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ABSTRACT

Hypertension is a leading cause of mortality in the USA. While simple tools such as the sphygmomanometer are
widely used to diagnose hypertension, they could not predict the disease before its onset. Clinical studies suggest
that alterations in the structure of human brains’ cerebrovasculature start to develop years before the onset of
hypertension. In this research, we present a novel computer-aided diagnosis (CAD) system for the early detection
of hypertension. The proposed CAD system analyzes magnetic resonance angiography (MRA) data of human
brains to detect and track the cerebral vascular alterations and this is achieved using the following steps: i) MRA
data are preprocessed to eliminate noise effects, correct the bias field effect, reduce the contrast inhomogeneity
using the generalized Gauss-Markov random field (GGMRF) model, and normalize the MRA data, ii) the cerebral
vascular tree of each MRA volume is segmented using a 3-D convolutional neural network (3D-CNN), iii) cerebral
features in terms of diameters and tortuosity of blood vessels are estimated and used to construct feature vectors,
iv) feature vectors are then used to train and test various artificial neural networks to classify data into two
classes; normal and hypertensive. A balanced data set of 66 subjects were used to test the CAD system.
Experimental results reported a classification accuracy of 90.9% which supports the efficacy of the CAD system
components to accurately model and discriminate between normal and hypertensive subjects. Clinicians would
benefit from the proposed CAD system to detect and track cerebral vascular alterations over time for people with
high potential of developing hypertension and to prepare appropriate treatment plans to mitigate adverse events.

1. Introduction

cerebral perfusion pressure changes may be significant factors in the
development of hypertension (Warnert et al., 2016). Their study sup-

One in every three adults in the USA are afflicted with hypertension.
Clinical studies have suggested that hypertension damages and changes
the structure of the human brain vasculature (Iadecola and Davisson,
2008; Soler et al., 1998). Change in cerebral structures contributes to
the development of strokes, dementia, brain lesions, cognitive impair-
ment, and ischemic cerebral injury (Iadecola and Davisson, 2008).
Clinical hypotheses suggest that cerebral alterations start to develop
before the symptomatic onset of hypertension. In particular, there are
suggestions that there is a correlation between alterations in diameters
and tortuosity of cerebral blood vessels and the development of hy-
pertension. In 2016, Warnert et al., published a study that is considered
the first confirmation for the hypothesis that cerebral vasculature and
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ported the higher prevalence of congenital cerebrovascular changes in
hypertensive subjects than normotensive subjects. These cerebral al-
terations result in an increase in the cerebrovascular resistance and the
cerebral perfusion pressure. In their study, the authors discovered that
cerebral remodeling was found in patients with high-normal- blood
pressure (pre-hypertensive) who have a family history of developing
hypertension. This would potentially mean that these alterations were
not caused by hypertension but may be a cause for developing hy-
pertension. The study indicates that hypertension might be developed
to maintain balance in blood circulation of human brains to compensate
the imbalance caused by the cerebral vascular alterations. In addition,
other studies suggest that cerebral vascular remodeling and elevated
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cerebral perfusion pressure precede the onset of hypertension in ani-
mals and humans (Barnes et al., 2017; Cates et al., 2012; Launer et al.,
2015; Swales, 1991). Chronic elevation of blood pressure has been
linked to carotid artery diameter change in rats (Hayashi et al., 2018).
Pulmonary hypertension has been linked to pulmonary arterial dia-
meters changes in humans. Clinical observations of excessive or ab-
normal tortuosity of blood vessels have been linked to several severe
diseases including hypertension (Abdalla et al., 2015; Han, 2012;
Hiroki et al., 2002; Jakob et al., 1996). The early detection of these
vascular alterations would potentially help clinicians to prepare med-
ical treatment plans and recommend healthier lifestyles that could
prevent or limit the progression of the disease.

Time-of-flight magnetic resonance angiography (TOF-MRA) is cur-
rently used to best visualize human brains’ cerebrovasculature. It is
considered one of the most common imaging modalities used in non-
invasive vascular research. However, developing an automatic seg-
mentation algorithm to delineate cerebral vascular tree from MRA data
accurately is still challenging. Specifically, cerebrovascular segmenta-
tion algorithms introduced in literature have limitations in segmenting
vessels of small size. This is due to the complex geometry of human
brains, scanning artifacts and limitations, wide range of intensities,
density and diameters of small blood vessels ( = 1 mm), and the brain’s
fat tissues which have a similar visual appearance to that’s of cerebral
blood vessels. Additionally, manual segmentation or semi-automatic
segmentation approaches which require human operator interactions
are very time-consuming, error-prone, and subject to inter-observer
variability. MRA-based computer-aided diagnosis (CAD) systems were
introduced in literature to help radiologists in the clinical diagnoses of
various diseases (Arimura et al., 2004; 2006; Doi, 2007; Fujita et al.,
2008; Kobashi et al., 2006; Miki et al., 2016; Nakao et al., 2018). An
MRA-based CAD system was presented in Fujita et al. (2008) to early
detect lacunar infarcts, unruptured aneurysms, and arterial occlusions
from MRA data. Another CAD system used unenhanced MRA images to
detect cerebral aneurysms (Nakao et al., 2018). MRA data were ana-
lyzed using a CAD system in Miki et al. (2016) to detect small in-
tracranial aneurysms. In this manuscript, we present an MRA-based
CAD system for the early detection of hypertension. While simple tools
such as the sphygmomanometer are widely used to diagnose hy-
pertension, they could not predict the disease before its onset. The es-
sential motivation behind this research was to help clinicians to predict
pre-hypertension or hypertension before their onset to minimize or
avoid any adverse events.

2. Methodology

The proposed CAD system, (Fig. 1), is composed of four main
modules. The first module is responsible for data preprocessing to re-
move noise artifacts and enhance image homogeneity. The second
module is responsible for delineating the cerebral vasculature using a 3-
D convolutional neural network (3-D CNN). The third module extracts
cerebral features from the segmented vasculature and builds a feature
vector for each subject in the data set. The last module is responsible for
the classification of input subjects into normal and hypertensive classes.

2.1. Materials and procedure

A balanced TOF-MRA dataset of 66 subjects, (33 subjects were
normotensive, and 33 subjects were either pre-hypertensive or hy-
pertensive), were used in the experimentation. According to the 2017
guideline, an update of the 2003 Seventh Report of the Joint National
Committee on Prevention, Detection, Evaluation, and Treatment of
High Blood Pressure (JNC7), the recommendations for hypertension
categories based on the blood pressure measurements are as follow;
normal (< 120/ < 80 mmHg), elevated or pre-hypertension
(120 — 129/<80 mmHg), hypertension stage 1 (130 — 139 mmHg sys-
tolic or 80 —89 mmHg diastolic), and hypertension stage 2
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( = 140 mmHg systolic or = 90 mmHg diastolic)(Chobanian et al.,
2003; Whelton et al., 2018). So, in our experiment, a typical normo-
tensive subject should have a systolic blood pressure of < 120 mmHg
and a diastolic blood pressure of < 80 mmHg, while a hypertensive
subject should have a systolic blood pressure of > 130 mmHg or a
diastolic blood pressure of > 80 mmHg. In this study, a pre-hy-
pertensive patient is defined to have elevated blood pressure mea-
surements of (120 — 129) mmHg systolic and < 80 mmHg diastolic.
Patient recruitment and data collection were performed at University of
Pittsburgh with local Institutional Review Board (IRB) approval and in
accordance with relevant guidelines and regulations. Participants pro-
vided informed consent prior to any study data being collected. MRA
scans were acquired using a 3T Trio TIM scanner using a 12-channel
phased-array head coil. Each data volume consisted of 136 slices of
thickness 0.5 mm and a matrix of 696 x 768 with in-plane spacing of
0.26 mm. Four readings of blood pressure were taken for each subject
using a sphygmomanometer during two visits and were averaged.
Further details on the study from which these participants were drawn
is presented in Jennings et al. (2017). De-identified MRA data and as-
sociated blood pressure measurements were provided to the authors at
University of Louisville for analysis. The image processing team had no
contact with patients or access to protected health information.

2.2. Data preparation

MRA data were first preprocessed to enhance the segmentation
accuracy. A non-parametric bias correction algorithm (Tustison et al.,
2010) was applied on MRA data to remove any biasing effects and to
correct any intensity non-uniformities. A 3-D generalized Gauss-Markov
random field (GGMRF) (Bouman and Sauer, 1993) was then applied
where the pairwise interactions between a voxel and its 26-neighbor-
hood voxels were taken into consideration to enhance data homo-
geneity while preserving the 3-D edges between different cerebral
structures (Fig. 2). At last, a normalization step was applied where the
intensities of each MRA slice were manipulated to have a zero-mean
and a unit-variance. Normalization was needed to facilitate a faster
convergence of the CNN segmentation process.

2.3. Segmentation of brain vasculature using a 3-D CNN

The cerebral vasculature of each subject was segmented using a
deep 3-D CNN. The architecture of the CNN consists of 11 layers to
ensure a high degree of discrimination. The receptive field was of size
173. The task of feature extraction was performed using 3° kernels in
each layer. The classification layer had 1% kernel. The segmentation
task was performed in two steps. In the first step, adjacent image pat-
ches were densely trained into one pass of the network. Images were
processed at multiple scales simultaneously to incorporate local and
textual information to enhance the segmentation accuracy. The soft
segmentation maps were generated as outputs for this step. In the
second step, the soft segmentation maps were processed using a 3-D
fully-connected conditional random field (CRF) to get rid of false po-
sitives.

As the spatial context for each voxel is taken into account, the final
segmentation maps produced by the CNN are almost smooth. However,
to overcome the local minima in the training and noise in the input
images that may produce false positives or holes in the prediction, the
fully connected CRF (Kamnitsas et al., 2017) was used as a post pro-
cessing to achieve enhanced segmentation. Given an input image I, and
the segmentation map, m, the Gibbs energy in a CRF model is given by:-

Em) =) §,(m) + Y $,(mi, my)
i i,i#) (€]
The unary potential ¥,(m;) = —logP (m;|I) and logP(m;|I) is the CNN’s

output for voxel i. The pairwise potential in the fully connected CRF is
of the form z/Jp(mi, m;) = u(m;, m)k(f;, f;) between any pair of voxels.
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Fig. 1. A computer-aided-diagnosis system for the early detection of hypertension

The label compatibility, u(m; m)) is calculated using the Pott’s model
and the corresponding energy penalty is given by the function k, that is
defined over arbitrary feature space with f;, f; being the feature vector of
the voxel pairs (Kamnitsas et al., 2017). For more details please
see Kamnitsas et al. (2017); Krdhenbiihl and Koltun (2011).

The 3-D CNN architecture consists of eight layers, two fully con-
nected layers, and one classification layer. The kernel size is 3° and the
number of feature maps (FMs) at the eight layers are
30,30,40,40,40,40,50,50. The input to the network are image segments
with size 25 x 25 x 25 and the batch size is 10 segments. The strides are
unary and no pooling layers were used as it leads to loss of the voxel’s
exact position and therefore affects the accuracy negatively. The ar-
chitecture uses the PReLu non-linearity and trained using the RMSProp
optimizer and Nesterov momentum with values L; = 107%, L, = 1074,
and m = 0.6. The learning rate is set to 10> and the dropout with 50%
rate was employed on the last hidden layers. The batch normalization
technique (loffe and Szegedy, 2015; Kamnitsas et al., 2017) for all
hidden layers was used to allow the normalization of the FM activation
at every optimization step.

The strength of the signals of blood flow at a specific time differs
from one area to another inside the brain. To address this challenge, we
had to partition each MRA volume into two compartments such that
blood vessels inside each compartment are of similar appearance,
shape, and approximate diameter size. This would potentially enhance
the accuracy and efficiency of the segmentation process. We have se-
lected a well-known cerebral bio-marker called circle of Willis (CoW) to

(b)

guide us during the partitioning process. Usually, most of the blood
vessels existing at CoW and below it are of medium or large diameter
size (1 mm: 25 mm), while blood vessels above CoW tend to have
smaller diameter size (0.01 mm : 1 mm). Based on that, the first com-
partment included all MRA slices located above CoW, while the second
compartment included all slices located at and below CoW. In each
compartment, all the blood vessels tend to have similar appearance,
shape, and diameters of approximate sizes which would increase the
efficiency and accuracy of the segmentation process. During this pro-
cess, the 3-D CNN manipulated each compartment and produced a sub-
vascular tree. The two sub-vascular trees were combined later to obtain
the final vascular tree.

2.4. Vascular features extraction

The delineated cerebral vasculature of each subject was used to
extract a set of discriminative features, namely, the vascular diameter
and tortuosity. These features were carefully selected to represent
cerebral vasculature of each subject in the diagnosis phase based on
clinical suggestions. Research studies have supported the correlation
between the change in vascular diameter and hypertension (Lange
et al., 2013; Ussavarungsi et al., 2014). Similarly, tortuosity of blood
vessels, which measures how sharply a blood vessel twists or bends, has
been linked to many diseases including hypertension (Han, 2012). To
estimate the alterations in the diameters of blood vessels, the vascular
radius was calculated for every cerebral vessel. The distance map was

Fig. 2. A sample 2-D output of the preprocessing stage. (a) Original axial slice, (b) Output after bias correction, and (c) Output after GGMRF application on the bias-

corrected slice.
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generated for the segmented cerebral vasculature and was then used to
estimate the probability distribution function (PDF) for each cerebral
vascular tree of every subject. To estimate the change in cerebral vas-
cular tortuosity, mean and Gaussian curvatures were calculated across
the entire brain of each subject. Mean curvature is equal to half of the
sum of the principal curvatures, (k1 + k2)/2, and is an extrinsic measure
of curvature, which means that it depends on the embedding. Gaussian
curvature is equal to the product of the principal curvatures, (k1*k2),
and is an intrinsic property of the surface, which means that it does not
depend on the particular embedding of the surface. Gaussian and mean
curvatures are the most important types of curvatures in surface theory
(Abbena et al., 2017).

2.5. Classification using artificial neural networks

Artificial neural networks are widely used to perform classification
tasks. In the proposed CAD system, a feedforward neural network with
two hidden layers was used to classify the MRA data into two classes
based on the extracted features in Section 2.4. One class was for the
normotensive subjects and the second was for the hypertensive subjects.
We have used the built-in MATLAB R2017a neural network training
tool in our experiments. We have used different classifiers with dif-
ferent parameters in our experiment including support vector machine
(SVM) with polynomial (cubic) kernel, ensemble bagged trees, linear
discriminant, and a 2-hidden layers artificial neural network. In addi-
tion, we have tried all possible k-fold cross validation scenarios. The
scenario that achieved the best performance and accuracy was the one
that employed a 2-hidden layer ANN with hidden layers of sizes 10 and
5, respectively. Data were randomly divided between training, valida-
tion, and testing such that 70% of data were used for training, 15%
were used for validation (10-fold), and the remaining 15% were used
for testing. The network was trained using a scaled conjugate gradient
backpropagation. The default values of other parameters of the neural
network training built-in tool were used. The inputs for the neural
network were the feature vectors produced by the feature extraction
step. Each feature vector consisted of 15 values to represent vascular
diameter and tortuosity changes. The first eleven values in each feature
vector were the PDF bins corresponding to each blood vessel diameter
value (represented by blood vessel radius). The remaining four values

Neurolmage: Clinical 25 (2020) 102107

Fig. 3. A 2-D segmentation output of global and local experiments
at two different cross sections above CoW (a,b,c) and below CoW
(d,e,f). (a) and (d) Original slices, (b) and (e) Output of global
segmentation, and (c) and (f) Output of local segmentation.
Segmented vessels are colored in red and the enhanced segmen-
tation results (of the local experiment) are contoured in blue. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

were the averages and medians of both mean curvature and Gaussian
curvature (representing vascular tortuosity). The motivation behind
this stage was to validate the efficacy of the proposed cerebral features
(vessel diameters and tortuosity) in representing a discriminatory factor
for hypertension detection. This kind of validation could potentially
help clinicians to evaluate changes or alterations in these cerebral
features as a signal for the development of severe diseases such as hy-
pertension. This would potentially help clinicians in diagnosing pre-
hypertension and treating potential patients with appropriate medical
plans.

3. Results
3.1. Segmentation results

To test the accuracy of the 3-D CNN segmentation, the dataset was
divided into 49 subjects which were used for training, and the re-
maining 17 subjects were used for testing. Common segmentation
evaluation metrics (Dice similarity coefficient (DSC), sensitivity, and
specificity) were used to evaluate the segmentation accuracy. The
segmentation approach was successful in delineating cerebral vascu-
lature with 83.2 =+ 2.3% DSC, 83.4 =+ 5.9% sensitivity, and
99 =+ 0.03% specificity compared to experts manually segmented
ground truth. We had a hypothesis that partitioning each MRA volume
into two compartments to perform the segmentation task locally,
(above CoW, at and below CoW) instead of globally (over the entire
brain) would potentially address the blood flow signals variability
challenge and enhance the segmentation results. To validate the cor-
rectness of this hypothesis, two separate experiments were conducted
(global, and local) and the results were compared as shown in Fig. 3.
The results proved the correctness of our hypothesis as the local seg-
mentation results outperformed the global segmentation results in
terms of more detected anatomical details of blood vessels’ seeds and
fewer gaps between segments of blood vessels. The local experiment
achieved 84.4 =+ 3.3% DSC, 86.2 =+ 3.8% sensitivity, and
99 + 0.03% specificity compared to ground truth (Table 1). In addi-
tion, the 3-D CNN segmentation approach was compared to the global
statistical-based approach (GSB) (El-Baz et al., 2012) and the results,
presented in Table 1 and shown in Fig. 4, proved the outperformance of
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Table 1
Segmentation results of the 3-D CNN approach (local and global experiments)
and the global statistical-based approach (GSB)(El-Baz et al., 2012).
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Table 2
Classification accuracy of different classifiers(SVM, Ensemble Bagged Trees
(ensemble method: Bag), Linear Discriminant, 2-hidden Layer ANN).

Approach DSC, % Sensitivity, % Specificity, % Classifier Accuracy Kernel/metric validation
3D CNN (local) 844 + 33 86.2 = 3.8 99.0 = 0.03 SVM 80.3% Polynomial (cubic) 33 — Fold
3D CNN (global) 832 + 23 83.4 £ 59 99.0 = 0.03 Ensemble 83.3% Bagged trees 6 — Fold
GSB El-Baz et al. (2012) 80.1 = 2.7 85.2 + 3.1 97.5 = 0.9 Linear Discriminant 84.8% Linear 33 — Fold
SVM 87.5% Polynomial (cubic) 10 — Fold
2-hidden Layer ANN 90.9% FeedForward 10 — Fold

our approach. Moreover, the paired t-test is used to measure the sta-
tistical significance between the obtained results and the other com-
pared techniques. The differences between the metrics means were
found to be statistically significant as the corresponding p-values are
below 0.0001.

It was essential to have accurate segmentation results because this
would have a positive impact on the accuracy and efficiency of the
extracted features.

3.2. Classification Results

Many experimental trials have been conducted with different clas-
sifiers, parameters, kernels, and validation scenarios. A summary of the
classification results that recorded accuracy > 80% are shown in
Table 2. The best classification process recorded 95.6%, 90%, and 90%
for training, validation, and testing, respectively. The confusion matrix
for the classification process is shown in Fig. 5 where the overall ac-
curacy was 90.9%. The ROC curve is shown in Fig. 6 with area under
the curve (AUC)= 0.9091. Fig. 7 shows the performance of the clas-
sifier which depended on minimizing the cross entropy between the
three stages of training, validation, and testing. This high accuracy is
evidence that the modeled vascular features used to classify subjects
were reliable and efficient to quantify cerebral alterations.

3.3. Comparison to current hypertension prediction risk models

Comparison to existing state-of-the-art hypertension prediction risk
models has been conducted. We have selected two common risk models
used to predict hypertension namely, the Cox proportional hazard
model, and the Framingham risk model. The Cox proportional hazard
model was fit to our data, with the outcome variable being hyperten-
sion at two years post-baseline. Predictor variables included age and
BMI at baseline, as well as gender. In addition, three different sets of
MRA-derived predictors were tested. The model using the vessel dia-
meter histogram produced no result, the fitting procedure having failed
to converge due to small sample size. The model including averaged
Gaussian and mean curvatures was not significant (likelihood ratio
x* =5.56 with 5 d.f; p = 0.351). Likewise, the model including
median Gaussian and mean curvatures was not statistically significant
(likelihood ratio y? = 6.45 with 5 d.f.; p = 0.265).

(a)

Fig. 4. A comparison sample of the segmentation approaches. (a) Ground truth,

2012).

Confusion Matrix

N

Output Class

1 2
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Fig. 5. The confusion matrix of the classification process.
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Fig. 6. The ROC curve of the classifier (AUC = 0.9091).

(b) (c)

(b) Output of the 3-D CNN approach, (c) Output of the GSB approach (Fl-Baz et al.,
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Fig. 7. A plot of the training, validation, and testing performance of the clas-
sifier.

Table 3
The confusion matrix of the Framingham prediction model.
Predicted
Normal Hypertensive
Observed Normal 29 3
Hypertensive 8 10

For comparison with our predictive model, the Framingham raw
scores were calculated for our sample (Parikh et al., 2008). Raw point
totals were used rather than the two-year risk score, since the latter was
calibrated for a general population while our dataset was selected to
have equal numbers of hypertensive and normotensive patients. In-
stead, two-year hypertension was predicted using logistic regression on
the raw point total, and a leave-one-out procedure. The resulting con-
fusion matrix is given in Table 3 (compare Fig. 5).

This comparison indicates the efficacy of our ANN-based classifier
to predict hypertension using the proposed MRA features (vascular
diameter and tortuosity).

4. Discussion

Common symptoms of hypertension are nose bleeds, headaches,
shortness of breath, and vomiting. However, hypertension is called the
silent killer because it is common that patients may not experience any
apparent symptoms even in advanced stages. Tracking cerebral vascu-
lature would help clinicians in predicting the potentiality of developing
hypertension before its onset. Accordingly, clinicians would manage
proactive and preventive procedures to avoid the progression of the
disease. In this manuscript, a CAD system is presented to help clinicians
in the prediction process. The system is capable of distinguishing be-
tween normal and hypertensive cases with accuracy of more than 90%,
by analyzing the alterations that affect cerebral vascular structures over
time efficiently. This demonstrates the efficacy of using the proposed
features to represent cerebrovascular changes that precede the onset of
hypertension. The high accuracy of the system is evidence that the
proposed cerebral features are reliable enough to be used as a diag-
nostic parameter for predicting the potentiality of developing hy-
pertension. The automatic segmentation algorithm could successfully
detect and segment large and small blood vessels and is applicable to
either healthy or unhealthy vessels. Previous segmentation algorithm
presented in literature were suitable for healthy vessels with assump-
tions of linearity and circular cross-section (Moccia et al., 2018). Im-
portantly, the proposed segmentation algorithm is fully automatic
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which will eliminate possible human errors resulting from intra- and
inter-observer variability.

We have carefully selected two features to represent the cere-
brovascular alterations based on various studies in literature that sup-
port the correlations between the change of vascular diameter and
tortuosity, and developing hypertension (Abdalla et al.,, 2015;
Annunziata et al., 2016; Han, 2012; Hayashi et al., 2018; Hiroki et al.,
2002; Jakob et al., 1996; Lange et al., 2013; Trucco et al., 2010;
Ussavarungsi et al., 2014).

We have exploited the strength of artificial neural networks classi-
fiers to classify the extracted features and decide whether a person is
normal or hypertensive. Comparison to common risk models for hy-
pertension prediction has been conducted and the results were evidence
to the efficacy of our proposed system to exploit the cerebrovascular
features to predict hypertension before its onset. One limitation of this
system is that MRA screening is expensive, so we suggest that this
system should be used for patients with high potential to develop hy-
pertension due to strong family history of hypertension for example.
However, we must refer to the high cost of hypertension medication
which is about $ 2000/year. Also, the hospitalization of some common
consequent side effects of hypertension such as hemorrhagic stroke is
over $32, 000/year (Kirkland et al., 2018; Wang et al., 2014) which
makes MRA screening cost effective on the long-term.

5. Data availability

The data that support the findings of this study are available from
the corresponding author upon reasonable request.
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