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Soluble extracts prepared from Xenopus eggs have been used
extensively to study various aspects of cellular and developmental
biology. During early egg development, transcription of the zygotic
genome is suppressed. As a result, traditional extracts derived from
unfertilized and early stage eggs possess little or no intrinsic tran-
scriptional activity. In this study, we show that Xenopus nucleoplas-
mic extract (NPE) supports robust transcription of a chromati-
nized plasmid substrate. Although prepared from eggs in a
transcriptionally inactive state, the process of making NPE resem-
bles some aspects of egg fertilization and early embryo develop-
ment that lead to transcriptional activation. With this system, we
observed that promoter-dependent recruitment of transcription
factors and RNA polymerase II leads to conventional patterns of
divergent transcription and pre-mRNA processing, including
intron splicing and 3� cleavage and polyadenylation. We also show
that histone density controls transcription factor binding and RNA
polymerase II activity, validating a mechanism proposed to regu-
late genome activation during development. Together, these
results establish a new cell-free system to study the regulation, ini-
tiation, and processing of mRNA transcripts.

The eggs of Xenopus laevis frogs contain a high concentra-
tion of maternal factors that support early embryo development
after fertilization (1, 2). Soluble extracts prepared from Xenopus
eggs have been used extensively to study various aspects of cel-
lular and developmental biology, including nuclear formation
(3–5), DNA replication and repair (6 –9), cellular and check-
point signaling (10 –13), mitosis (14 –16), and apoptosis (17).
However, these extracts have been found to possess little or no
intrinsic transcriptional activity (18), limiting study of a funda-
mental biological process with this model system.

The primary characteristics of Xenopus egg extracts are
determined by the developmental stage of the eggs from which
they are derived (described in Fig. S1) (19). Newly laid eggs are
arrested in metaphase II of meiosis. After fertilization, eggs pro-
gress to an interphase state that is transcriptionally inactive.
Chromatin then undergoes decondensation and is enveloped
by membranes to form a nucleus. Although limited transcrip-
tion of the nuclear genome can occur, further development

depends on maternal proteins and mRNA provided by the egg
cytoplasm (1, 2). The single-cell embryo then undergoes multi-
ple rounds of rapid DNA synthesis and cellular division to form
a fluid-filled sphere of cells called a blastula. At this point in
embryo development, the genome transitions to a transcrip-
tionally active state through a process referred to as the mid-
blastula transition (MBT)2 (20).

Recent studies have identified histones as an important reg-
ulator of the MBT, suggesting they act as a sensor for the num-
ber of cellular divisions (21–23). DNA is bound by histones to
form chromatin, which supports DNA compaction and acts as
a scaffold for regulating various aspects of transcription (24,
25). During early embryo development, the concentration of
maternal histones remains constant. However, each round of
DNA synthesis increases the ratio of DNA to histones. As his-
tones become limiting, promoter elements throughout the
genome are thought to become more accessible to transcrip-
tion factors that trigger a wave of transcriptional activity. The
MBT is characterized by several cellular changes that promote
differentiation and further embryo development, including
slower cell cycles with extended S phase, asynchronous cellular
divisions, and cellular motility (20).

Previously, a nucleoplasmic extract (NPE) was developed
that contains a highly concentrated fraction of nuclear proteins
(26). NPE supports highly efficient chromatinization and synthe-
sis of plasmid DNA substrates and has led to seminal discoveries in
DNA replication and repair (27–31). However, the transcriptional
activity of NPE has not been determined. Although prepared from
eggs in a transcriptionally inactive state, the process of making
NPE recapitulates several events during egg fertilization and early
embryo development that lead to transcriptional activation (Fig.
S1). When eggs are crushed by centrifugation, calcium release
drives the extract into interphase, mimicking the events following
egg fertilization. Addition of sperm chromatin then leads to
nuclear formation and chromatin condensation, followed by pro-
gression into S phase and DNA synthesis.

In this study, we demonstrate that NPE readily supports tran-
scription from endogenous gene elements on a naturally chro-
matinized plasmid substrate. Promoter-dependent recruit-
ment of transcription factors and RNA polymerase II (RNAPII)
leads to conventional patterns of divergent transcription and
pre-mRNA processing, including intron splicing and 3� cleav-
age and polyadenylation. We also show that histone density
regulates transcription in NPE by limiting the recruitment of
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transcription factors to DNA, validating a mechanism pro-
posed to control genome activation during early development
(21). Together, these results establish a new cell-free system
that supports multiple mechanisms involved in the regulation,
initiation, and processing of mRNA transcripts.

Results

Nucleoplasmic extract supports robust transcription of
plasmid DNA

To determine the relative efficiency of transcription in NPE,
we compared its activity with other Xenopus egg extracts shown

to have limited transcriptional activity, including HSS (a high-
speed supernatant of interphase-arrested eggs) and CSF (a
mitotic extract from eggs arrested in metaphase II by a cyto-
static factor). Each extract was incubated with increasing
concentrations of a GFP reporter plasmid that contains a cyto-
megalovirus (CMV) promoter (Fig. 1A; pCMV). The CMV pro-
moter was previously shown to support transcription in Xeno-
pus oocytes (18) and cultured somatic cell lysate (32), indicating
that it is recognized by Xenopus transcription machinery.
Extracts were supplemented with [�-32P]UTP, and its incorpo-
ration into RNA transcripts was visualized by agarose gel elec-

Figure 1. NPE supports robust transcription of plasmid substrates. A, pCMV schematic. Relative location of promoter and GFP are indicated. B, different
concentrations of pCMV were incubated in NPE, HSS, or CSF extract in the presence of [�-32P]UTP. Samples were withdrawn at 180 min, resolved by agarose gel
electrophoresis, and visualized by autoradiography. C, total UTP incorporation from (B) was quantified and graphed. D, pActin schematic showing the 5� and
3� regions cloned from Xenopus actb. E, pActin was incubated in NPE, HSS, or CSF and UTP incorporation was analyzed in parallel to (B) to allow a direct
comparison. F, total UTP incorporation from (E) was quantified and graphed relative to peak intensity in (B). G, total protein from each extract was resolved by
SDS-PAGE and visualized with Coomassie Brilliant Blue stain or by Western blotting using the indicated antibodies.

Cell-free transcription in Xenopus egg extract

19646 J. Biol. Chem. (2019) 294(51) 19645–19654



trophoresis and autoradiography (Fig. 1B). When pCMV was
incubated in HSS or CSF, there was little or no UTP incorpora-
tion, respectively (Fig. 1B, lanes 8 –13 and 15–20). In contrast,
incubation in NPE led to a large accumulation of radiolabeled
product (Fig. 1B, lanes 1– 6), indicating that transcription of
plasmid DNA readily occurs in NPE.

To investigate transcription of a promoter native to the
Xenopus genome, we replaced the 5� and 3� regions of pCMV
with those from the Xenopus laevis actb gene to form pActin
(Fig. 1D). actb encodes �-actin, one of three major actin iso-
forms found in vertebrates, and is known to be transcriptionally
activated during egg development (33). pActin was incubated in
NPE, HSS, and CSF extracts and UTP incorporation was visu-
alized as described above. As seen with pCMV, pActin was
readily transcribed in NPE, but showed little or no UTP incor-
poration in HSS or CSF (Fig. 1E). At the highest DNA concen-
tration tested (100 ng/�l), pCMV and pActin had similar levels
of UTP incorporation (compare blue traces in Fig. 1, C and F).
However, at lower DNA concentrations, pActin produced rel-
atively fewer products. These results suggest that transcription
from the actb promoter is suppressed in NPE and that the effect
can be alleviated with excess DNA.

To compare the relative levels of transcription machinery in
each extract, equal volumes of NPE, HSS, and CSF were ana-
lyzed by Western blotting and Coomassie Brilliant Blue stain.
Although total protein levels were relatively similar in each
extract, RNAPII was highly enriched in NPE compared with
HSS and CSF (Fig. 1G). We also saw that the level of histone H3
was enriched in NPE and HSS, compared with CSF. Thus, com-
pared with other Xenopus egg extracts, NPE is enriched for both
RNAPII and histones.

Transcription is driven by regulated recruitment of RNAPII to
the promoter

To quantify transcription originating from the actb pro-
moter, RNA products were isolated from NPE and analyzed by
reverse transcription quantitative PCR (RT-qPCR). RNA levels
were measured using primers that amplify a region �150 bp
downstream of the actb promoter region (Promoter) or �2400
bp upstream (Control) (Fig. 2A). Primers were also used to
amplify endogenous Xenopus 18S rRNA that is retained during
the preparation of NPE to serve as an internal control for RNA
recovery between different samples.

When pActin was incubated in NPE, transcription from the
actb promoter increased over time, peaking at �60 min (Fig.
2B, solid cyan trace). In comparison, transcription of the con-
trol region was relatively low, reaching only �5% of that
detected at the promoter (Fig. 2B, dashed cyan trace). We then
supplemented NPE with �-amanitin, a highly selective inhibi-
tor of RNAPII (34). In the presence of �-amanitin, transcription
from both the promoter and control regions was reduced to
�1% of that detected from the promoter in buffer-treated sam-
ples (Fig. 2B, solid and dashed orange traces), indicating that
transcription at both sites is RNAPII-dependent.

We showed that total UTP incorporation was sensitive to the
concentration of pActin incubated in NPE (Fig. 1, E and F). To
directly test how DNA concentration affected transcription
from the actb promoter, we incubated NPE with increasing

concentrations of pActin and then analyzed the accumulation
of RNA products by RT-qPCR. For comparison, we also ana-
lyzed transcription from a pActin control plasmid that con-
tained a deletion of the RNAPII core promoter elements
(�Promoter). Total transcription from the actb promoter
increased with pActin concentration up to 25 ng/�l and then
plateaued (Fig. 2C, cyan trace). At all concentrations tested,
transcription from the actb promoter region was severely
reduced with the �Promoter plasmid compared with pActin
(Fig. 2C, orange trace), showing that NPE supports promoter-
driven transcription. By calculating the amount of transcription
per plasmid, we saw that transcription efficiency peaked at 25
ng/�l and was severely reduced at both lower and higher DNA
concentrations (Fig. 2D, cyan trace). Similar results were also
seen when a fixed amount of pActin was incubated with
increasing amounts of a “carrier” plasmid that has no sequence
homology (Fig. S2, C and D), indicating that transcription effi-
ciency was determined by total DNA concentration and not the
number of actb promoters present in the reaction. Thus, at low
DNA concentrations, transcription from the actb promoter is
suppressed in NPE. At high DNA concentrations, the transcrip-
tional machinery likely becomes limiting, reducing overall effi-
ciency but not total product produced.

To verify that the actb promoter supports regulated tran-
scription in NPE, we analyzed recruitment of histone H3, RNA-
PII, and the transcription factor TATA-binding protein (TBP)
to the 5� region of both the pActin and �Promoter plasmids by
chromatin immunoprecipitation (ChIP). Compared with pAc-
tin, binding of RNAPII and TBP to the �Promoter plasmid was
severely reduced (Fig. 2E), consistent with the decrease in tran-
scription at the promoter region (Fig. 2F). In contrast, histone
H3 levels remained similar for both plasmids. These results
indicate that the actb promoter supports sequence-specific
recruitment of bona fide transcription factors to initiate tran-
scription in NPE.

Regulation of transcriptional activity by histone density

During early development, relative histone levels play an
important role in regulating the onset of transcription during
the MBT. When plasmid DNA is incubated in NPE, it becomes
spontaneously chromatinized within �30 min (Fig. S3). To
investigate whether the level of histone binding in NPE was
responsible for decreased transcription at low DNA concentra-
tions, we first incubated different amounts of pActin in NPE for
30 min and then analyzed DNA-bound histone H3 by ChIP.
With increasing concentrations of pActin, the percentage of
histone-bound DNA recovered was reduced by more than
10-fold (Fig. 3A), indicating a dramatic decrease in the number
of histones bound to each plasmid.

We then tested whether plasmid concentration also affected
DNA accessibility. pActin was again incubated in NPE at vari-
ous concentrations. After 60 min, reactions were supplemented
with micrococcal nuclease (MNase), which exhibits both exo-
nuclease and endonuclease activity against exposed dsDNA.
Reaction samples containing equal amounts of DNA were with-
drawn at different times after MNase addition, separated by
agarose gel electrophoresis, and then visualized with SYBR
Gold stain. As the concentration of pActin incubated in NPE
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increased, we saw that its sensitivity to MNase digestion also
increased (Fig. 3, B and C). Together, these results suggest that
changes in DNA concentration affect DNA accessibility by
altering histone density.

To determine whether histone availability controls the
access of transcription machinery to DNA, we immunode-
pleted NPE using pre-immune (Mock) or anti-histone H4K12ac
(�H) antibodies, which co-depleted more than 75% of total his-
tone H3 from extract (Fig. 3D) (35). pActin was then incubated
in each extract, and samples were withdrawn after 30 min to

measure protein binding by ChIP. Compared with mock-de-
pleted reactions, histone depletion reduced the level of DNA-
bound histones by �3-fold (Fig. 3E). In contrast, histone deple-
tion caused TBP binding to increase �2-fold, consistent with
greater access to nucleosome-free DNA. Although RNAPII lev-
els were not significantly changed, transcription also increased
�2-fold in histone-depleted reactions (Fig. 3F), suggesting that
a greater fraction of DNA-associated RNAPII complexes were
activated by TBP and able to transcribe downstream from the
promoter. Together, these results suggest that reduced histone

Figure 2. NPE supports regulated and promoter-dependent transcription. A, pActin schematic. Sequence elements are shown relative to the transcription
start site (�1). “Control” and “Promoter” primer pair locations are indicated. B, pActin was incubated at 10 ng/�l in NPE supplemented with buffer or
�-amanitin. RNA was isolated at the indicated time points and quantified by RT-qPCR. C, different concentrations of pActin or �Promoter plasmid were
incubated in NPE for 120 min. RNA was isolated and quantified by RT-qPCR using the Promoter primers. D, transcription from (C) was normalized based on
starting plasmid concentration. E, pActin or �Promoter plasmid were incubated in NPE at 25 ng/�l. At 30 min, DNA-bound protein was analyzed by ChIP with
the indicated antibodies. F, at 120 min, RNA was isolated from the reactions in (E) and quantified by RT-qPCR using the Promoter primers. Error bars represent �
1 S.D. See Fig. S2 for experimental replicates.
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abundance allows increased transcription factor binding and
stimulates RNAPII activity, consistent with models developed
for Xenopus development(21–23).

RNA sequencing reveals characteristics of actb promoter
regulation

To further investigate how NPE supports transcription of the
actb promoter, RNA products were analyzed by RNA sequenc-
ing (RNA-Seq). pActin or the �Promoter plasmid were each
incubated in NPE at 25 ng/�l for 120 min. Total RNA was then
isolated and analyzed using paired-end RNA-Seq. RNA reads
were aligned to the pActin sequence and both forward (�) and
reverse (�) reads were graphed. Consistent with RT-qPCR
results (Fig. 2C), pActin showed a large accumulation of RNA
immediately downstream of the actb promoter in the forward
orientation (Fig. 4A, closed arrowhead). A smaller RNA peak
was also present upstream of the actb promoter in the reverse
orientation (Fig. 4A, open arrowhead). This pattern of divergent
transcription from a promoter is thought to be important for
maintaining a nucleosome-free region for initiation and has
been observed in organisms ranging from yeast to mammals
(36). Both divergent peaks were completely absent in the
�Promoter reads (Fig. 4B), indicating that formation of both
RNA products depended on the actb promoter.

There were three major regions of actb-independent tran-
scription found on pActin. The largest peak was localized to the
ColE1 origin (Fig. 4B, closed arrowhead) and was adjacent to a
smaller peak in the opposite orientation (Fig. 4B, open arrow-
head). These reads were likely produced by divergent transcrip-
tion originating from an A/T-rich region within the origin
sequence (37). The third peak originated within the 5� actb

intron (Fig. 4B, gray arrowhead) and faced toward the major
actb promoter peak. In a previous study analyzing actb expres-
sion, deletion analysis identified a negative transcriptional ele-
ment in this region (38). Together with our RNA-Seq data,
these results suggest that the intron promoter may interfere
with expression of actb(39). Interestingly, transcription from
both the ColE1 origin and the actb intron regions increased in
the �Promoter plasmid relative to pActin (Fig. 4C, compare
cyan with orange and blue with red traces), suggesting that the
actb promoter competes with nearby promoters.

We noted that forward transcription from the actb promoter
was limited in length. Transcripts showed highly efficient initi-
ation and extension to �250 nucleotides, well beyond the short
transcripts associated with abortive transcription (up to �15
nucleotides) (40, 41). Roughly 16% of established transcripts
escaped the promoter region, extending further to �310 nucle-
otides. Extension beyond this point failed rapidly, with the vast
majority of transcripts terminating by �500 nucleotides. This
phenomenon was not specific to the actb promoter, as forward
transcription from the ColE1 origin (Fig. 4B, closed arrowhead)
and reverse transcription from the intron region (Fig. 4B, gray
arrowhead) also showed similar lengths of elongation.

Transcription elongation and pre-mRNA processing in NPE

We reasoned that some factors involved in transcription
elongation might be limiting in extract. To test this hypothesis,
pActin was incubated in NPE at different concentrations for
120 min, and then RT-qPCR was used to measure transcription
at the promoter and another site �600 bp downstream.
Because total transcription levels vary with plasmid concentra-
tion (as seen in Fig. 2C), we graphed “elongation” as the per-

Figure 3. Histone occupancy regulates transcriptional activity in NPE. A, pActin was incubated in NPE at the indicated concentrations for 30 min.
DNA-bound protein was then analyzed by ChIP using histone H3 antibodies. B, pActin was incubated in NPE at the indicated concentrations for 60 min. Next,
reaction samples were diluted in MNase buffer and treated with 100 units MNase at 37°C for the indicated time. DNA was then isolated and resolved by agarose
gel electrophoresis. Input DNA (IN) and topological isoforms of the resolved plasmids are indicated: open circular (OC), supercoiled (SC), and linear. C, the total
intensity of all three full-length plasmid molecules identified in (B) was quantified and graphed. D, mock-depleted (�Mock) and histone-depleted (�H) NPE
were analyzed by Western blotting with the indicated antibodies. E, pActin was incubated in �Mock or �H extract at 10 ng/�l. At 30 min, DNA-bound protein
was analyzed by ChIP using the indicated antibodies. F, RNA was isolated from the reactions in (E) at 120 min and quantified by RT-qPCR using the Promoter
primers. Error bars represent � 1 S.D.
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centage of transcripts measured downstream versus at the pro-
moter (Fig. 4D). At 25 ng/�l, elongation efficiency was �11%.
However, with decreasing pActin concentration, the efficiency
of elongation increased dramatically, reaching �56% at 1 ng/�l.
Thus, transcription elongation improved at lower DNA con-

centrations in NPE, despite higher levels of histone binding
(Fig. 3A).

The 5� region of actb contains an intron that is typically
spliced during expression of the actb gene. However, analysis of
the pActin RNA-Seq identified only a trace amount of reads

Figure 4. Analysis of whole-plasmid transcription and pre-mRNA processing in NPE. A, pActin was incubated at 25 ng/�l in NPE for 120 min. RNA was then
purified and analyzed by paired-end RNA-Seq. The total of all mapped reads were graphed for both the forward (�) and reverse (�) orientations. B, the
�Promoter plasmid was incubated in NPE and analyzed by RNA-Seq as described in (A). C, reads from (A) and (B) were overlaid onto the same graph for direct
comparison. A diagram of pActin showing the relative position of major sequence elements is shown above. See text for description of arrowheads. D–F, pActin
was incubated in NPE at the indicated concentrations for 120 min. RNA was then isolated and analyzed by RT-qPCR to determine the efficiency of (D)
elongation, (E) splicing, and (F) cleavage and polyadenylation. Elongation was graphed as a percentage of amplification with Elongation primers versus
Promoter primers. Splicing and cleavage and polyadenylation were graphed as a percentage of amplification with Unspliced and Uncleaved primers, respec-
tively. Error bars represent � 1 S.D.
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corresponding to spliced products (data not shown). To test
whether splicing improved with increased transcription elon-
gation, RNA produced at different pActin concentrations was
analyzed by RT-qPCR using primers that amplify either
unspliced or spliced transcripts (Fig. S4, B and C). As with elon-
gation, splicing efficiency increased when the concentration of
pActin was reduced from 25 to 1 ng/�l (Fig. 4E), suggesting that
the two processes are linked during transcription in NPE (42).

To examine 3� cleavage and polyadenylation, we first used an
unbiased approach to identify potential cleavage sites. pActin
was incubated in NPE at 5 ng/�l for 120 min and RNA was
isolated to generate cDNA. Transcripts were then amplified
using a forward primer that hybridizes upstream of the consen-
sus polyadenylation sequence (43) and an anchored oligo-dT
reverse primer. The major PCR product was gel purified and
sequenced. New primers were then designed that amplify either
uncleaved transcripts or those that had been cleaved and poly-
adenylated (Fig. S4, D and E). RNA produced at different pActin
concentrations was then analyzed to measure the efficiency of
cleavage and polyadenylation at this site. Unlike elongation and
splicing, the efficiency of cleavage and polyadenylation
remained relatively constant at each pActin concentration
tested (Fig. 4F). Taken together, these results indicate that NPE
supports regulated transcription from endogenous promoters
and subsequent pre-mRNA processing required to generate
mature mRNA transcripts.

Discussion

Xenopus egg extracts have been used extensively to study
numerous biological processes in a highly tractable system. A
major advantage of extracts over cell-based models is the ability
to study direct effects in the absence of global gene expression
and cell cycle changes. However, traditional Xenopus egg
extracts have been found to support only limited transcription
without the addition of exogenous transcription machinery or
the removal of endogenous histones to prevent DNA chroma-
tinization (18, 21–23). In this study, we establish a new cell-free
system using NPE that supports robust transcription of chro-
matinized substrates by endogenous factors.

Transcription activity and efficiency in NPE

NPE contains a highly concentrated fraction of soluble,
nuclear proteins. Relative to other Xenopus egg extracts, NPE is
enriched for both transcription machinery and histones (Fig.
1G). This combination of factors supports robust transcription
(Fig. 1B and E) in the context of chromatinized DNA (Figs. S3
and 3A). NPE is prepared from nuclei undergoing active DNA
synthesis. As such, transcription in NPE likely resembles that of
cells within S phase. Although the primary mechanics of tran-
scription are similar throughout the cell cycle, the regulation of
specific genes and transcription factors may be influenced by
these characteristics of NPE.

Xenopus eggs contain an abundance of histone dimers that
are coupled to molecular chaperones (44, 45). In NPE, these
complexes promote spontaneous loading of histones onto
DNA within �30 min (Fig. S3). Although transcription of pAc-
tin begins prior to complete chromatinization, robust tran-
scription continues up to �60 min before leveling off (Fig. 2B).

The decline in transcription activity over time is not because of
limited availability of ribonucleotides or ATP (data not shown).
This limited window of transcription suggests that factors
required for initiating transcription become inactivated or sup-
pressed over time, possibly because of changes in chromatin
signaling (25).

Based on the final quantity of RNA detected by qPCR and the
efficiencies of RNA isolation and cDNA amplification (deter-
mined using samples of known concentration), we estimate
that the actb promoter produced �2.5 extended transcripts per
molecule of pActin when incubated in NPE. Transcriptional
efficiency of the actb promoter peaked at 25 ng/�l (Fig. 2D and
S1B), suggesting a balance between fully chromatinized DNA
that suppresses transcription and underchromatinized DNA
that supports increased transcription factor binding (Fig. 3E).
These conditions are likely analogous to the cellular states of
chromatin referred to as heterochromatin and euchromatin,
respectively (46).

Histone density and developmental regulation

During early embryo development, histones act as a sensor
for the number of cellular divisions. As histones become limit-
ing, it triggers the MBT, which marks the onset of transcription
and developmental progression (20 –22). In NPE, the ratio of
DNA to extract plays a similar role in regulating transcription,
which can be modulated by altering the concentration of plasmid
present within the reaction (Fig. 2C). Previous studies have shown
that the MBT can be altered by adding or depleting histones (21,
22), arguing that histone levels control the onset of transcription.
Our results indicate that transcription in NPE is regulated by the
same mechanism. Increasing plasmid DNA concentration
reduced histone binding (Fig. 3A) and increased DNA accessibility
(Fig. 3, B and C). We also showed that histone binding limited
recruitment of TBP to the actb promoter (Fig. 3E), adding support
to the model that histone occupancy suppresses transcription by
obscuring genes during early embryo development.

Promoter activity and pre-RNA processing

Using RNA-Seq, we performed a detailed analysis of tran-
scripts produced by pActin and the �Promoter plasmids. We
saw traditional patterns of divergent transcription originating
from the actb promoter and plasmid origin sequence (Fig. 4A).
Promoters that support divergent transcription initiate bidirec-
tional transcripts read from opposite DNA strands. Although
some antisense transcripts are unstable and quickly degraded,
others have important regulatory functions (47). Despite the
prevalence of divergent transcription throughout higher order
species, the mechanism of its regulation and biological purpose
remain poorly understood.

Within the 5� intron of actb, we identified a putative pro-
moter (Fig. 4B, gray arrowhead) oriented toward the actb pro-
moter (Fig. 4A, closed arrowhead). Transcription from the
intron promoter was weaker than that of actb, but increased
when the core promoter elements of actb were deleted (Fig.
4C). Although this region of actb was proposed to contain a
negative regulatory element (38), its potential role in regulating
gene expression has not been explored. Notably, the intrinsic
activity of weak or dormant promoters may also be elevated in
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this system because of the absence of other genomic elements
that normally compete for access to limited transcription fac-
tors and machinery.

Interestingly, we found that pre-mRNA processing events
responded differently to changes in plasmid concentration. The
efficiency of cleavage and polyadenylation remained relatively
constant at different plasmid concentrations (Fig. 4F), suggesting
that the required factors are present in excess or able to function
independently of other transcriptional events. In contrast, the effi-
ciency of transcription elongation and splicing both improved in a
nonlinear fashion with decreasing pActin concentration (Fig. 4D
and E), arguing that a threshold must be achieved for full stimula-
tion. We propose that highly chromatinized DNA is required for
efficient elongation and splicing to occur in NPE. Although his-
tones generally play a negative role in transcription initiation (Fig.
3F), they are also critical for chromatin signaling that regulates
many downstream events (48–51).

Concluding remarks

Together, the results described in this study add another fun-
damental process to NPE’s repertoire. As such, it provides a
unique tool to examine the interplay between different cellular
processes and the various pathways that regulate them. Decades of
research have revealed an array of dynamic regulatory networks
that control each phase of gene expression (48, 52, 53). When these
mechanisms fail, it can result in the development of numerous
diseases, including cancer (51, 54–56). Understanding how differ-
ent signaling events directly impact the initial phases of gene
expression will provide new insight into the mechanisms of disease
and identify new strategies for treatment.

Experimental procedures

Plasmid substrates

The parent pCMV vector was purchased from Addgene (no.
11153). The 5� and 3� regions of actb were amplified from Xeno-
pus laevis sperm chromatin (prepared as described in Ref. 57)
using the following primer pairs: 5� region, CAGGAACTAGT-
AGAACAGGGAAGCAATGGAT and TAGACCATGGTGG-
CCTGAAAAGAGAATTAGATT; 3� region, ATAGCGGCC-
GCAGGACAGACCCTTTCAACATG and GCGCTGCC-
TAGGTTTGTTTGAGTGCACCACC.

The resulting fragments were then cloned into pCMV using
SpeI and NcoI (5� region) or NotI and AvrII (3� region). The
carrier plasmid (pCarrier) utilized in Fig. S2, C and D was a
pFastBac1 vector (Thermo Fisher) carrying the Xenopus
BARD1 gene (58). To generate the �Promoter plasmid, actb
core promoter elements were deleted by site-directed mu-
tagenesis (Agilent Technologies) using the following primers:
forward, CTTCGTCCGCAGTTCCTACGTCCAACCCTC-
AGGC and reverse, GCCTGAGGGTTGGACGTAGGAACT-
GCGGACGAAG.

Incubation in Xenopus egg extract

HSS, CSF, and NPE were produced as described previously
(26, 57). The care and use of Xenopus laevis followed estab-
lished protocols approved by IACUC with AAALAC accred-
itation. In all reactions, extracts were supplemented with

ATP regenerating mix (6.5 mM phosphocreatine, 0.65 mM

ATP, and 1.6 �g/ml creatine phosphokinase). NPE was also
supplemented with 1 mM DTT, and CSF was supplemented
with 0.3 mM Ca2� to promote entry into interphase. Reac-
tions were incubated at 21 °C for 10 min prior to the addition
of plasmid DNA, which represents 0 min. Where indicated,
extracts were supplemented with [�-32P]UTP to label nas-
cent RNA, or 10 �M �-amanitin to inhibit RNAPII. All exper-
iments were performed at least two times with representa-
tive or averaged data shown.

UTP incorporation gels

Three h after addition of plasmid DNA to each extract, sam-
ples were withdrawn from the reaction and added to Stop
Buffer (3.6% SDS, 18 mM EDTA, 90 mM Tris-HCl, 9% Ficoll).
Samples were then mixed with RNA Gel Loading Dye (Thermo
Fisher), incubated at 65 °C for 20 min, and resolved by agarose
gel electrophoresis. Radiolabeled transcripts were visualized
and quantified using a phosphorimager.

RT-qPCR

RNA was isolated from extract using the EZNA RNA Purifi-
cation kit (Omega Bio-tek) and cDNA was generated using the
QuantiTect Reverse Transcription kit (Qiagen). Samples were
then analyzed by quantitative real-time PCR with the following
primer pairs: control, CCCAACCAGTGTTACACCACTTCC
and ATGCCTGGGAGCGGCCTTAT; promoter, TATGGG-
CTGCATGAAATGG and AATTGCGCGACCTACAACTC;
elongation, GCGCTTTACGTTAGCAATCC and AGGCTT-
TCAGTGAGCCAGTC; unspliced, GCGGGTCCTCACCTT-
CAATCTAATTCTC and TCGCCGGACACGCTGAACTT;
spliced, TCCAACCCTCAGGCCACCAT and TCGCCGGAC-
ACGCTGAACTT; uncleaved, CACATCTGTTTCTTGCTA-
TGAGGTG and CAAAACCCATTCATTTTGCCA; cleaved,
CACATCTGTTTCTTGCTATGAGGTG and TTTTTTTTT-
TTTTTTTTTTTGCCA; 18S rRNA, GACCGGCGCAAGAC-
GAACCA and TGCTCGGCGGGTCATGGGAA.

To quantify RNA processing, the level of nonspecific ampli-
fication of spliced and cleaved primers was determined using a
pActin standard curve, which only contains unspliced and
uncleaved sequences. The background amplification was then
subtracted from each sample based on the level of total unpro-
cessed RNA present in that sample. PCR fragments containing
spliced or cleaved sequences were also generated using the
spliced and cleaved primer pairs to create a standard curve for
processed samples.

To identify cleavage and polyadenylation sites downstream
of the actb promoter, pActin was incubated in NPE for 120 min
at 5 ng/�l and cDNA was generated as described above.
Cleaved and polyadenylated transcripts were amplified by PCR
with the following primers: forward primer, GGGCTCATTC-
TCTTTAACATCTGGAAG; anchored oligo(dT)20, TTTTTT-
TTTTTTTTTTTTTTVN (Integrated DNA Technologies).
PCR reaction products were then resolved by agarose gel elec-
trophoresis, purified using a gel extraction kit (Qiagen), and
sequenced (Genewiz).
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Chromatin immunoprecipitation (ChIP)

ChIP was performed as described previously (59). Briefly,
reaction samples were crosslinked in Egg Lysis Buffer (10 mM

HEPES-KOH, pH 7.7, 2.5 mM MgCl2, 50 mM KCl, and 250 mM

sucrose) containing 1% formaldehyde. Crosslinking was
stopped by the addition of 125 mM glycine, and formaldehyde
was removed using a Micro Bio-Spin 6 chromatography col-
umn (Bio-Rad). Samples were then sonicated (Diagenode Bio-
ruptor UCD-600 TS) and immunoprecipitated with the indi-
cated antibody. Following immunoprecipitation, crosslinks
were reversed and DNA was isolated by phenol/chloroform
extraction and ethanol precipitation. Total (INPUT) and recov-
ered DNA were then analyzed by qPCR to determine percent
recovery using the following primer pairs: pActin, CCTCCTT-
CGTCCGCAGTTCC and GCTGGCGAACCGCTACTTGC
and �promoter, GAAAATACGGGGCGTGGAAGATT and
GCTGGCGAACCGCTACTTGC.

Micrococcal nuclease digestion

pActin was incubated in NPE at 10, 25, or 100 ng/�l for 60
min at 21 °C. Equal amounts of pActin were withdrawn from
each reaction and mixed with 1	 Micrococcal Nuclease Reac-
tion Buffer (New England Biolabs). Additional NPE was also
added to the 25 and 100 ng/�l mixes so that all three treatments
contained equal amounts of DNA and extract. 100 units of
micrococcal nuclease (New England Biolabs) was then added
and reactions were incubated at 37 °C. At the indicated time,
samples were withdrawn, mixed with an equal volume of STOP
Buffer, and then treated with proteinase K (Thermo Fisher) for
120 min at 37 °C. Undigested DNA was then resolved by aga-
rose gel electrophoresis and visualized with SYBR Gold stain.

Plasmid pulldown

Plasmids were isolated from NPE as described previ-
ously(59). Briefly, reaction samples were withdrawn at the indi-
cated time and added to LacI-coupled magnetic beads (Dyna-
beads M-280; Invitrogen) suspended in LacI pulldown buffer
(10 mM HEPES, pH 7.7, 2.5 mM MgCl2, 50 mM KCl, 250 mM

sucrose, 0.25 mg/ml BSA, and 0.02% Tween 20). Samples were
incubated for 20 min, rotating at 4 °C. Beads were then washed
three times with LacI wash buffer (10 mM HEPES, pH 7.7, 2.5
mM MgCl2, 50 mM KCl, 0.25 mg/ml BSA, and 0.02% Tween 20),
dried, and suspended in 2	 SDS sample buffer (100 mM Tris-
HCl, pH 6.8, 4% SDS, 0.2% bromphenol blue, 20% glycerol, and
200 mM �-mercaptoethanol). DNA-bound proteins were then
resolved by SDS-PAGE and visualized by Western blotting with
the indicated antibodies.

Antibodies and immunodepletion

RNA polymerase II antibodies were purchased from Bethyl
Laboratories (A300-653A for Western blotting, A304-405A for
ChIP). TBP antibodies were purchased from Boster Biological
Technology (PA1534). Histone H3 antibodies were purchased
from Thermo Fisher (PA5-16183). To deplete histones from
NPE, two rounds of depletion were performed by incubating 10
�l of extract with Protein-A Sepharose beads (GE Healthcare)
bound to 50 �g of purified histone H4 K12Ac antibodies(35) for
1 h at 4 °C.

RNA sequencing analysis

RNA was isolated from extract using the E.Z.N.A. RNA Puri-
fication kit (Omega Bio-tek). Total RNA samples were then
analyzed by Novogene after rRNA removal using paired-end
RNA-Seq. A total of �10,000,000 clean reads were obtained for
both the pActin and �Promoter plasmids. Output FASTQ files
were aligned to the pActin sequence using bowtie version
2.3.5(60). One nucleotide was removed from the 3� and 5� end
of reads and the subseeding length was 20. Bam files were sorted
by SAMtools (61) and output alignments were analyzed using
Integrative Genomics Viewer.
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