Skip to main content
. 2019 Nov 30;18:20–26. doi: 10.1016/j.csbj.2019.11.004

Table 4.

Comparing five-fold cross-validation performance of LPI-Pred and other state-of-the-art methods on three gold standard datasets.

Datasets Methods Acc (%) Sens (%) Spec (%) Pre (%) MCC (%) AUC
RPI369 RPISeq 70.4 70.5 70.2 70.7 40.9 0.767
lncPro 70.4 70.8 69.6 71.3 40.9 0.740
LPI-Pred 73.06 75.32 71.14 72.64 46.67 0.802
RPI1807 RPISeq 97.3 96.8 98.4 96.0 94.6 0.996
lncPro 96.9 96.5 98.1 95.5 93.8 0.994
RPI-SAN 96.1 93.6 99.9 91.4 92.4 0.999
LPI-Pred 97.10 97.89 96.14 96.91 94.13 0.994
RPI488 RPISeq 88.0 92.6 82.2 93.2 76.2 0.903
lncPro 87.0 90.0 82.7 91.0 74.0 0.901
RPI-SAN 89.7 94.3 83.7 95.2 79.3 0.920
LPI-Pred 89.92 82.75 96.72 96.32 80.59 0.911

The boldface indicates this measure performance is the best among the compared methods for individual dataset.