to the direct shotgun approach employed, the assembly
generated by Celera was even less accurate [157]. A high-qual-
ity reference would have required three more years of work by
the HGP. Finally, in October 2004 it was published the near-
complete human genome sequence [158]. Until today, the
human reference genome has been continuously improved
by the Genome Reference Consortium [159], resulting in
numerous releases. The quest for higher quality human refer-
ence genome(s) is still on-going as indicated by the open calls
for proposals aimed to produce more accurate assemblies, as
well as to generate a ‘pan-genome’ that can capture nearly
all human variation. In parallel, also the affordability of sequen-
cing entire genomes has been promoted. The cost of the HGP
was $2.7 billion in fiscal year 1991 dollars [160]. Thanks to the
development of progressively refined sequencers based on
Sanger sequencing, per base cost dropped over 100-fold dur-
ing the HGP [157]. Moreover, after completion of the HGP,
the NHGRI started the ‘‘Revolutionary DNA Sequencing Tech-
nologies program” awarding millions of dollars in research
grants to further support the development of new sequencing
approaches, and paving the way to more affordable genomes
(Box 1.1 and 1.2).
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projects have constantly been and are being proposed such as the
Wellcome Trust UK10K in 2010 and the All of Us in 2015 [35]
(Fig. 1).
3. Genome sequencing and assembly in the Third Generation
Sequencing era

Starting from the 2010s, radically new technologies opened the
era of Third-Generation Sequencing (TGS). TGS definition may
vary, but it is generally given to technologies capable of sequencing
single DNA molecules without amplification. Nowadays, these
technologies allow to produce reads far longer than NGS, each
spanning several to hundreds kbps. In the context of genome
assembly, the availability of long reads constitutes a great advan-
tage, as the difficulty of detecting overlaps between NGS short
reads reduces the ability of generating long continuous consensus
sequences [36], impacting the overall quality of the assemblies
[37–39]. This issue is further exacerbated by the presence of
repeated and low complexity DNA regions [40]. As more complex
genomes are addressed, the impact of repeat elements increases
[41]. In these cases, the final assembly continuity may be reduced
even adopting refined NGS-based approaches, such as 10X Geno-
mics linked reads, where barcodes are associated with individual
high molecular weight (HMW) DNA molecules prior to NGS library
preparation and later used to group short reads sharing the same
barcode as originating from the same HMW DNA fragment
[42,43]. Extra-large genome sizes such as those of amphibians
[44], where low-complexity regions account for most of the ‘extra’
DNA [45], constitute a practically insurmountable barrier for NGS-
based WGS (Fig. 1). TGS enables to address these shortcomings to
generate genome assemblies of unprecedented quality [46–48]
(Fig. 1).

3.1. Single-molecule sequencing

The first single-molecule sequencing technology, based on fluo-
rescence detection and Sequencing by Synthesis (SBS), was devel-
oped by Quake and commercialized in 2009 by Helicos BioSciences
[49,50]. It worked similar to Illumina sequencers, but without any
bridge amplification, thereby avoiding DNA amplification-
associated biases. However, it was slow, expensive and produced
relatively short reads, around 35 bp long. Two single-molecule
approaches were developed in the last decade that overcame these
disadvantages. The first approach, Single Molecule Real-Time
(SMRT) sequencing was developed by Craighead, Korlach, Turner
and Webb and was further refined and commercialized by Pacific
Biosciences (PacBio) since 2011. The second approach, Nanopore
sequencing, was first hypothesized in the 1990s, but developed
into a technology only decades later [51] and commercialized by
Oxford Nanopore Technologies (ONT) since 2005. SMRT sequenc-
ing normally generates reads with average median length of
approximately 10–20 kbp, but also several reads longer than 50
kbp. During library preparation, specific hairpin adapters are
ligated to both ends of double-stranded DNA molecules to circular-
ize them, forming a structure known as SMRTbell [52]. SMRTbell
libraries are then loaded onto a SMRT cell containing hundreds of
thousands Zero-Mode Waveguide (ZMW) nanowell arrays [53].
Each ZMW contains a polymerase immobilized at the bottom that
can bind a primer complementary to the hairpin adapters of the
SMRTbell and start the replication process [54]. Individual
sequencing reactions take place within each ZMW, corresponding
to the smallest available volume for light detection (20 zeptoliters
each), and consist in the incorporation of the four different
fluorescent-labeled nucleotides in succession using the SMRTbell
DNA as complementary template. Each incorporation event pro-
duces a specific emission signal that is recorded for real-time
base-identification by an ultrahigh resolution camera coupled with
a computer [54]. A ‘movie’ of light pulses, corresponding to a
sequence of bases, is named Continuous Long Read (CLR). The indi-
vidual base-calling accuracy of these reads is far less accurate than
Illumina short reads, with ~1 error every 10 nucleotides [55] com-
pared to the reported ~1 error every 1000 nucleotides using NGS
[56]. However, in contrast to NGS, there appears to be little or no
sequencing bias [57] and error profiles seem to be purely random,
allowing high-quality in the final consensus sequence [58]. Inter-
estingly, the circular nature of DNA molecules in SMRTbells allows
to read the same sequence multiple times. Over the years, PacBio
has further developed this concept to increase base-calling accu-
racy, culminating in 2019 with the release of a new method named
HiFi (‘High Fidelity’) long-reads, which can generate Circular Con-
sensus Sequences (CCSs) approximately 10–20 kbp-long, poten-
tially as accurate as Illumina short reads [59]. The advantages of
SMRT sequencing over NGS have come at the price of higher per
base sequencing costs. In 2019 PacBio has released Sequel II, a
revised platform based on new chemicals and equipped with a
novel 8 million ZMW nanowells SMRT cell, theoretically able to
generate a throughput of 160 Gb per SMRT Cell, with a concomi-
tant drop of up to 8-fold in sequencing costs.

Nowadays, the direct competitor of SMRT sequencing for both
quality and price is Nanopore sequencing. Nanopore sequencing
uses genetically modified bacterial nanopores inserted into an arti-
ficial lipid bilayer, placed in individual microwells tens of microm-
eters wide and arrayed on a sensor chip [60–62]. As each single
DNA strand travels through a channel, it disrupts the current run-
ning through the pore, and the change is measured by a semicon-
ductor sensor. Since each base disrupts the electric field in a
slightly different way, the recorded current changes can be trans-
lated into a DNA sequence. The final result is similar to that of
SMRT sequencing, with long reads of low base-calling quality. Read
length is in the order of 10–20 kbp, and the longest molecule
sequenced to date was 2.3 Mbp long [63]. This places ONT reads
as the longest DNA reads generated so far, allowing to sequence
through repeats where even PacBio reads may fail. Furthermore,
since ONT technology relies on the detection of an electrical rather
than an optical signal, Nanopore devices can be as small as a USB
stick. In 2016, such portability allowed to sequence Ebola virus at
field sites in West Africa in less than 60 min [64]. However, ONT
reads appeared to have sequencing biases difficult to be corrected
[65]. In 2019, Nanopore has released into early access R10, a new
nanopore with a double sensor for improved base calling [66].



Fig. 2. Structural variations. Schematic representation of the five major types of SVs.
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3.2. Advantages of Third Generation Sequencing over Next Generation
Sequencing

TGS has been shown to considerably improve the quality of
genome assemblies [58,67]. Ultralong read lengths and low
sequencing-context bias (GC-content or low-complexity) enable
to assess many regions missing from NGS-based assemblies
[39,68], providing a more uniform coverage along the genome
and increased structural accuracy of the resulting assemblies.
Moreover, in diploid (or polyploid) genomes TGS allows the gener-
ation of long phased blocks of haplotypes (haplotigs), where the
paternal and maternal contributions to a homologous region of
the chromosome are reported separately [69]. Avoiding chimeric
genomes, where paternal and maternal haplotypes are mixed or
even collapsed, facilitates accurate mapping of sequencing reads
for structural variants (SV) detection, including length variations
in highly repeated motifs, other large insertion and deletion events
(indels), duplications, inversions and translocations [70,71] (Fig. 2).
Indeed, while SNPs were long regarded as the most relevant type of
genetic variation, it is now clear that SVs (>50 bp) also play a key
biological role [72,73]. SVs comprise a large portion of bp account-
ing for interspecies genotypic differences [74], implying that an
important fraction of genomic variation has so far escaped detec-
tion by NGS. This could explain much of the ‘‘missing heritability”
problem [75]. Accordingly, evidence for the importance of SVs in
determining both simple and complex phenotypic traits is
constantly growing [76,77]. Finally, another advantage of TGS
over NGS is that it provides the simultaneous capability of
Fig. 3. Chromosome-level scaffolding of de novo genome assemblies. Schematic illustra
obtained from optical and Hi-C maps is used to properly position contigs along the ch
contigs are aligned to consensus BioNano optical maps, a process that enables to accurate
a specific chromosome. Here, BioNano optical maps are represented by black lines and th
scaffolds is made possible by Hi-C maps, that take into account the interactions betw
segments represent genomic regions of known sequence while the remaining gaps betwe
of the references to color in this figure legend, the reader is referred to the web version
characterizing a variety of epigenetic marks along with DNA
sequencing [78,79]. This is achieved by measuring polymerase
kinetics in Pacbio [80] and ionic current signals in Nanopore [81].

3.3. Genome assembly using Third Generation Sequencing

The ultralong, noisy reads produced by TGS required the adap-
tation of assembly methods. At present, the two most popular soft-
wares for de novo genome assembly of TGS data are FALCON and
Canu. FALCON was developed directly by PacBio and published in
2013 [82]. It relies on a Hierarchical Genome Assembly Process
(HGAP) where the longest reads are initially selected and act as
‘seed’ reads for the alignment of shorter reads. Reads are then ‘cor-
rected’ to account for the high base calling error rate of TGS using
the consensus sequence derived from the alignment. These ‘pre-
assembled’ reads are then overlapped to each other using de Brujin
graphs to generate the final contigs (Fig. 3 and Box 3). FALCON is
diploid-aware and can generate alternative contigs representing
the second haplotype out of the assembly graph. Three years later
PacBio released FALCON-Unzip, an improved diploid-aware assem-
bler that can take advantage of the heterozygous SNPs identified in
the initial assembly to provide highly phased divergent haplotypes
[83]. Today Canu is a very popular alternative. It was derived from
the Celera Assembler in 2015 [84]. The latter was initially adapted
to PacBio sequencing [85], demonstrating finished bacterial gen-
omes [46] before being dismissed. Similarly to the Celera Assem-
bler, Canu is an Overlap-Layout-Consensus (OLC) based
assembler [86], specialized in the assembly of TGS long reads
tion of an hybrid de novo genome assembly approach where linkage information
romosomes. First, sequencing reads are assembled together to form contigs. Then,
ly order and orient the contigs with respect to each others and assign each contig to
e green dots indicate the labeled sequence motifs. Further ordering of the resulting
een contiguous genomic loci. In the resulting chromosome-level scaffold colored
en the scaffolds of unknown sequence are depicted as gray lines. (For interpretation
of this article.)



Box 3. Bioinformatics
The continuous advancements experienced by sequencing
technologies in the last 70 years, and the resulting exponen-
tial increase in the amount of sequencing data available, have
been paralleled by improvements in data analysis tools. In
the 1980s, the advent of information technology laid the
foundations of bioinformatics. Processor computing allowed
to automate the general principles of overlapping sequences
by similarity using dedicated computer programs [16,161],
the first genome assemblers. In 1980, to describe the data
obtained after assembly of shotgun sequencing reads, Sta-
den coined the word ‘contig’. In his words, ‘‘a contig is a set
of gel readings that are related to one another by overlap of their
sequences. [. . .] The gel readings in a contig can be summed to
form a contiguous consensus sequence and the length of this
sequence is the length of the contig” [161]. This is probably
the first outline of the general principle of Overlap-Layout-
Consensus (OLC) used to infer the original sequence from a
subset of sequences. Since brute force alignment (i.e. gener-
ate all possible alignments and pick the one most likely to be
true) was proven nearly impossible to solve even for short
sequences, several overlap algorithms were implemented,
including the Needleman–Wunsch algorithm for global align-
ments [162] and the ‘edit’ or Levenshtein distance [163].
Others were newly developed, such as those for local align-
ment [164]. Starting from 1985, the National Center for Bio-
technology Information (NCBI) released its Basic Local
Alignment Search Tool (BLAST) [165], which considerably
speeded up the process of sequence alignment. The
increased throughput of sequencers combined with the shot-
gun approach allowed to tackle more complex genomes.
Venter’s team at TIGR developed a new software, named
TIGR Assembler, that generated the whole genome of H.
Influenzae out of approximately 24,000 DNA fragments using
30 CPU hours with half a gigabyte of RAM [166]. As the com-
plexity of genomes was progressively understood, more
refined tools were made available: RepeatMasker in 1996,
to deal with repeated genomic regions [167], and GENSCAN
in 1997, to predict gene structures [168]. In 1998, Green devel-
oped Phred, an algorithm that is still widely used today,
along with two associated softwares for phred output analy-
sis, phrap and consed [169]. Phred assigns a Quality Value
(QV) score to each base called using the formula
QV = �10 * log10 (Pe) where Pe is the probability of erro-
neous base-calling (e.g. QV20 implies 99% accuracy while
QV30 implies 99.9% accuracy). Phred introduced reliable
quality metrics for base calling, providing support to auto-
mated read analyses, particularly in repeated sequences
[170].

The challenges associated with the human genome (Box
2) further fostered research in the field of genome assem-
bly to an unprecedented scale. This is especially true for
the effort led by Venter, that aimed at reconstructing the
sequence of the human genome without BAC intermedi-
ates. After the release of the human genome assemblies,
in 2002 two new online repositories were created in addi-
tion to Genbank to host human genome data, the Univer-
sity of California Santa Cruz (UCSC) Genome Browser
[171] and Ensembl [172]. The unprecedented flood of
sequencing data was barely accompanied by advancements
in bioinformatic tools to store, process, analyze and visua-
lize them. A new series of integrated open-source software
and algorithms were released, including a radically new
assembly approach based on de Bruijn graphs (DBG)
[173]. Contrary to OLC, DBG assembly is counterintuitive,
as it first chop the reads into shorter k-mers and then uses
the k-mers to form a DBG from which the genome
sequence is derived [174].

The first software using this approach was EULER in 2001 [175].
Other major milestones included short-read and vertebrate-
specific aligner BLAT [176]; the platform for integrated genome
analysis Galaxy [177]; the NCBI Short Read Archive (SRA) to
store NGS raw data (2005); the assembly algorithms ALL-
PATHS [178], Velvet [179] and SOAPdenovo [180], all based
on De Bruijn graphs; more efficient read alignment algorithms
as Bowtie [181] and BWA [182]; integrated tools for read data
management as SAMtools [183]; general algorithms for variant
discovery as GATK [184] and Freebayes [185].
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(Box 3). As FALCON, reads are error-corrected prior to the assem-
bly. Despite the considerable improvement over short reads, the
resulting assemblies were still a mixture of parental haplotypes
and repeats were often collapsed in a single sequence. To overcome
these issues associated with the presence of both parental haplo-
types in the raw reads, in 2018 a new version of the software
was made available, TrioCanu. This improved version can take
advantage of the parental information to produce fully phased hap-
lotypes [38,87]. In this approach, the paternal and maternal gen-
omes are sequenced with Illumina short-reads, and these reads
are used to ‘bin’ the long-reads of the child based on divergent
SNPs prior to the assembly, which therefore takes place indepen-
dently for the two haplotypes. Interestingly, while reference gen-
ome projects have historically selected inbred individuals to
minimize heterozygosity and simplify the assembly, in TrioCanu
assembly process a high level of heterozygosity is welcomed, as
it promotes effective read binning. One practical limitation shared
by FALCON and Canu also with other prominent TGS/long-reads
genomes assemblers, as ABruijn [88], Miniasm [89], HINGE [90]
and Marvel [44], is that computational time and costs are starting
to exceed sequencing expenses. The optimization of computational
efforts has become an active area of research and new promising de
novo genome assemblers are currently being developed, as Wtdbg2
[91], Flye [92], Peregrine [93], Shasta [94]. Generally, these new
assemblers appear faster than FALCON and Canu, however the
quality of the final genome may not necessarily be as accurate.

All genome assembly approaches and softwares have strengths
and weaknesses, and practical considerations may be applied for
choosing the appropriate approach, including the type and quality
of input reads, coverage and genome size [95].

3.4. Scaffolding of genome assemblies

For large genomes, even long reads fail to generate end-to-end
chromosome sequences, requiring linkage information to orient
and order the contigs, a process known as scaffolding. Scaffolds
comprise multiple contigs in their putative order on chromosomes,
separated by genomic regions of undetermined sequence (repre-
sented by runs of Ns). One leading single-molecule DNA technol-
ogy relevant for genome scaffolding is Bionano optical mapping,
commercialized by Bionano Genomics (BioNano). The method is
based on DNA labeling rather than sequencing and it aims at gen-
erating genetic optical maps. Optical maps were first described for
yeast in the 1990s [96]. In the early approach, DNA molecules were
stretched and fixed in agarose gel, resident restriction endonucle-
ases were activated by Mg++ addition, and the differential fluores-
cence patterns between cleaved and intact sites were assessed
using a microscope. In 2003, the technique was refined using
restriction enzymes directed at specific recognition sites. T7
exonuclease was used to open single-strand gaps at those sites
and gaps were filled with nucleotides labeled with fluorescent tags
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[97]. The current technology relies on the isolation of DNA frag-
ments >150 Kbp and staining of the filaments using restriction
enzymes recognizing specific 6–7 bp sequence motifs. DNA mole-
cules are then stretched into nanoscale channels (NanoChannels)
through progressively smaller sievers and imaged with a high-
resolution camera [98]. Information from individual DNA mole-
cules is built into consensus maps (cmaps) using the software Bio-
nano Solve. The distances between motif-specific patterns
represent the optical maps [98]. The linkage information provided
by these maps is crucial to improve the process of de novo genome
assembly [98,99], potentially identifying and resolving misassem-
blies [100–102]. Draft assemblies generated using either NGS or
TGS sequencing data alone are matched with consensus optical
maps. The overlaps allow to orient and order the contigs, resolve
chimeric joins, and estimate the length of gaps between adjacent
contigs. This produces longer scaffolds, potentially spanning entire
chromosomes [43,103] (Fig. 3). Given the improved contiguity of
hybrid genome assemblies generated using sequencing data in
combination with optical mapping, this approach has been
recently adopted by many de novo human [43,104,105], non-
human [44,106,107], and plant [108] genome assembly projects
(Fig. 1). In addition to its relevance for genome assembly, optical
mapping allows the detection of SVs exceeding the length of indi-
vidual NGS or long reads, by comparing the results to a reference
genome [109]. Moreover, optical mapping was demonstrated to
efficiently identify genome-wide methylation patterns, through
methylation-sensitive restriction enzymes [110]. Until 2018, two
enzymes were available for the staining of the DNA molecules:
Nt.BspQI, with recognition sequence GCTCTTCN^ and Nb.BssSI
with recognition sequence CACGA^G. These were both nicking
enzymes that labeled DNA molecules introducing the fluorescent
tag via a nick on one of the two DNA strands. This approach is col-
lectively referred as Nick, Label, Repair and Stain (NLRS). In 2018,
BioNano introduced the Direct Label and Stain (DLS) approach
based on the enzyme DLE-1, with recognition sequence CTTAAG
[106]. This enzyme can label the DNA without nicking it, consider-
ably increasing the average length of the molecules that are stained
and visualized. Currently, this is the only non-nicking enzyme
available, however BioNano claims to release several more over
the next few years.

Another popular scaffolding approach is Hi-C, a Chromosome
Conformation Capture (3C) based technique that generates chro-
matin proximity information for all vs all regions of the genome
[111]. This spatial information can be used to arrange contigs
and scaffolds in a linear, potentially chromosome-level, sequence
[112,186][186]. In Hi-C sample preparation, cells are embedded
in a matrix and the layers surrounding chromosomes are progres-
sively washed away, thus preserving chromosome folding informa-
tion. The DNA is then treated with a restriction enzyme and re-
ligated to form new bonds with different, but spatially close,
DNA molecules. The resulting library is sequenced with Illumina
short reads and the obtained ‘map’ of DNA interactions is used to
assign contigs and scaffolds to chromosomes [113,114] (Fig. 3).
While Hi-C currently appears to be the only approach enabling
chromosome-level scaffolding in large genomes, it is usually less
conservative than BioNano scaffolding. The unpredictable folding
of chromatin resulting in long-range interactions of distant regions
of chromosomes can lead to misassembly errors such as artificial
inversions, scaffold misplacement within the same chromosome,
or scaffold misassignment to different chromosomes [112]. These
errors are better corrected combining different techniques and
therefore several projects have started to adopt complementary
scaffolding strategies [115,116] (Fig. 1), even potentially allowing
telomere-to-telomere assembly of entire chromosomes without
gaps [48].
4. Summary and outlook

The way scientists generate genome assemblies has been and is
constantly evolving. Through the constant refinement of existing
technologies and the introduction of radically new DNA sequenc-
ing approaches and bioinformatic tools, the quality of the assem-
blies has never ceased to improve. The high-throughput capacity
introduced by NGS and the enhanced quality offered by TGS have
finally made also complex genomes accessible for whole-genome
investigation. Human genetics research, including population
genomics, genetic diseases mapping and diagnostics, personalized
medicine programs, cancer research and prenatal testing have
already benefited from the advancements in genome sequencing
and assembly of the last decade. Similarly, these approaches are
being increasingly employed in non-model organisms to under-
stand ecological and evolutionary processes. The commitment to
reference genome sequencing and assembly has now scaled up
from single-species projects to multiple-species coordinated
efforts, and projects aimed to produce high-quality genomes for
most organisms using a combination of NGS and TGS approaches
are currently underway.
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