Table 4.
Datasets | Methods | Acc (%) | Sens (%) | Spec (%) | Pre (%) | MCC (%) | AUC |
---|---|---|---|---|---|---|---|
RPI369 | RPISeq | 70.4 | 70.5 | 70.2 | 70.7 | 40.9 | 0.767 |
lncPro | 70.4 | 70.8 | 69.6 | 71.3 | 40.9 | 0.740 | |
LPI-Pred | 73.06 | 75.32 | 71.14 | 72.64 | 46.67 | 0.802 | |
RPI1807 | RPISeq | 97.3 | 96.8 | 98.4 | 96.0 | 94.6 | 0.996 |
lncPro | 96.9 | 96.5 | 98.1 | 95.5 | 93.8 | 0.994 | |
RPI-SAN | 96.1 | 93.6 | 99.9 | 91.4 | 92.4 | 0.999 | |
LPI-Pred | 97.10 | 97.89 | 96.14 | 96.91 | 94.13 | 0.994 | |
RPI488 | RPISeq | 88.0 | 92.6 | 82.2 | 93.2 | 76.2 | 0.903 |
lncPro | 87.0 | 90.0 | 82.7 | 91.0 | 74.0 | 0.901 | |
RPI-SAN | 89.7 | 94.3 | 83.7 | 95.2 | 79.3 | 0.920 | |
LPI-Pred | 89.92 | 82.75 | 96.72 | 96.32 | 80.59 | 0.911 |
The boldface indicates this measure performance is the best among the compared methods for individual dataset.