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Abstract

The use of microRNAs as biomarkers has been proposed for many diseases including the 

diagnosis of melanoma. Although hundreds of microRNAs have been identified as differentially 

expressed in melanomas as compared to benign melanocytic lesions, limited consensus has been 

achieved across studies, constraining the effective use of these potentially useful markers. In this 

study we applied a machine learning-based pipeline to a dataset consisting of genetic features, 

clinical features and next-generation microRNA sequencing from micro-dissected formalin fixed 

paraffin embedded melanomas and their adjacent benign precursor nevi. We identified patient age 

and tumor cellularity as variables that frequently confound the measured expression of potentially 

diagnostic microRNAs. By employing the ratios of microRNAs that were either enriched or 

depleted in melanoma compared to nevi as a normalization strategy, we developed a model that 

classified all available published cohorts with an area under the receiver operating characteristic 
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curve of 0.98. External validation on an independent cohort classified lesions with 81% sensitivity 

and 88% specificity, and was uninfluenced by tumor content of the sample or patient age.
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Introduction

Misdiagnosis of cutaneous melanoma is among the most significant contributors to medical 

malpractice lawsuits in the United States (Wallace et al. 2013). The advanced stages of 

melanoma are associated with five-year survival rates less than 20% and are responsible for 

over 10,000 deaths in the U.S. each year (Gershenwald et al. 2017; Key Statistics for 

Melanoma Skin Cancer). Although the disease is curable when detected early, the process of 

differentiating between malignant lesions and the more prevalent benign lesions, such as 

melanocytic nevi, is challenging. The clinical standard for diagnosing concerning lesions is 

histopathologic assessment of formalin fixed paraffin embedded (FFPE) biopsy specimens. 

However, a considerable rate of discordance in diagnoses has been established even among 

expert pathologists (Boiko et al. 1994; Brochez et al. 2002; Corona et al. 1996; Elder et al. 

2018; Elmore et al. 2017; Farmer et al. 1996; Gaudi et al. 2013; Heenan et al. 1984; 

Niebling et al. 2014; Shoo et al. 2010). A large-scale study published by Elmore and 

colleagues in 2017 reported interobserver discordance rates as high as 57–75% and 

intraobserver discordance rates as 37–65% (Elmore et al. 2017). Together, these 

observations highlight the complexity of histopathologic assessment and emphasize the need 

for quantitative molecular methods for distinguishing malignant from benign lesions to 

augment current practices.

Molecular biomarkers can provide robust, objective and quantitative measurements of 

disease state (Buchbinder and Flaherty 2016; Leachman et al. 2017; Rodriguez-Cerdeira et 

al.). One class of candidate biomarkers are small non-coding microRNAs (miRNAs). 

Discovered twenty-five years ago (Lee et al. 1993), miRNAs are appreciated as potentially 

valuable candidate biomarkers for many conditions and diseases for several reasons (Jung et 

al. 2010; Sheinerman and Umansky 2013). First, as with other transcripts, miRNAs exhibit 

tissue- and cell-specific expression patterns during mammalian development and these 

patterns are mis-regulated in disease (D’Amato et al. 2013; Kosik 2010; Parchem et al. 

2014; Reddy 2015). Second, due its relatively small size and simplicity, the microRNA 

transcriptome is more efficiently profiled with next generation sequencing than the mRNA 

transcriptome (Creighton et al. 2009). Third, the integrity of miRNAs is retained in FFPE 

samples, whereas long RNAs are most often degraded (Liu et al. 2009). Thus, if miRNA 

expression levels provided reliable insight into the progression state of a FFPE melanocytic 

neoplasm biopsy, they could assist in the diagnosis of difficult to diagnose cases where 

material is limiting.

However, despite these useful properties, few miRNA biomarkers have emerged in the 

clinical setting due to a frequent lack of reproducibility between differential expression 
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studies (Hawkes et al. 2016; Mumford et al. 2018; Nair et al. 2012; Pogribny 2018; Raya et 

al. 2012; Witwer and Halushka 2016). This poor reproducibility of mis-regulated miRNA 

signatures is exemplified in studies that have explored the use of miRNAs as biomarkers for 

melanoma (reviewed in (Jarry et al. 2014; Jayawardana et al. 2016; Margue et al. 2013; Raya 

et al. 2012)). Among the most reproducible miRNA biomarker candidates for this 

application include three enriched in benign melanocytic neoplasms (MIR211, MIR205 and 

MIR125B) and two enriched in melanomas (MIR21 and MIR150) (Latchana et al. 2016). 

However, even these miRNAs do not consistently provide predictive value across cohorts. 

Discrepancies in differential expression signatures across comparable studies have been 

attributed to a variety of causes (Mumford et al. 2018; Raya et al. 2012; Witwer and 

Halushka 2016). For example, FFPE biopsy sections routinely include normal adjacent skin, 

with the concerning melanocytic component constituting only a fraction of the biopsy. 

Sample to sample variation in the type and amount of infiltrating or adjacent non-tumor cells 

could alter the small RNA profile. Similarly, variability could arise from differences in the 

malignant content of each section – the percent of the tumor that contains malignant cells, as 

opposed to adjacent benign cells from which the melanoma arose. Alternatively, with 

histopathologic diagnosis discordance rates of over 50%, the cohorts of samples used for 

each independent study are likely assembled with different degrees of diagnostic accuracy. 

Another common explanation for poor reproducibility are biases inherent to the different 

platforms for quantifying miRNA expression levels – small RNA next generation 

sequencing, hybridization arrays, and RT-qPCR based arrays (Witwer and Halushka 2016). 

Further investigations into the causes of these discrepancies are needed, and greater 

consistency across independently derived datasets are required before miRNA expression 

can be a useful molecular diagnostic.

In this study, we sought to determine the common confounding variables that influenced 

quantification of miRNA expression from nevus and melanoma FFPE biopsies. We 

developed a score based upon miRNA expression ratios that was both uninfluenced by these 

confounding variables and predictive of malignancy in an independent validation cohort.

Results

Variation in tumor cell content of FFPE samples confounds miRNA expression analyses

To identify miRNAs that were consistently mis-regulated across independently assembled 

cohorts, we performed a meta-analysis of seven publicly available miRNA expression 

datasets. Each dataset contained both melanoma and nevus cases (Table S1). When each 

cohort was considered independently, 168 unique miRNAs were identified as differentially 

expressed between melanoma and nevus cases with an FDR cutoff of 0.05. As discussed by 

previous studies, no miRNA was differentially expressed in every cohort, and only seven of 

these miRNAs showed reproducible expression differences in at least half of the cohorts 

(Fig. 1a & Table S2) (Jayawardana et al. 2016). When cohorts were considered in aggregate 

four of the seven miRNAs – MIR211–5p, MIR125B-5p, MIR205–5p, and MIR23B-3p – 

retained significance (Fig. 1b). However, the variance in expression of these top candidates 

was considerable, such that the use of miRNA expression as a classifier for identifying 

malignant cases achieved a maximum area under (AUC) the receiver operating characteristic 
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(ROC) curve of 0.79 (Fig. 1b & S1a, MIR211–5p and MIR23B-3p). This analysis 

demonstrates that the melanoma-associated and nevus-associated miRNA signatures derived 

from profiling FFPE biopsies undergo substantial variation when sampling from 

independent cohorts.

To identify covariates that could cause these variations in differential miRNA expression 

analyses, we took advantage of a cohort of primary melanomas with intact adjacent benign 

nevi, from which they arose (Sham et al. 2018) (Fig. 1c). To control for the discordance of 

diagnosis, the progression stages for each sample were diagnostically classified by a panel of 

at least five dermatopathologists. To minimize the mixture of malignant and benign tissue, 

each section was micro-dissected. To account for variability in the amount of infiltrating 

tumor cells, we genotyped the microdissected tissue for over five hundred cancer-related 

genes and estimated the tumor cell content (referred to here as tumor cellularity) using allele 

frequencies and magnitudes of copy number changes (Shain et al. 2018). Consequently, the 

dataset was annotated with both clinical features (e.g. patient age, sex, anatomical location 

of the lesion) as well as genomic information (e.g. mutation burden, copy number variation, 

tumor cellularity) for each matched pair of nevus and melanoma regions (Fig. 1d and Table 

S3).

To investigate the influence of each genomic and clinical feature on the miRNA expression 

pattern, we conducted miRNA sequencing on fifteen of the regions from seven cases (Table 

S3). In order to first identify potential systemic confounding features, we first employed co-

expression analyses for identification of networks of miRNAs sharing similar expression 

patterns across all regions and identified three co-expression networks (Fig. S 1b & Table 

S4) that were effectively separated via Linear Discriminate Analysis (LDA) (Fig. 1e) 

(Langfelder and Horvath 2008). Each network consists of miRNAs with read counts that are 

positively correlated across all samples, regardless of level of expression. We next 

determined whether the expression patterns of these networks correlated with the clinical or 

genomic annotations of the samples, including not only diagnosis but also potentially 

confounding features, such as patient age. We summarized the miRNA expression matrix for 

each network by its first principal component and compared these to the sample covariates 

(Fig. 1f & Fig. S1c–d). Two of the networks (Network 1 and Network 3) were significantly 

correlated with a diagnosis of melanoma and were not influenced by tumor cellularity or 

other clinical features. Network 1 was also correlated with mutation burden and copy 

number variation, both measurements of genome damage that increase during progression 

from nevus to melanoma (Shain et al. 2015).

In contrast to the two melanoma-associated networks, Network 2 was positively correlated 

with tumor cellularity and, to a lesser extent, patient age. This observation suggests that 

although miRNAs within Network 2 were differentially expressed in melanoma and nevus 

samples, variation in their observed abundance may reflect the extent of contamination with 

non-tumor cells rather than different progression stages. Consistent with this interpretation, 

we observed that miRNAs known to be expressed in cultured primary human keratinocytes 

were enriched in Network 2 as would be expected if keratinocytes were a significant fraction 

of contaminating non-tumor cells (Fig. 1f, Fig. S2d). Conversely, miRNAs known to be 

expressed in cultured primary human melanocytes were enriched in Network 3 consistent 
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with changes in Network 3 reflecting melanocyte biology. Together, these data suggest that 

miRNA profiling datasets derived from micro-dissected FFPE samples can contain sufficient 

levels of contaminating non-tumor cells to influence the overall miRNA expression profile.

Contamination by non-tumor cells is expected to vary among samples dependent on their 

size, histologic type (predominantly junctional versus intradermal), and preparation (e.g. 

precision of microdissection). If not controlled for, variation in tumor cellularity is expected 

to degrade the reproducibility of miRNA signatures across studies. Indeed, miRNAs from 

Network 2 constituted up to thirty percent of the miRNAs in expression signatures reported 

from the seven previously reported datasets (Fig. 1g). This result highlights the need to 

control for tumor cellularity and patient age when identifying miRNA signatures predictive 

of melanoma diagnosis from FFPE derived samples.

Classification of nevus from melanoma samples with miRNA ratios

To identify miRNAs that are predictors of the diagnosis of a lesion, we employed a machine-

learning analytical method called Boruta to obtain an initial list of those miRNAs that were 

most important for differentiating melanoma from nevus samples across 1000 random forest 

iterations (Kursa 2014; Li et al. 2016). All miRNAs with more than five total reads were 

considered, resulting in 341 unique miRNAs. In addition, for each unique miRNA, a second 

unique artificial feature was generated through randomized re-distribution of the read counts 

across samples (Fig. S2a). These ‘shadow miRNAs” provided an equal number of negative 

control miRNAs for which to compare each experimental feature. By requiring a miRNA to 

significantly outperform all shadow miRNAs, the likelihood of false positive identification is 

reduced (Kursa and Rudnicki 2010). We conducted Boruta with the combined 682 

experimental and negative control miRNAs, ranking the importance of each for the accurate 

classification of nevus samples from melanoma samples with each iteration. We identified 

38 miRNAs that ranked higher than the maximum-performing shadow miRNA with a p-

value of less than 0.001 (Fig. S2b). To enable comparison with previous studies we also 

required that the expression of each miRNA was assessed in all published datasets (Table 

S2). The final list of feature-selected miRNAs contained two miRNAs with increased 

expression in melanomas (MIR31–5p, MIR21–5p) and four miRNAs (MIR211–5p, 

MIR125A-5p, MIR125B-5p, MIR100–5p) with decreased expression in melanomas (Fig. 

2a–b). These miRNAs are referred to as melanoma-enriched (ME) and melanoma-depleted 

(MD) miRNAs, respectively.

We then sought to determine the accuracy by which ME- and MD-miRNAs classified 

melanomas from nevi across published datasets. Similar to the miRNA signatures identified 

from the meta-analysis (Fig. 1b), classifiers trained with expression levels alone performed 

poorly, with a maximum area under the ROC curve of 0.79 (MIR211–5p, Fig. 2c). However, 

the tumor cellularity and malignant content of each sample within the external cohorts are 

unknown, but expected to be variable (Fig. 1g). Using the normalized reads from our micro-

dissected cohort, we modeled the expected observed expression of the most consistent ME-

miRNA, MIR21–5p, across a range of tumor cellularity and malignant cell content (Fig. 1d). 

Our model predicted that as tumor cellularity and/or malignant cell content dropped below 

60%, the observed expression level of MIR21–5p would cease to be a reliable indicator of 
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diagnosis (Fig. 1e). Similar results were obtained for the other feature selected miRNAs 

(Fig. S3). The use of transcript ratios has been demonstrated to both strengthen the 

prediction accuracy and simply feature-sets (Avissar et al. 2009; Reddy et al. 2015). 

Standard normalization techniques frequently consider the ratio of a candidate marker to a 

“housekeeping” transcript to control for RNA input. Our model already considers input 

normalization, but this strategy does not account for tumor cellularity. We reasoned that by 

considering the ratios of miRNAs highly expressed in melanomas to miRNAs highly 

expressed in nevi we would control for the fraction of input RNA that originated from 

melanocytic cells, as opposed to total RNA. Our model predicted that by using expression 

ratios of ME-miRNAs to MD-miRNAs, we would control for both tumor cellularity and the 

malignant content in each sample (Fig. 2e, Fig. S3).

To develop a diagnostic score using all ratios of ME-miRNAs to MD-miRNAs, we first 

divided expression levels of each of the two ME-miRNAs by each of the four MD-miRNAs, 

producing eight miRNA ratios (MIR31–5p/MIR211–5p, MIR31–5p/MIR125A-5p, MIR31–

5p/MIR125B-5p, MIR31–5p/MIR100–5p, MIR21 −5p/MIR211–5p, MIR21–5p/

MIR125A-5p, MIR21–5p/MIR125B-5p, and MIR21–5p/MIR100–5p) (Fig. 2f). Classifiers 

trained with individual ratios performed better than expression alone with area under ROC 

curves ranging from 0.71–0.84 (Fig. 2f). To consider all eight ratios together, we trained a 

series of classifiers using either the six expression values or the eight expression ratios of the 

feature-selected miRNAs using the aggregated public datasets. Crossvalidation of the final 

miRNA expression trained model resulted in an area under the ROC curve of 0.95 (Fig. 2g). 

Similarly, crossvalidation of the final miRNA Ratio Trained Model (MiRTM) resulted in an 

area under the ROC curve of 0.98 (Fig. 2h). We next sought to challenge each model with an 

external dataset representative of the range of tumor cellularity, malignant content and 

patient age encountered in standard clinical practice.

Validation of the MiRTM on randomly selected cases

Discovery phase cohorts are often selected for unambiguous and homogenous cases. By 

design, we expected the MiRTM to perform equally as well on cohorts constructed with a 

high degree of variance in tumor cellularity, malignant content and patient age. To validate 

our model on cases with greater diversity in these features, we randomly retrieved 82 

biopsied melanocytic lesions - 41 neoplasms diagnosed as nevi and 41 diagnosed as 

melanoma - from the archives of the UCSF Dermatopathology Section. All diagnoses were 

reviewed and confirmed by an independent dermatopathologist. This cohort contained a 

range of tumor cellularity and subtypes of melanocytic neoplasms (Table 1, Table S5). To 

test the robustness of our model against this noise, sections were not micro-dissected, but 

rather all tissue was harvested to obtain bulk RNA, and the abundances of the six miRNAs 

were assessed by RT-qPCR and applied to the two models (Table S6). The performance of 

the miRNA expression trained model dropped from crossvalidation to external validation, 

resulting in an area under ROC curve of 0.67 and sensitivity and specificity for the test set 

were 1.00 and 0.34, respectively (Fig. 3a). In contrast, the MiRTM performed with an area 

under the ROC curve of 0.90, and sensitivity and specificity of 0.81 and 0.88 (Fig. 3b). We 

found no correlation between the MiRTM scores and tumor cellularity, malignant content, 
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patient age, or other clinical features, suggesting that the MiRTM score was unaffected by 

these variables (Fig. 3d–e, Fig. S4).

Discussion

Numerous studies have analyzed miRNA expression at different stages of melanoma 

progression, collectively identifying over 500 miRNAs enriched in nevi or melanomas, most 

of which have not reproduced with external validation sets (Babapoor et al. 2017; Chen et al. 

2011; Hanniford et al. 2015; Jukic et al. 2010; Komina et al. 2016; Kozubek et al. 2013; 

Latchana et al. 2017; Sand et al. 2013; Satzger et al. 2012; Xu et al. 2012). Our analyses 

have refined this expansive list to eight miRNA expression ratios that reproducibly 

distinguish nevi from melanoma across independent datasets and profiling platforms.

We identified this signature by controlling two important variables, interobserver variability 

of diagnosis and variability in tumor cell content. Our strategy was first to meticulously 

assemble and annotate an initial limited-sized cohort of lesions and conduct next generation 

small RNA sequencing. We used this cohort to first perform a feature selection step to 

identify miRNAs that are predictive of diagnosis, but unaffected by other confounding 

variables. By limiting our feature set to six miRNAs, we reduced the risk of over-training 

our predictive model on our training set of 25 nevi and 57 melanomas samples. The model 

classified benign from malignant melanocytic lesions with a crossvalidation AUC of 0.95 

and an external validation AUC of 0.90 (41 nevi and 41 melanomas). The sensitivity and 

specificity of the MiRTM for external validation was 0.81 and 0.88. This performance is 

comparable to other molecular tests for distinguishing benign melanocytic nevi from 

melanomas, including chromosomal analysis by fluorescence in situ hybridization 

(sensitivity 0.72–1.00, specificity 0.90–1.00) (Ferrara and De Vanna 2016; Gerami et al. 

2010) and myPath Melanoma gene expression profiling (sensitivity 0.63–0.90, specificity 

0.88–0.93)(Clarke et al. 2017; Minca et al. 2016). The MiRTM does not perform as well as 

chromosomal analysis by array comparative genomic hybridization (aCGH, sensitivity 0.92–

0.96, specificity 0.87–1.00) or proteomic analysis by mass spectrometry imaging (sensitivity 

0.97, specificity 0.90) (Bastian et al. 2003; Lazova et al. 2012; Wang et al. 2013). However, 

assessment by the MiRTM requires only a single section of FFPE material, does not require 

microdissection, and RT-qPCR is a quick and affordable assay making this approach a 

candidate for lesions where tissue availability is limited. Future studies are required to 

determine the accuracy of the MiRTM in classifying ambiguous cases and to further 

determine whether the MiRTM is a predictor of metastasis or overall survival.

Of the six miRNAs in our signature, three (MIR211–5p, MIR21–5p, and MIR125B-5p) have 

been linked to melanoma previously, and changes in their expression validated by in situ 

hybridization (Babapoor et al. 2016; Latchana et al. 2016; Wandler et al. 2017). MIR21 is an 

established oncomir and regulates genes involved in increased proliferation and invasion 

(Satzger et al. 2012). It is upregulated in many cancers and its expression correlates with 

progression from nevi to primary melanomas and then to metastatic melanomas (Jiang et al. 

2012; Satzger et al. 2012). Conversely, MIR125B is often downregulated in cancers, 

including advanced melanomas, where its loss results in increased expression of cJUN and 

MLK3 and its gain induces senescence in melanoma cell lines (Kappelmann et al. 2013; 
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Nyholm et al. 2014; Zhang et al. 2014). MIR211 is among the most well-established 

functional miRNAs in melanocytes and is downstream of the melanocyte lineage 

transcription factor MITF (Mazar et al. 2010). It is often downregulated during melanoma 

progression and has been linked to invasion through regulation of BRN2, NFAT5 and 

TGFPR2 (Boyle et al. 2011; Levy et al. 2010). Interestingly, MIR211 expression elicits 

paradoxical cell behaviors dependent on the stage and type of melanoma. In primary human 

melanocytes and in amelanotic melanoma cell lines, MIR211 acts as a tumor suppressor 

through inhibition of invasion and proliferation (Bell et al. 2014; Levy et al. 2010; Mazar et 

al. 2010; Xu et al. 2012). However, in pigmented melanoma cell lines, MIR211 expression 

confers resistance to targeted therapy (Vitiello et al. 2018; Vitiello et al. 2017). The other 

miRNAs in the signature are less well characterized in melanocytic systems. As another 

MIR125 family member, MIR125A is expected to target a similar set of genes as MIR125B. 

MIR31 is upregulated in some cancers, but its role as an obligate oncomir is controversial as 

it is transcribed from a commonly deleted or methylated genomic region in many cancers 

(Asangani et al. 2012; Valastyan and Weinberg 2010). Similarly, MIR100 has also been 

described as both a tumor suppressor and an oncomir depending on the context (Li et al. 

2015). Given these context-specific behaviors, future studies should dissect the 

transcriptional programs affected by each of these miRNAs specifically during the transition 

of growth-restricted nevus melanocytes to early stage melanomas.

We speculate that the observed increase in classifier stability when considering expression 

ratios is due to specific expression of the MD-miRNAs in melanocytes, with little 

contribution from infiltrating or adjacent non-melanocytic cells. If true, we would expect this 

strategy to normalize to the amount of input RNA of melanocytic origin, as opposed to total 

RNA, and therefore be less influenced by changes in biopsy content. Previous reports that 

have visualized the expression patterns of MIR211, MIR125B and MIR21 in melanocytic 

lesions support this proposition, but further analyses of the expression pattern of all six 

miRNAs are required for confirmation (Babapoor et al. 2016; Wandler et al. 2017). 

Regardless of their precise functional role or their local cell of origin in the context of 

melanocytic neoplasia, our analyses demonstrate that the relative expression ratios of these 

six miRNAs can assist in distinguishing benign melanocytic nevi from malignant melanoma 

in FFPE samples.

Materials and Methods

Clinical specimens and histopathologic assessment

A feature-selection cohort was generated from 15 microdissected regions of seven cases 

selected from a larger published cohort (Shain et al. 2018). All cases were retrieved from the 

UCSF Dermatopathology archive as FFPE tissue blocks. Histopathologically distinct areas 

had been independently evaluated by a panel of 5–8 dermatopathologists for staging (Shain 

et al. 2018). A training cohort of 25 nevi and 57 melanomas was generated by combining all 

samples from previously published microRNA array profiling datasets(Chen et al. 2011; 

Jukic et al. 2010; Komina et al. 2016; Sand et al. 2013) (Meta-analysis described in 

Supplemental Methods). An external validation cohort was generated by retrieving 82 

diagnosed melanomas (41 cases) or nevi (41 cases). Cases were reevaluated by a separate 
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dermatopathologist to confirm diagnosis and obtain histopathological features, but were not 

excluded for any reason. For more detailed methods see Supplementary Methods.

RNA quantification

MicroRNA sequencing libraries were constructed with the TailorMix Small RNA Library 

Preparation Kit (SeqMatic, Freemont, CA). Sequencing was performed on the Illumina 

HiSeq2500 platform at single-end 50bp. After adaptor sequences were removed, reads were 

aligned to a human reference (hg37) with Bowtie (Langmead et al. 2009) and then small 

RNA reference groups (miRBase21) were counted. Differential expression analysis was 

performed from feature counts using DeSeq2 (Love et al. 2014) with p-values adjusted for 

multiple testing with the Benjamin-Hochberg method (p-adj). Co-expression analysis was 

conducted as previously described (Horvath and Dong 2008) (see Supplementary Methods). 

Quantitative PCR for specific miRNA detection was conducted with TaqMan Advanced 

miRNA Assays (Thermo Fisher) (see Supplemental Methods).

Training and validation of classifier

A feature subset was selected using the Boruta R package (Kursa and Rudnicki 2010) to 

determine a minimal set of miRNAs for classifier predictive accuracy from the FFPE 

miRNA-seq data set. Using log fold-change information from differential expression 

analysis, each miRNA was associated as melanoma-enriched (ME) or melanoma-depleted 

(MD) and miRNA ratios were created from each combination of the 2 ME-miRNAs 

(MIR31–5p and MIR21–5p) and 4 MD-miRNAs (MIR211–5p, MIR125A-5p, 125B-5p, 

MIR100–5p). The feature subset determined from our feature selection set was then used to 

train several classifiers on the selected combined outside published cohort (Table S1) using 

this transformed (ratio) or not transformed (expression) minimal signature set. Performance 

was determined by 5-fold repeated cross-validation over 100 repeats with the top model 

from each built using a random forest model used to create a final miRNA ratio trained 

model (MiRTM) or expression model. These models were then used to classify each case in 

our validation cohort from ratio or expression transformed data with sensitivities and 

specificities determined using the Youden index and overall performance visualized by the 

area under a ROC. More details are described in Supplementary Methods.

Statistical Analysis

Statistical significance was set to 0.05 with p-values adjusted for multiple testing with the 

Benjamin-Hochberg method. Pearson correlation coefficients were obtained between all 

continuous features with the equivalent point biserial correlation coefficient for binary 

variables. Correlation matrices were plotted with the corrplot R Package and correlation 

plots with the ggpubr R package with 95% confidence intervals calculated for the curves. 

Sensitivities and specificities were calculated from classification models built using the caret 

R package. ROC curves were generated using the pROC R package. Confidence intervals 

(CI) were calculated from the 95% CI of 2000 bootstrap replicates for sensitivity and 

specificity or the ‘Delong’ method for AUCs using pROC R package. All data was 

processed in R (3.3.2)
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Figure 1: Tumor cellularity and age confound miRNA profiling of melanoma samples
a) Differential miRNA expression signatures between nevi and melanoma from 7 studies 

(Table S1–2). b) Normalized expression of common differentially expressed miRNAs. AUC 

of classification using each microRNA in parenthesis. c) Micro-dissected melanomas with 

adjacent precursor nevus regions (scale bars, black = 4mm, grey = 300μm). d) Features 

obtained for each region using targeted exon sequencing (genetic features) or the pathology 

requisition form (clinical features). Potentially confounding features (red) and target features 

(green) are highlighted. e) Scatter plot of expressed miRNAs separated by LDA trained on 

three coexpression networks (blue, orange, and green). F) Correlation between miRNA 

coexpression networks and features from (d). p values calculated from correlation 

coefficient. g) Percent of differentially expressed miRNAs from (a) in Network 2.
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Figure 2: MicroRNA ratio-trained model classifies melanocytic lesions
a) MiRNAs that classify micro-dissected sections identified by Boruta feature selection (FS) 

compared to shadow max (X) and mean (M) features. b) Normalized miRNA-Seq counts 

from micro-dissected regions. Boxes indicate mean, first and third quartiles. c) Normalized 

expression of FS-miRNAs in published studies. AUC of classification using each miRNA in 

parenthesis. d) Model of the expected observed expression of MIR21–5p with variation in 

tumor content compared to expected observed expression from pure nevus samples (purple 

box). e) Heatplot of p values when comparing expected observed MIR21–5p expression 
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(left) and expected observed MIR21–5p:MIR2n-5p ratio (right) of melanoma samples with 

variation in tumor content to nevus. f) ME-miRNA:MD-miRNA ratios from published 

studies. AUC of classification using each ratio in parenthesis. g-h) ROC curves for cross-

validation of miRNA expression (g) and ratio (h) classification models trained on aggregate 

published studies. Naïve Bayes (NB), Random Forest (RF), Logistic Regression (GLM).
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Figure 3: MiRTM validation
a-b) ROC curve for external validation cohort using model trained with miRNA expression 

(a) or miRNA ratios (b, MiRTM) from the combined published cohort with the random 

forest classifier. c-e) Correlation of MiRTM score with percent tumor cell content (c), 

malignant content (d) or age (e). 95% CI is shown in blue.
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Table 1:

Sample information for unfiltered cohort

Features Melanoma Nevus

n(%) n(%)

Totals 41 (100) 41 (100)

Age

<30 0 (0) 6 (15)

30–60 21 (51) 28 (68)

>60 20 (49) 6 (15)

Stage

pT1a/b 35 (85) -

pT2a/b 3 (7) -

pT3–4 a/b 2 (5) -

Melanoma Subtype

SSM 33 (80) -

Nodular 4 (10) -

NoS 3 (7) -

Nevus Subtypes

Congenital - 15 (37)

Compound - 32 (78)

Lentiginous - 26 (63)

Dysplastic - 7(17)

Percent Tumor Cell

<40 13 (32) 21 (51)

40–70 19 (46) 15 (37)

>70 13 (32) 5 (12)

Percent Melanoma vs Nevus

<80 3 (7) -

80–100 10 (24) -

100 28 (69) -
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