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Peroxisome Proliferator-Activated Receptors and
Their Agonists in Nonalcoholic Fatty Liver Disease
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Nonalcoholic fatty liver disease (NAFLD) is one of themost common liver diseases worldwide. In addition to the
liver-related morbidity and mortality, NAFLD is now also associated with various extrahepatic diseases. Patho-
genesis of NAFLD is multifactorial with limited pharmacotherapy options for the treatment of patients with
NAFLD. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that
are involved in the transcriptional regulation of lipid metabolism, glucose homeostasis, energy balance, inflam-
mation, and atherosclerosis. PPAR agonists are attractive options for treatment of NAFLD as they can act at mul-
tiple targets involved in the pathogenesis of NAFLD. We reviewed the available literature on the
pathophysiological role of PPARs and use of PPAR agonists in the treatment of NAFLD. Original studies and
review articles available on PubMed regarding the role of PPARs in the pathogenesis and utility of
PPAR agonists in the treatment of NAFLD were included in this review article. ClinicalTrials.gov and Clinical
Trials Registry-India sites were searched for ongoing studies on saroglitazar. The available literature suggests
that PPARs play an important role in the pathogenesis of NAFLD. Use of PPAR gamma agonists is associated
with histological improvement in NAFLD. Dual PPAR agonists with no or minimal PPAR gamma activity are
being explored in the treatment of NAFLD. Because of the pathophysiological role of PPARs in NAFLD,
PPAR agonists are attractive options for the treatment of patients with NAFLD. Dual PPAR agonists without sig-
nificant gamma activity appear promising for the treatment of NAFLD. ( J CLIN EXP HEPATOL 2019;9:731–739)
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Peroxisome proliferator-activated receptors (PPARs)
are a ligand-activated transcription factor
belonging to a nuclear receptor subfamily that is

involved in the transcriptional regulation of lipid meta-
bolism, glucose homeostasis, energy balance, inflamma-
tion, and atherosclerosis. There are three PPAR isoforms,
alpha (a), beta (b)/delta (d), and gamma (g), which are
differentially expressed in various tissues.1,2 PPARa is
expressed ubiquitously but is largely present in the liver.
PPARb/d is expressed mainly in skeletal muscles and to a
lesser degree in adipose tissue and skin. PPARg is highly
expressed in adipose tissue (Table 1).3–8
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Free fatty acids (FAs), eicosanoids, and various complex
lipids are considered endogenous PPAR ligands. Exoge-
nous ligands are environmental and pharmaceutical mole-
cules that can activate various PPAR family receptors to
varying degrees.6–9 PPARs form a heterodimer with the
retinoid X receptor (RXR) after binding to the ligand and
bind to response elements that regulate the expression of
genes encoding proteins involved in beta oxidation, FA
uptake, adipogenesis, and adipocyte differentiation.3,10–12

PPAR ligands have emerged as potential therapeutics for
nonalcoholic fatty liver disease (NAFLD) (Table 1).

NAFLD has emerged as the most common liver disease
in the world, including Asia Pacific, and is responsible for
significant liver disease burden.13,14 The spectrum of
NAFLD ranges from nonalcoholic fatty liver to
nonalcoholic steatohepatitis (NASH), which has the
propensity to progress on to cirrhosis of the liver and
hepatocellular carcinoma.15 NAFLD is characterized by
presence of insulin resistance, dyslipidemia, and a proin-
flammatory state. The mainstay of current treatment of
NAFLD is weight loss by lifestyle modification, which is
difficult to achieve and sustain for most of the patients.
There are limited pharmacotherapy options, and the focus
of treatment has largely been on patients with progressive
NASH.15 PPARs affect glucose homeostasis (insulin-sensi-
tizing properties), inflammation, and atherogenesis and
control dyslipidemia. Thus, these agents should act at
vier B.V. All rights reserved.
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Table 1 Types and Actions of PPARs (Based on Grygiel-G�orniak et al3, Pawlak et al4, Tailleux et al5, Corton6, Fisher et al7, and
Fisher et al8).

Type Tissue distributiona Gene targets Natural ligand Synthetic agonists Effect

PPARa Liver
Muscle
Heart
Kidney

B oxidation
Fatty acid transport protein
Fatty acid translocase
Lipoprotein lipase
Apolipoprotein A-I and A-II
Sterol 12-hydroxylase

Unsaturated fatty acids
Leukotriene B4
8-Hydroxyeicosatetraenoic acid

Gemfibrozil
Fenofibrate
Clofibrate

Fatty acid oxidation
Anti-inflammatory

PPARb/
d

Ubiquitous, muscle,
gastrointestinal, adipose
tissue
Macrophages
Heart

Genes involved in lipid uptake,
metabolism, and efflux (repressed
by PPARs)

Unsaturated fatty acids
Carbaprostacyclin
Components of VLDL

GW501516
GW0742
MBX-8025

Glucose
homeostasis, insulin
sensitivity

PPARg Adipose tissue
Liver, kidney, intestine

Fatty acid–binding protein (aP2)
Fatty acid transport protein
Fatty acid translocase

Unsaturated fatty acids, 15-
hydroxyeicosatetraenoic acid, 9-
and 13- hydroxyoctadecadienoic
acid, 15-deoxy-12,14-
prostaglandin J2, prostaglandin
PGJ2

Thiazolidinediones Adipogenesis
Insulin sensitization,
glucose homeostasis
Fatty acid oxidation

PPAR, peroxisome proliferator-activated receptor; VLDL, very low-density lipoprotein.
bAll tissues not shown.
aTissues in bold fonts indicate main tissue expression.
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multiple levels in NAFLD pathogenesis, whichmakes them
an attractive target for drug development.
PPARa AND ITS AGONISTS

PPARa is expressed in many mammalian cells and tissues
such as the liver, kidney, heart, muscle, adipose tissue,
and others including immune cells (e.g., macrophages).16

PPARa plays a role in multiple regulatory functions. In
the liver, it plays a crucial role in FA oxidation, which pro-
vides energy for peripheral tissues, and has a potential role
in the oxidant/antioxidant pathway.17 PPARa also has
anti-inflammatory effects through complex regulation of
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB).18 The activation of PPARa occurs after
dimerization with the RXR, resulting in formation of a
multiprotein complex with protein coactivators. After acti-
vation, PPARa binds to responsive elements in DNA, re-
sulting in the transcription of various anti-inflammatory
proteins, such as the kB-a inhibitor.19 Carnitine palmitoyl-
transferase 1 (CPT-1) is a pivotal enzyme that allows the FA
to go through the inner mitochondrial membrane and
reach the mitochondrial matrix for further metabolism.20

Reduction of PPARa expression in the liver causes impair-
ment of the transcription of its target gene CPT-1, and
excessive FAs tend to accumulate in the form of triglycer-
ides.21,22

PPARa acts as a nutritional sensor, which allows adap-
tation of the rates of FA oxidation, lipogenesis, and ketone
body synthesis, in response to feeding and fasting.23 Dur-
ing excessive dietary intake of lipids, hepatic PPARa expres-
sion decreases.24,25 Studies in mice with genetic deletion of
732 © 2019 Indian National Associa
PPARa (PPARa�/�) and high-fat diet resulted in
accumulation of more hepatic triglycerides with a
significantly higher NAFLD activity score (NAS)
compared with wild-type (WT) controls.26,27 Mice with
the PPARa gene knockout, fed with a high-fat diet, also
showed increased markers of oxidative stress,
inflammation, and cell death.28

Natural agonists of PPARs include FAs, eicosanoids,
and phospholipids derived from cellular FA metabolism
or from dietary lipids. The synthetic ligands include fi-
brates, thiazolidinediones (TZDs), glitazars, elafibranor,
and several others.29 In the mice model, the PPARa
agonist Wy-14643 prevented methionine and choline defi-
cient (MCD) diet-induced hepatic triglyceride accumula-
tion in WT mice, but it had no effect on PPARa�/�
mice.30

Fibrates are considered PPARa agonists, although less
potent than the PPARa agonist Wy-14643. Several studies
have shown improvement of biochemical or histological
parameters with fibrates in patients with NAFLD.31–33

Fibrates, however, have limited clinical efficacy because
they are weak PPARa agonists and have significant
adverse events. Fernandez-Miranda et al used 200 mg/day
fenofibrate for 48 weeks in a series of 16 patients with
NAFLD. The authors noted a significant decrease in levels
of triglycerides, glucose, and gamma-glutamyl
transpeptidase and proportion of patients with raised
transaminases or metabolic syndrome and a trend of
decreasing insulin resistance. The repeat biopsy at the
end of the study showed decreased ballooning, but other
histologic parameters did not improve significantly.31 El-
Haggar et al compared fenofibrate with fenofibrate plus
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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pentoxifylline for 24 weeks. The addition of pentoxifylline
to fenofibrate did not improve lipid parameters, but a
beneficial effect on indirect markers of hepatic fibrosis,
inflammation, insulin resistance, and liver stiffness was
present.33 Laurin et al34 compared clofibrate with urso-
deoxycholic acid in a 1-year study. The authors could not
find any advantage of clofibrate in patients with NAFLD.
Newer selective PPARa-specific agonists, known as selec-
tive PPARamodulators, are in different phases of develop-
ment.35,36
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PPARb/d AND ITS AGONISTS

PPARb/d is the least studied among all the PPAR isotypes,
although it has significant expression in tissues controlling
lipid metabolism, such as adipocytes, heart, skeletal mus-
cle, liver, and macrophages.37 In the liver, PPARb/d is
well expressed in hepatocytes but is also expressed in
Kupffer cells and hepatic stellate cells, suggesting a poten-
tial role in inflammation and fibrosis.38 The PPARb/
d agonist, GW501516, has been shown to ameliorate
obesity and insulin resistance in rats.39 In a small 2-week
pilot trial on six subjects, it was found by magnetic reso-
nance imaging that GW501516 resulted in reduction of
liver fat along with reduction in serum triglycerides and
low-density lipoprotein cholesterol.40 However, clinical
development of GW501516 was abandoned owing to
development of cancer in preclinical models.41 Another
PPARb/d agonist, GW0742, improved insulin signaling
and reduced hepatic steatosis in a rat model.42

In a study using GW0742, the activation of PPARb/
d was found to inhibit CCl4-induced liver toxicity through
the PPARb/d-dependent downregulation of proinflamma-
tory signaling through interactions between PPARb/d and
NF-kB.43 A novel PPARb/d agonist, MBX-8025, was evalu-
ated in a randomized, double-blind, placebo-controlled
study. The study included overweight subjects with dyslipi-
demia and found that treatment with MBX-8025 (seladel-
par) resulted in favorable lipid profiles and decreased liver
enzymes.44 In a randomized study of MBX-8025 versus
vehicle (1%methylcellulose), MBX-8025 normalized hyper-
glycemia, hyperinsulinemia, and glucose disposal in foz/
foz mice. MBX-8025 reduced alanine aminotransferase
and normalized serum lipids. There was significantly less
steatosis, inflammation, ballooning, apoptosis, and
fibrosis in the MBX-8025 arm.45

At this time, data regarding effectiveness of PPARb/d in
treatment of NAFLD are limited to derive any conclusion.
PPARg AND ITS AGONISTS

PPARg is most highly expressed in adipose tissue, where it
serves an important role in the regulation of adipocyte dif-
ferentiation, adipogenesis, and lipid metabolism.46 In an
animal model of NASH, Zhong and Liu47 showed that
Journal of Clinical and Experimental Hepatology | November–December 201
the activation of PPARg regulates the polarization of the
macrophages to M2 subtype. Kupffer cells have proinflam-
matory (M1) and anti-inflammatory (M2) subtypes; thus,
change toward the M2 subtype may prevent development
of NAFLD.47

TZDs are the most widely investigated PPARg agonists.
TZDs represent a class of clinically used insulin-sensitizing
drugs, which currently include rosiglitazone and pioglita-
zone. TZDs promote the uptake and storage of FAs in ad-
ipose tissue, increasing adipose tissue mass while sparing
the skeletal muscle and the liver.48 In an animal model of
NASH induced with a choline–methionine–deficient diet,
rosiglitazone prevented the development of NASH.49 In
another animal model, Deng et al50 demonstrated that pio-
glitazone has anti-inflammatory and antifibrotic effects by
repressing the expression level of platelet-derived growth
factor and tissue inhibitor of metalloproteinase-2.

Caldwell et al reported data of troglitazone treatment in
10 female patients with histological NASH including 3
with compensated cirrhosis. Troglitazone was given for
#6 months. A repeat biopsy in responders (normal alanine
aminotransferase (ALT) at the end of treatment) showed
persistence of NASH in all; four patients had one-point
improvement of necroinflammation.51 Troglitazone was
associated with serious hepatotoxicity and was banned
later.52 Ratziu et al53 studied the role of rosiglitazone in a
randomized controlled trial (RCT) called the FLIRT trial.
Thirty-two patients on rosiglitazone were compared with
31 patients on placebo. The rosiglitazone arm had
improved steatosis (47% vs 16%) and transminases (38%
vs 7%) at the end of 1 year as compared with the placebo
arm. There was no improvement in fibrosis and the
NAFLD activity score. Weight gain happened significantly
in the rosiglitazone arm, and dose reduction/discontinua-
tion happened in some patients owing to painful swollen
legs.53

In the PIVENS trial involving patients with NASH ran-
domized to receive pioglitazone, vitamin E, or a placebo for
96 weeks, pioglitazone demonstrated a reduction in hepat-
ic steatosis, lobular inflammation, and hepatic enzymes
aspartate aminotransferase (AST) and ALT.54 A meta-
analysis evaluated randomized placebo-controlled trials
using TZDs in the treatment of patients with NASH. In
the identified four high-quality randomized trials, treat-
ment with TZDs resulted in significant decrease in serum
ALT along with improvement in steatosis, inflammation,
and hepatocyte ballooning, but the change in fibrosis
was not statistically significant.55 But when three studies
evaluating the effectiveness of pioglitazone were included,
the improvement in fibrosis became statistically signifi-
cant, suggesting that pioglitazone has superior effects on
reversing hepatic fibrosis compared with rosiglitazone.55

The use of PPARg agonists is associated with pedal
edema, weight gain, cardiac adverse events, and risk of
bladder cancer. A recent meta-analysis of 26 studies
9 | Vol. 9 | No. 6 | 731–739 733



Table 2 Summary of Studies of PPAR Agonists in NAFLD.

Author N, treatment duration Results

Biochemical response Histological response

Fernandez-Miranda et al31 16, fenofibrate for 48 weeks, no
comparative group

Significant decrease in triglyceride,
glucose, liver enzymes, MS

Decreased ballooning, grade
steatosis, inflammation/fibrosis—
no change

Laurin et al34 16 clofibrate arm, 24 UDCA arm, 1
year

No change in the clofibrate arm
other than decreased ALP

No change in the clofibrate arm

Neuschwander-Tetri et al60 N = 30, 22 had paired biopsies,
rosiglitazone for 48 weeks, no
comparative group

Decreased AST, ALT, and GGT Improved steatosis and ballooning,
weight gain occurred in 67% of
patients, and the median weight
increase was 7.3%. Within 6
months of completing treatment,
liver enzyme levels had increased to
near-pretreatment levels

Ratziu et al53 RCT, 32 rosiglitazone
31 placebo

Normalized transaminase levels
(38% vs 7%, P = .005)

Improved steatosis (47% vs 16%;
P = .014), although only half of the
patients responded, no change of
other histologic parameters, weight
gain in rosiglitazone

Torres et al61 RCT, n = 137, rosiglitazone and
metformin versus rosiglitazone and
losartan versus rosiglitazone alone,
48 weeks

Decreased transaminases in all
groups

108 completed the study, overall
improvement of all histologic
parameters, no added benefit of
metformin (did not prevent weight
gain) or losartan

Belfort et al62 RCT, 6 months of low-calorie diet
with pioglitazone (n = 26) or diet
and placebo (n = 21)

Decreased transaminases in
pioglitazone arm

Improved steatosis, inflammation,
and ballooning, no change of
fibrosis, weight gain despite low-
calorie diet in the pioglitazone arm

Aithal et al63 RCT, 12 months of diet, exercise,
and either placebo or pioglitazone,
30 in placebo and 31 in the
pioglitazone arm had paired
biopsies

Improvement of ALT and GGT Hepatocellular injury (P = .005),
Mallory–Denk bodies (P = .004),
and fibrosis (P = .05) were reduced
in patients treated with
pioglitazone, weight gain

Sanyal et al54 RCT, pioglitazone (n = 80), vitamin
E (n = 83), placebo (n = 84), 96
weeks

Improvement of transaminases in
the vitamin E and pioglitazone arm

Improvement in NASH as compared
with placebo (vitamin E, P = .001),
with (pioglitazone P = .04), both
vitamin E and pioglitazone
associated with significant
reductions in steatosis, lobular
inflammation. Improvement in
fibrosis, weight gain in pioglitazone

Cusi et al64 RCT, 18 months, followed by an 18-
month open-label phase with
pioglitazone (n = 50) or placebo
(n = 51)

More normalization in the
pioglitazome arm

Pioglitazone is associated with a
better NAS reduction and resolution
of NASH, steatosis, inflammation,
ballooning, no improvement in
fibrosis, weight gain

Ratziu et al68 Elafibranor 120 mg, elafibranor
80 mg, and placebo

Liver enzymes, lipids, glucose
profiles, and markers of systemic
inflammation significantly reduced
in the elafibranor 120-mg group

Elafibranor 120 mg superior to
placebo, NASH resolution without
worsening of fibrosis in 19% versus
12% in the placebo group
(P = .045), based on a post hoc
analysis for the modified definition

PPAR, peroxisome proliferator-activated receptor; NAFLD, nonalcoholic fatty liver disease; RCT, randomized controlled trial; NASH, nonalcoholic stea-
tohepatitis; NAS, NAFLD activity score; MS, metabolic syndrome; AST, aspartate aminotransferase; ALT, alanine aminotransferase; UDCA, Ursodeox-
ycholic Acid; GGT, gamma-glutamyl transferase.
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including 15,332 patients with type 2 diabetes mellitus
(T2DM) showed that the odds ratio (OR) for edema with
TZDs was 2.26 (95% confidence interval [CI], 2.02–
2.53).55 TZDs are also associated with risk of cardiac
adverse events. A meta-analysis of 3 RCTs showed an OR
of 2.1, and 4 observation studies showed an OR of 1.55
for heart failure with TZDs.56 Rosiglitazone is associated
with more cardiac adverse events than pioglitazone.57

The use of pioglitazone was found to be associated with
risk of bladder cancer in RCTs (OR, 1.84; 95% CI, 0.99–
3.42) and in observational studies (OR, 1.13; 95% CI,
1.03–1.25). The risk of bladder cancer with pioglitazone
increased in a dose- and time-dependent manner.58

Table 2 summarizes histology-based studies of PPAR
agonists in patients with NAFLD.31,34,50–64,68

The mitochondrial target of TZD modulators bind and
modulate activity of the mitochondrial pyruvate carrier
(MPC). MSDC-0602 is the next-generation TZD, which
has diminished ability to activate PPARg.65 Improved insu-
lin sensitivity by these compounds decreases lipolysis from
adipose tissue and de novo lipogenesis. In addition, block-
ing pyruvate entry into the mitochondria should
normalize the tricarboxylic acid cycle, which is increased
in NAFLD. This normalization of the tricarboxylic acid cy-
cle leads to decreased reactive oxygen species and cell dam-
age signals, which should reduce inflammation and stellate
cell activation.66 Genetic (selective knockout) or pharma-
cologic targeting of the MPC by MSDC-0602K has been
shown to increase insulin sensitivity and to prevent or
reverse NASH pathology in a mouse model.67
DUAL AND PAN-PPAR AGONISTS

Combining the role of PPARs can result inmultiple actions
useful to treat NAFLD. If a compound holds desired po-
tency for different PPARs, it can be maximally beneficial
with minimal undesired effects. Thus, dual or pan-PPAR
agonists can produce antihyperlipidemic (PPARa) effect
with insulin sensitization (PPARg) and increase b-oxida-
tion in the liver and skeletal muscle (a and b/d) while
limiting side effects of singular agonists such as weight
gain/cardiac events with TZDs or improving limited clin-
ical efficacy of fibrates. However, development of several
agents has been terminated owing to safety concerns,
and only few are in later phases of development.29

a) PPARa/d and their agonists

In recent years, agonists of PPARs have arisen with affin-
ity for binding to multiple isoforms owing to relatively
nonselective ligand-binding pockets, known as dual ago-
nists, and represent interesting therapeutic targets. A novel
dual PPARa/d agonist, GFT505, also known as elafibranor,
has been studied in treating NASH. Using various rodent
models of NASH, treatment with GFT505 (elafibranor)
Journal of Clinical and Experimental Hepatology | November–December 201
demonstrated improvement in histologic features of
NASH and decreased hepatic triglyceride content, along
with reduced expression of inflammatory cytokines and
fibrosis markers.69

Elafibranor is an agonist of PPARa and PPARd. Thus, it
works on insulin sensitivity, glucose homeostasis, and lipid
metabolism. The RCT by Ratziu et al68 (GOLDEN trial)
included the following arms: elafibranor 80 mg (n = 93),
elafibranor 120 mg (n = 91), and placebo (n = 92). The
study was conducted in Europe and the United States,
and the study duration was 52 weeks. The primary
outcome was resolution of NASH without worsening of
fibrosis. While there was no difference between elafibranor
and placebo groups in the primary outcome in intention-
to-treat analysis, NASH resolved without worsening of
fibrosis in a higher proportion of patients in the 120-mg
elafibranor group (19%) versus the placebo group (12%,
P = .045), based on a post hoc analysis for the modified defi-
nition. The modified definition defined resolution of
NASH as disappearance of ballooning with either disap-
pearance of lobular inflammation or persistence of mild
inflammation only. Thus, the modified target was patho-
logic diagnosis of steatosis alone or steatosis with mild
inflammation only. The authors found improvement in
the histological score after removing patients with mild
steatohepatitis from analysis. The outcomes in the 80-mg
dose arm were not better than those of placebo. In addi-
tion, liver enzymes, lipids, glucose profiles, and markers
of systemic inflammation were significantly reduced in
the elafibranor 120-mg group versus the placebo group.
Elafibranor was well tolerated and did not result in weight
gain or cardiac events, the authors noted a mild and revers-
ible increase in serum creatinine (4.31� 1.19 mmol/L).68 A
phase III study (RESOLVE-IT) is presently recruiting a
large number of patients with NASH to study the efficacy
of elafibranor in comparison with placebo (ClinicalTrials.
gov. NCT02704403).

b) PPARa/g and their agonists

Compounds working as PPARa/g agonists are called
glitazars. These compounds improve dyslipidemia, which
is a-action, and glycemic parameters/insulin sensitivity,
which is g-action. Thus, theoretically, these compounds
address 2 important issues of NAFLD, dyslipidemia and
insulin resistance and thus are the area of interest. Several
glitazars were initially tried, but their clinical development
was stopped later owing to adverse events. Tesaglitazar was
the first dual PPARa/g agonist; a large dose was needed
owing to weak action, and clinical development was
stopped owing to nephrotoxicity.70Muraglitazar produced
better lipid changes, but increase in cardiovascular events
was observed.71,72 AleCardio was a phase 3 multicenter
randomized placebo-controlled trial that was conducted
across 26 countries. A total of 7226 patients hospitalized
for myocardial infarction or unstable angina with type 2
9 | Vol. 9 | No. 6 | 731–739 735
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diabetes received either aleglitazar 150 mg or placebo. The
trial was terminated after an interim analysis owing to
serious adverse events that included statistically significant
gastrointestinal hemorrhages and renal dysfunction in the
aleglitazar arm.73 Most of these glitazar compounds had
significant PPARg action (than PPARa), which contributes
to adverse events. Saroglitazar is the first glitazar class com-
pound approved as a therapeutic agent. Saroglitazar has a
different structure from glitazones, other glitazars, and fi-
brates. It is an aryl alkoxy propionic acid class molecule,
which contains a unique pyrol moiety and lacks the glita-
zone ring. Saroglitazar was designed as a dual PPAR
agonist having predominant PPARa effect with moderate
PPARg effect; thus, it provides antilipid effect with insulin
sensitization, without being associated with typical glita-
zone side effects.74,75 Although the data on the use of
saroglitazar in NAFLD are still evolving, based on the
results of various studies (PRESSV, VI), Drug Controller
General of India has already approved use of saroglitazar
for patients with diabetic dyslipidemia, uncontrolled by
statins.76–79

In NAFLD, saroglitazar has been shown to be more
effective for reduction of the histological NAS than piogli-
tazone and fenofibrate in a mice model.80 C57BL/6 mice
that were maintained on choline-deficient, L-amino acid–
defined, high-fat diet for 8 weeks were treated with sarogli-
tazar (3 mg/kg), fenofibrate (100 mg/kg), pioglitazone
(30 mg/kg), or vehicle for 12 weeks. Saroglitazar reduced
hepatic steatosis, inflammation, and ballooning and pre-
vented development of fibrosis. It also reduced serum
ALT and AST levels and expression of inflammatory and
fibrosis biomarkers. Pioglitazone and fenofibrate did not
show any improvement in steatosis but partially improved
inflammation and liver function. In the same study, antifi-
brotic effect of saroglitazar (4 mg/kg) was also observed in
the carbon tetrachloride–induced fibrosis model.80 Use of
saroglitazar in patients with type 2 diabetes mellitus and
dyslipidemia or those with type 2 diabetes mellitus and
without dyslipidemia has been shown to improve serum
transaminase levels.81,82

A phase II study has also evaluated the improvement in
serum ALT levels with saroglitazar in patients with biopsy-
proven NASH (CTRI/2010/091/000108).83 Another phase
II study in the USA is evaluating the efficacy of saroglitazar
in improving serum liver enzymes and other serum bio-
markers of inflammation and fibrosis with improvement
in hepatic steatosis on MR imaging-estimated proton den-
sity fat fraction (MR-PDFF) in patients with NAFLD/
NASH diagnosed on imaging or histology
(NCT03061721).84 In addition, a recent phase III study
in India is evaluating the histological efficacy of saroglita-
zar in comparison with placebo in patients with biopsy-
proven NASH (CTRI/2015/10/006236).85 The results of
these studies would clarify the role of saroglitazar in pa-
tients with NAFLD.
736 © 2019 Indian National Associa
c) Pan-PPAR agonists

Several pan-PPAR agonists are in various phases of
development, with many studies reported in animal
models.26,86–90 Bezafibrate has predominantly alpha
action and has been shown to improve glycated
hemoglobin in patients with diabetes mellitus.91,92

Bezafibrate has also been shown to improve atherogenic
dyslipidemia and insulin resistance without causing
overweight.91–93 Although human studies are lacking,
bezafibrate has been shown to improve NAFLD and
diabetes in mice models.94,95 Lanifibranor (IV1337) is
another pan-PPAR agonist, which in addition to
improving insulin sensitivity, has been shown to have anti-
lipid, anti-inflammatory, and antifibrosis properties.96–98

In animal models, lanifibranor has been shown to
improve insulin sensitivity and decrease hepatic steatosis,
inflammation, ballooning, and fibrosis in liver tissue.96

An ongoing study is evaluating the efficacy of lanifibranor
in patients with diabetes and NAFLD (ClinicalTrials.gov:
NCT03459079).

PPAR agonists are attractive targets for the treatment of
patients with NAFLD, given multiple actions of the PPAR
on lipid metabolism, oxidation of FAs, glucose homeosta-
sis, and inflammation. This becomes all the more impor-
tant in absence of any recommended pharmacotherapy
for these patients. Of all the PPAR agonists, the PPARg
agonist pioglitazone is the most extensively evaluated
and has been found to be useful in patients with NAFLD
but is limited by its side effect profile. Emerging data of
dual PPAR agonists and pan-PPAR agonists
appear encouraging and may hold promise for patients
with NAFLD.
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