
materials

Article

Modeling of Compressive Strength for Unidirectional
Fiber Reinforced Composites with Nanoparticle
Modified Epoxy Matrix

Wei Chen, Yiping Liu *, Zhenyu Jiang *, Liqun Tang, Zejia Liu and Licheng Zhou

School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South
China University of Technology, Guangzhou 510640, China; chenwei65@midea.com (W.C.);
lqtang@scut.edu.cn (L.T.); zjliu@scut.edu.cn (Z.L.); ctlczhou@scut.edu.cn (L.Z.)
* Correspondence: tcypliu@scut.edu.cn (Y.L.); zhenyujiang@scut.edu.cn (Z.J.);

Tel.: +86-2087111030 (ext. 3304) (Y.L.)

Received: 1 November 2019; Accepted: 24 November 2019; Published: 26 November 2019 ����������
�������

Abstract: Incorporation of nanoparticles into polymer matrix was found to considerably improve
the compressive performance of unidirectional fiber reinforced composites. In our experimental
study, an increase by 62.7% in the longitudinal compressive strength of unidirectional carbon fiber
reinforced composites is attained by dispersing 8.7 vol.% SiO2 nanoparticles into epoxy matrix.
A compressive strength model is established to quantitatively describe the reinforcing effects of
nanoparticles, which combines a modified microbuckling model for unidirectional fiber reinforced
composites and a constitutive model for nanocomposite matrices under compression. In the two
models, the coupling of damage and plasticity is considered to contribute to the nonlinear response
of nanocomposite matrix. The proposed strength model demonstrates excellent prediction capability
in experimental verification. A small relative deviation below 8.2% is achieved between the predicted
compressive strength of unidirectional fiber reinforced composites and the measured values, which is
at the same level of random error in experiments.
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1. Introduction

Unidirectional fiber reinforced composites are generally designed to carry the tensile load along
the reinforcing fibers. They show substantially inferior mechanical performances under longitudinal
compression, due to the shape instability of fibers with high aspect ratio. The compressive strength
has been found about 30%–40% lower than the tensile strength [1]. Unfortunately, longitudinal
compression is almost inevitable for composite structures in engineering applications, which may
experience relatively complex deformation (e.g., conditions including flexural deformation [2]). Thus,
accurate prediction of compressive strength for fiber reinforced composites is a critical issue for the
safe and optimal design of composite parts. It is known that during the compression of unidirectional
fiber reinforced composites, microbuckling of fibers occurs at a stress level considerably below the
strength of fibers, followed by kinking of fibers [3,4]. This mechanism results in premature failure of
unidirectional fiber reinforced composites, based on which models were developed in recent decades to
predict their compressive strength [5–9]. The proposed models indicate that the microbuckling of fibers
is dominated by the shear properties of polymer matrix. Therefore, matrix-tuning becomes an effective
approach for enhancing the compressive strength of unidirectional fiber reinforced composites.

In recent years, various nano-fillers, including spherical nanoparticles [10,11], nano-clay [12],
graphite nanoplatelets [13], and carbon nanotubes [14] have been incorporated into matrices to fabricate
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multiscale phase reinforced composites with an improved compressive performance. The results
demonstrate that the matrix-tuning by nano-fillers works well for the unidirectional composites based
on carbon fibers [13], glass fibers [10–12], and basalt fibers [14]. For instance, Sun and his colleagues
introduced silica nanoparticles (15 wt.%) [10] and nanoclay (8 wt.%) [12] into epoxy matrices of glass
fiber reinforced composites, which led to up to 62% and 36% increases in the compressive strength of
the two kinds of composites, respectively. Tsai and Cheng [11] found that by dispersing 30 wt.% silica
nanoparticles into epoxy matrix, the compressive strength of glass fiber reinforced composites could be
increased by 21% and 16% in quasi-static and dynamic compression tests, respectively. The reinforcing
effect of carbon nanotubes with a high aspect ratio seems to be more significant. The addition of
0.4 wt.% multi-walled carbon nanaotubes into epoxy matrix contributes to a 41% increase in the
compressive strength of basalt fiber reinforced composites [14].

It is noteworthy that the compressive stress-strain curves of nanocomposite matrices obtained in
experiments are essential when applying the classic elastic-plastic microbuckling model, as they
limit its prediction capability. This paper provides a solution by developing a method based
on loading-unloading tests to establish the constitutive relation of nanocomposite matrices under
compression. In combination with the established constitutive relation, a modified microbuckling
model can be used to predict the compressive strength of multiscale phase reinforced composites
according to a small number of compression tests of nanocomposite matrices. The effectiveness of the
proposed model is verified using the experimental data of carbon fiber reinforced composites with
epoxy matrices containing uniformly dispersed silica nanoparticles (CF/Nano-SiO2/Epoxy composites).

2. Modeling

2.1. Microbuckling Model with Plasticity and Damage of Polymer Matrix

In the classic elastic-plastic microbuckling model, the compressive strength of unidirectional fiber
reinforced composite σc can be expressed as a function of the tangent shear modulus of matrix Gep

m and
the volume fraction of fibers v f [7]:

σc =
Gep

m
1− v f

, (1)

Gep
m is estimated by the ratio of incremental shear stress dτm to the incremental shear strain dγm, i.e.,

Gep
m = dτm

dγm
= dτm

dγe
m+dγp

m
. The elastic increment dγe

m can be simply calculated through dγe
m = dτm

Gm
(where

Gm represents the shear modulus of matrix). The plastic increment dγp
m was considered to be associated

with the plasticity of the matrix.
However, experimental study has shown that epoxy matrix demonstrated clear damage during

the plastic stage of compression (as discussed in Section 4.1). Thus, the development of damage within
the matrix should be included in the model, i.e.,

σc =
Gepd

m
1− v f

, (2)

where Gepd
m is the new tangent shear modulus of matrix influenced by the plasticity and the damage.

To keep this section concise, only key steps and conclusions are provided as follows. The detailed
derivation of the modified microbuckling model is provided in the Appendix A section.

Considering that the elastic deformation and plastic deformation are independent from each other,
dγe

m can be approximated by:

dγe
12 =

2(1 + µ)

Em0(1− d)
dσ12, (3)
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where Em0 is the initial elastic modulus of the matrix, d represents the damage factor of matrix during
compression, and µ is the Poisson’s ratio of the matrix. The relation between dγp

12 and dσ12 can be
written as:

dγp
12 =

3β
(
γβ+ 3 sin2 θ

)
(β2 + 3 tan2 θ)Ep

m
dσ12, (4)

where θ is the off-axis angle of fibers in compression tests, as illustrated in Figure 1. Ep
m = dσ

dεp is the
instantaneous plastic modulus of matrix (dσ and dεp are the increments of effective stress and effective

plastic strain, respectively). Parameters β =
(

E f
Es

m
ν f + νm

)−1
and γ =

(
E f
Emt
ν f + νm

)−1
, in which E f is

the elastic modulus of fiber, Es
m =

σm
11
εm

11
is the secant modulus of a matrix, and Et

m =
dσ11
dε11

is the tangent
modulus of a matrix, which can be estimated as:

Et
m =

 1
Em0(1− d)

+
β
(
γβ+ 3 sin2 θ

)
γ(β2 + 3 tan2 θ)Ep

m


−1

. (5)

Therefore, Gepd
m can be expressed as:

Gepd
m =

 2(1 + µ)

Em0(1− d)
+

3β
(
γβ+ 3 sin2 θ

)
(β2 + 3 tan2 θ)Ep

m


−1

(6)

Combining with Equations (5) and (6), Equation (2) can be solved numerically through an iterative
procedure to attain the critical compressive strength in the case of a specific off-axis angleθ. It was found
that the compressive strength of unidirectional fiber reinforced composites demonstrates a quasi-linear
relation with the maximum shear stress in matrix caused by the off-axial compression [10,12]. Thus,
the longitudinal compressive strength (when the maximum shear stress in matrix vanishes, i.e.,
σ11 when σ12 = 0) can be extrapolated from the data obtained from the compression tests with a couple
of off-axis angles.
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Figure 1. (a) Setup of off-axial compression test for unidirectional fiber reinforced composites and (b) 
Dimension of the prepared composite specimen. 

Figure 1. (a) Setup of off-axial compression test for unidirectional fiber reinforced composites and (b)
Dimension of the prepared composite specimen.

2.2. Constitutive Model of Nanocomposite Matrix

The solution procedure of microbuckling model needs the instantaneous stress-strain relation of
the matrix and its gradient in each iteration step, which is currently acquired from the experimentally
recorded curves of the matrix. To break this limit and enhance the prediction ability of the
model, a constitutive model of nanocomposite matrices with nanoparticle content in a certain range
was developed.
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In addition to the non-zero residual strain obtained after unloading the epoxy specimen in the
plastic deformation stage, a reduction of the modulus was observed during the unloading process in
our experimental study (see Section 4 for an example), indicating the development of damage within
the matrix. Therefore, both the damage and plastic behavior contributed to the nonlinear stress-strain
relation of the epoxy matrix. According to the Ladeveze damage model of composite laminates [15],
which can be simplified into a form for isotropic materials, the nonlinear stress-strain relation of a
matrix under compression can be established through loading-unloading experiments.

From the viewpoint of damage, the nominal damage strain energy of matrix Y can be approximated
as a function of the elastic strain εe

i at the beginning of the ith unloading:

Y(εi) =

√
1
2

E0
(
εe

i

)2
(7)

where E0 is the initial modulus of the matrix. Y can also be expressed in another form, as a function of
the damage factor of the matrix at ith unloading di:

Y(di) = Y0 + YCdi (8)

where di can be estimated through di = 1− Ei
E0

. Y0 denotes the threshold of the initial damage. It is
assumed that no damage occurs in the matrix (i.e., d = 0) if Y(εi) < Y0. Above this threshold, damage
appears in the matrix and gradually develops along with the increasing strain. YC represents the
threshold of the damage. According to Equation (8), the larger YC is, the slower the damage factor di
increases. Thus, the stress-strain relation at the beginning of ith unloading can be expressed as:

σi = Eiε
e
i = E0(1− di)ε

e
i =

E0εe
i

YC

YC + Y0 −

√
1
2

E0
(
εe

i

)2
. (9)

To introduce the influence of the matrix plasticity, the relation between the stress σi and plastic
strain εp

i can be constructed based on the modified Lukwik equation [16]:

σi

(1− di)
−

[
σ0 + h ·

(
ε

p
i

)m]
= 0 (10)

where σ0 is the initial yield stress, while h and m denote the strength coefficient and work-hardening
exponent, respectively.

While assuming that there is no coupling of the elastic strain and the plastic stain, at the beginning
of the ith unloading the total strain satisfies:

εi = εe
i + ε

p
i . (11)

The initial modulus E0 of a nanocomposite matrix varies with the volume fraction of nanoparticles
vp. It can be estimated by the Mori-Tanaka method [17], treating the Nano-SiO2 particles as
spherical inclusions:

G0 = Gm +
Gp−Gm

1+4(1−vp)GH(Gp−Gm)
vp

GH =
3(2Gm+Km)

10Gm(4Gm+3Km)

(12)
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where G0, Gm, and Gp represent the shear moduli of the nanocomposite, epoxy matrix, and particle
inclusion, respectively. Km is the bulk modulus of the matrix. As the nanocomposite matrix can be
regarded as an isotropic material, these moduli satisfy:

G0 = E0
2(1+µ0)

, Gm = Em
2(1+µm)

, Gp =
Ep

2(1+µp)

Km = Em
3(1−µm)

(13)

where µ0, µm, and µp are the Poisson’s ratios of nanocomposite matrix, epoxy resin, and silica
respectively. Taking approximately µ0 ≈ µm ≈ 0.33 and µp ≈ 0.16, the modulus of Nano-SiO2/Epoxy
matrix can be predicted by:

E0 = Em +
2.66vp

(
2.32Ep − 2.66Em

)
1 + 1.24

(
1− vp

)(
2.32Ep − 2.66Em

)
/Em

. (14)

3. Experimental Verification

3.1. Materials and Sample Preparation

Unidirectional fiber reinforced composites were prepared using Toray T700 carbon fiber sheets.
Each fiber bundle in the cloth contains approximately 12,000 monofilaments. The longitudinal elastic
modulus of carbon fibers is about 240 GPa [18]. The epoxy resins include two commercial types:
(i) Bisphenol A (BPA) epoxy resin (E51) with an epoxide equivalent of 196 g/mol, supplied by China
National BlueStar Co. Ltd. (Beijing, China); (ii) Bisphenol F (BPF) epoxy resin (Nanopox F520) with an
epoxy equivalent of 277 g/mol, supplied by Evonik Industries AG (Essen, Germany). The Nanopox
F520 resin, containing 40 wt.% SiO2 nanoparticles with an average diameter of 25 nm, was synthesized
and incorporated through the sol-gel technology, which guarantees a very uniform dispersion [19].
It was diluted with E51 resin to prepare nanocomposite matrices with various volume fractions of
nanoparticles. The curing agent is methylhexahydrophthalic anhydride (MHHPA) with a molecular
weight of 168 g/mol, supplied by Puyang Huicheng Electronic Material Co. Ltd. (Puyang, China). N,
N-Dimethylbenzylamine (BDMA) from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China)
serves as an accelerator.

Table 1 lists the recipes of the nanocomposite matrices prepared in this study. The volume fraction
of Nano-SiO2 was controlled in a range from 0 vol.% to 8.7 vol.% (i.e., 0 wt.%–15 wt%). All the materials
were dried at 60 ◦C for 6 h prior to sample preparation. The two kinds of resins, curing agent, and
accelerator were mixed using mechanical stirring for about 20 min. Then the mixture was kept in a
vacuum chamber for 30 min for degas. Afterwards, it was cast into silicone rubber molds to make
80 mm-long dumbbell-shape specimens for tension (ISO 527) and cubic specimens with a dimension
of 12 mm × 12 mm × 20 mm for compression (ISO 604). The curing process followed a three-step
procedure: (i) the mixture was kept at 60 ◦C in an oven for 480 min; (i) then the temperature was
raised to 100 ◦C and kept for 120 min; (iii) the pre-cured specimens were removed from the molds and
finished their post-curing at 150 ◦C for 300 min.

Table 1. Recipes of the epoxy matrices with various contents of nanoparticles.

Nano-SiO2
[vol.%/wt.%]

E51
[Mass Part]

Nanopox F520
[Mass Part]

MHHPA
[Mass Part]

BDMA
[Mass Part]

0/0 100 0 85.9 1.00
1.1/2 100 10.1 91.9 1.10
2.8/5 100 29.0 103.3 1.20

6.0/10 100 77.6 132.0 1.55
8.7/15 100 177.7 196.1 2.54
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Unidirectional CF/Nano-SiO2/Epoxy composites were prepared through the vacuum assisted
resin transfer molding method. The mixture of resins, hardener, and accelerator were injected into
the mold, on which 32 piles of carbon fiber sheets were stacked. The curing process follows same
procedure mentioned above. Figure 1b shows the block specimens cut from the prepared laminates for
longitudinal compression test. The off-axial angles of fibers were set as 2◦, 5◦, 10◦, 15◦, and 20◦.

3.2. Characterization and Mechanical Tests

Figure 2a shows the micrographs of cryo-fractured surface of epoxy matrix with 6.0 vol.%
Nano-SiO2, which was taken on a scanning electron microscope (ZEISS SIGMA 300, Oberkochen,
Germany). The nanoparticles were dispersed very uniformly in an epoxy matrix without
visible agglomeration.
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Figure 2. (a) SEM micrograph of cryo-fractured surface of epoxy matrix with 6.0 vol.% Nano-SiO2 and (b)
Optical micrographs of cross-section and lateral side of unidirectional carbon fiber reinforced composites.

Figure 2b shows the microscopic images of the cross-section and lateral side of the prepared
laminates respectively, taken on an Olympus BX51 microscope (Tokyo, Japan). It can be observed that
the carbon fibers are uniformly distributed and well impregnated with resins. The average diameter
and volume fraction of fibers are measured to be about 7 µm and 42 vol.%.

Tensile tests and compression tests carried out on an Instron 5567 universal testing machine
(Norwood, MA, USA). The strain rate of deformation was kept at 10−4/s. For each composite system
(five volume fractions of Nano-SiO2), 5–8 valid data were collected under each off-axial angle (five
angles) to offset the influence of accidental error. It is noteworthy that only four nanocomposite matrices
(with Nano-SiO2 contents of 0 vol.%, 1.1 vol.%, 2.8 vol.%, and 6.0 vol.%) were tested. The compressive
stress-strain relation of epoxy matrix with 8.7 vol.% Nano-SiO2 can be predicted by the proposed model
and fed to the microbuckling model. Finally, the predicted compressive strength of unidirectional
composite using this matrix is compared with the measured value.
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4. Results and Discussion

4.1. Compressive Stress-Strain Relation of Nano-SiO2/Epoxy Matrices

Table 2 lists the elastic moduli of epoxy matrices with various nanoparticle contents measured in
tensile tests. It can be seen that the stiffness of epoxy matrices was improved by the incorporation of
nanoparticles to some extent. 6.0 vol.% Nano-SiO2 leads to a 13.5% increase in the modulus of the
epoxy matrix. The moduli of nanocomposite matrices can be predicted by substituting the modulus of
silica (77 GPa [20]) and the measured elastic modulus of neat epoxy matrix into Equation (14), as also
listed in Table 2. The predicted values are slightly lower than the measured values with deviations of
up to 3%.

Table 2. Measured and predicted elastic moduli of Nano-SiO2/Epoxy matrices.

Nano-SiO2
[vol.%]

Elastic Modulus
[GPa]

Relative Improvement
[%]

Predicted Modulus E0
[GPa]

0 3.25 ± 0.28
1.1 3.37 ± 0.11 3.7 3.32
2.8 3.51 ± 0.21 8.0 3.44
6.0 3.69 ± 0.33 13.5 3.68
8.7 3.87

Figure 3 demonstrates the stress-strain curve recorded in the loading-unloading process for neat
epoxy matrix, according to which Y0, YC, σ0, h, and m in Equations (8) and (10) were estimated by
fitting. It can be observed that the modulus of epoxy matrix gradually decreased with the increasing
stress level at the start points of the unloading process, indicating the occurrence of damage within
the epoxy matrix. Moreover, non-zero residual strain can be found when the applied loading was
completely removed, confirming the occurrence of non-negligible plastic deformation. It is noteworthy
that five cycles were performed in our study (as also reported in the literature using the Ladeveze
damage model [15,21,22]), though theoretically only two cycles were required to obtain Y0 and YC,
and three cycles were required to get σ0, h, and m. This configuration was based on the following
considerations: (i) more data points helps to minimize the disturbance of accidental error in the
experiments; (ii) the five unloading points were set at different stress levels (80 MPa, 90 MPa, 100 MPa,
105 MPa, and 108 MP in our experiments), which can be used to validate whether the linear relation
between Y and d holds during the stable deformation stage of the epoxy matrix.Materials 2019, 12, x FOR PEER REVIEW 8 of 16 
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Figure 4 shows the fit lines of Y(di) and di for the four composite systems. The coefficients
of determination (R2) of all fit lines were above 0.966, which confirms the linear relation described



Materials 2019, 12, 3897 8 of 15

in Equation (8). Figure 5 shows the fitting of the parameters in Equations (8) and (10) for the four
composite systems with various Nano-SiO2 contents. As no proper physical models are currently
available to describe the observed relation between these parameters and Nano-SiO2 volume fraction,
the following empirical equations were established:

Y0
(
vp

)
= −4.6× 10−5vp + 8.8× 10−4

YC
(
vp

)
= 4.35× 10−4

× ln
(
vp + 1

)
+ 3.05× 10−3 (15)

σ0(vp) = 4.64× 10−3vp + 0.0424
h(vp) = 4.91× 10−2vp + 0.3024
m(vp) = 1.618× 10−2vp + 0.128

(16)
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It was found that most parameters except YC demonstrated a quasi-linear relation with Nano-SiO2

content. Table 3 lists the values of these parameters at specific Nano-SiO2 volume fractions. The values
of parameters in the case of vp = 8.7 vol.% are extrapolated from the curves constructed according to
Equations (15) and (16), which are also plotted as hollow marks in Figure 5.

Table 3. Values of material characteristics estimated using Equations (15) and (16).

Nano-SiO2 [vol.%]
Y0

[GPa]1/2
YC

[GPa]1/2
σ0

[GPa]
h

[GPa] m

0 9.0× 10−4 3.0× 10−3 0.042 0.31 0.12
1.1 8.5× 10−4 3.4× 10−3 0.048 0.35 0.15
2.8 7.0× 10−4 3.7× 10−3 0.055 0.45 0.18
6.0 6.0× 10−4 3.9× 10−3 0.071 0.59 0.22
8.7 4.7× 10−4 4.0× 10−3 0.083 0.73 0.27

Figure 6 compares the predicted compressive stress-strain curves of nanocomposite matrices
with the measured data. The prediction reaches a good agreement with the experimental results.
In particular, the relative deviation between the stress-strain curves of epoxy matrix with 8.7 vol.%
Nano-SiO2 obtained by the proposed model and by the experiments falls within a range up to 8%.Materials 2019, 12, x FOR PEER REVIEW 2 of 16 
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Figure 6. Predicted compressive stress-strain curves of Nano-SiO2/Epoxy matrices in comparison with
measured data points. (a) composite with neat epoxy matrix; (b) composite with 1.1 vol% Nano-SiO2

modified epoxy matrix; (c) composite with 2.8 vol% Nano-SiO2 modified epoxy matrix; (d) composite
with 6.0 vol% Nano-SiO2 modified epoxy matrix.

4.2. Compressive Strength of CF/Nano-SiO2/Epoxy Composites

Table 4 lists the measured compressive strength of multiscale composites with various off-axial
angles. The maximum compressive stress and maximum shear stress can be extracted from the
measured off-axial compressive strength, which demonstrate a quasi-linear relation, as shown in
Figure 7. The longitudinal compressive strength of composites can be approximated by extrapolation
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of the fitting lines. It can be found that the modification of epoxy matrix with stiff nanoparticles
significantly improve the compressive performance of the unidirectional fiber reinforced composites.
An increase of 62.7% was achieved by the incorporation of 8.7 vol.% Nano-SiO2.

Table 4. Off-axial compressive strength of CF/Nano-SiO2/Epoxy composites.

Nano-SiO2
[vol.%]

Off-Axial Compressive Strength [MPa]

2◦ 5◦ 10◦ 15◦ 20◦

0 386.3 ± 10.4 319.0 ± 20.3 263.9 ± 11.8 202.2 ± 28.9
1.1 503.4 ± 47.5 391.2 ± 33.9 324.1 ± 23.6 266.5 ± 17.7 190.8 ± 6.4
2.8 514.8 ± 16.3 403.8 ± 20.1 339.1 ± 17.9 280.5 ± 13.6 240.8 ± 20.6
6.0 547.4 ± 24.3 416 ± 21.4 347.9 ± 17.7 286.8 ± 18.8 241.3 ± 9.8
8.7 569.9 ± 22.5 352.1 ± 19.2 266.9 ± 16.5 219.3 ± 11.5Materials 2019, 12, x FOR PEER REVIEW 3 of 16 
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5. Conclusion 
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constitutive model of a nanocomposite matrix under compression into a modified elastic-plastic 

Figure 7. Maximum compressive stress and shear stress extracted from the measured off-axial
compressive strength of CF/Nano-SiO2/Epoxy composites.

Figure 8a compares the off-axial compressive strength predicted by the microbuckling model
using the experimental stress-strain curves of matrices and the curves of constitutive model. The two
sets of data are quite close to each other, with relative deviation below 8%. Although the predicted
stresses at some Nano-SiO2 contents became higher than the measured values near the compressive
strength (Figure 6), this deviation had trivial effects on the prediction of the microbuckling model
because the stress within the epoxy matrix was still far below its compressive strength when the
unidirectional fiber reinforced composites failed under off-axial compression.
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Figure 8b gives the longitudinal compressive strength of CF/Nano-SiO2/Epoxy composites
estimated by extrapolation from the experimental data and predicted data in Figure 8a, which
demonstrates an ascendant tendency with the increase of Nano-SiO2 content. The two data sets also
agreed well with each other. The relative deviation was up to 8.2%, which still falls in the range of
standard deviation obtained in experiments (about 4%–10%). In particular, the relative deviation of the
predicted compressive strength at 8.7 vol.% Nano-SiO2 achieved a low level of about 2%.

5. Conclusions

The compressive strength of unidirectional carbon fiber reinforced composites can be significantly
improved by the incorporation of uniformly dispersed SiO2 nanoparticles into epoxy matrix. The
reinforcing effects of nanoparticles was accurately described by importing the constitutive model
of a nanocomposite matrix under compression into a modified elastic-plastic microbuckling model,
including the influence of matrix damage. The prediction of the proposed models achieved an
excellent agreement with the experimental results. Based on the approach developed in this study, the
compressive strength of multiscale composites can be efficiently evaluated by using a small number of
material tests. The model may provide a basis for estimating the properties of advanced composites
for the designers and analyzers working on the performance of composite parts with complicated
structures and under practical loading conditions, when they assign the material properties to finite
element models.

Author Contributions: Conceptualization, W.C. and Z.J.; Funding acquisition, Y.L., L.T. and L.Z.; Investigation,
Y.L. and Z.J.; Project administration, L.T. and Z.L.; Supervision, Y.L.; Writing – original draft, W.C.; Writing –
review & editing, Z.J.

Funding: This research is financially supported by the National Natural Science Foundation of China (Grant Nos.
11772132, 11772131, 11772134, 11972162 and 11932007)

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Microbuckling Model for Unidirectional Fiber Reinforced Composites Influenced
by Plasticity and Damage of Matrix

In the unidirectional fiber reinforced composite under uniform compression with a pre-set off-axis
angle θ (Figure A1a), a representative element is selected for analysis (Figure A1b) [7]. The stress on
the two ends of the representative element can be decomposed orthogonally:

σ11 = σ cos2 θ
σ12 = σ sinθ cosθ

(17)

The components acting on the matrix and the fiber (σm
11 and σ f

11 in Figure A1c) satisfy:

σ11 = σm
11vm + σ

f
11v f (18)

where vm and v f are the volume fractions of matrix and fiber in the composite. Since the fiber cannot
bear the shear stress, the shear stress in the matrix σm

12 = σ12 = σ sinθ cosθ.
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Figure A1. Stress state in (a) unidirectional fiber reinforced composite specimen under compression
with off-axis angle θ; (b) representative volume element and (c) the stress in matrix and fiber.

Based on this model, Sun and Jun extended the Rosen’s model by introducing the plasticity
induced non-linearity of matrix. The the compressive strength of unidirectional fiber reinforced
composite σc is expressed as a function of the tangent shear modulus of matrix Gep

m and v f [7]:

σc =
Gep

m
1−ν f

Gep
m =

[
1

Gm
+ 9 sin2 θ

(β2 cos2 θ+3 sin2 θ)Ep
m

]−1 (19)

where β =

(
σ

f
11
σm

11
ν f + νm

)−1

=
(

E f
Es

m
ν f + νm

)−1
(E f is the Young’s modulus of fiber and Es

m =
σm

11
εm

11
is the

secant modulus of matrix) and the instantaneous plastic modulus of matrix Ep
m = dσ

dεp (dσ and dεp are
the increments of effective stress and plastic strain, respectively). Gm represents the shear modulus
of matrix.

Taking account of the effects of plasticity and damage together on the matrix non-linearity, Gep
m in

Equation (19) could be replaced with Gepd
m , i.e.,

σc =
Gepd

m
1− v f

(20)

where the new tangent shear modulus of the matrix Gepd
m satisfies:

Gepd
m =

dσ12

dγ12
=

dσ12

dγe
12 + dγp

12

(21)

In case of no coupling between the elastic component dγe
12 and the plastic component dγp

12 of
shear strain, dγe

12 can be roughly estimated based on the classic damage mechanics theory [23]:

dγe
12 =

dσ12

Ged
m

=
2(1 + µ)dσ12

Em0(1− d)
(22)

where Ged
m represents the elastic shear modulus of the matrix affected by damage. Em0 and µ are

the initial elastic modulus and Poisson’s ratio of the matrix, respectively. d = 1− Em
Em0

represents the
damage factor of the matrix (Em is the instantaneous modulus of the matrix, which evolves with
the deformation).
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dγp
12 can be approximated according to the associated flow rule, in which the incremental plastic

strain dεp
ij is expressed as [24]:

dεp
ij = dλ

∂ f
∂σi j

(23)

where dλ and f is the plastic multiplier and the yield function, respectively. Assume that the matrix
material follows von Mises yield criterion (i.e., f = J2 − k, where J2 is the second principal invariant of
the stress deviator, k is the material constant related with yield limit), Equation (23) turns to:

dεp
ij = dλsi j (24)

where the deviatoric stress tensor of the matrix si j = σi j −
1
3σkkδi j (in which δi j is the Kronecker delta).

Noting that effective stress σ satisfies σ2 = 3
2 si jsi j, the effective plastic stain increments εp can be

written as:

dεp =

√
2
3

dεp
ijdε

p
ij =

2
3
σdλ (25)

Combining Equations (24) and (25) yields:

dεp
ij =

3
2

dεp

dσ
dσ

σ2 si j =
9
4

1

Ep
m

skldσkl

σ2 si j (26)

Given the deviatoric stress tensor and the incremental stress tensor of the matrix:

si j =


2
3σβ cos2 θ σ sinθ cosθ 0

σ sinθ cosθ −
1
3σβ cos2 θ 0

0 0 −
1
3σβ cos2 θ


dσi j =


γdσ cos2 θ dσ sinθ cosθ 0

dσ sinθ cosθ 0 0

0 0 0


(27)

where γ =
(

E f
Emt
ν f + νm

)−1
(Et

m =
dσ11
dε11

is the instantaneous tangent modulus of matrix), we have the

increments of plastic strain:

dεp
11 =

β(γβ+3 sin2 θ)dσ11
γ(β2+3 tan2 θ)Ep

m

dεp
12 =

3β(γβ+3 sin2 θ)dσ12
2(β2+3 tan2 θ)Ep

m

(28)

The increments of matrix stain dεi j can be written as the sum of elastic component dεe
i j and plastic

component dεp
ij, i.e.,

dε11 = dεe
11 + dεp

11 =
[

1
Em0(1−d) +

β(γβ+3 sin2 θ)
γ(β2+3 tan2 θ)Ep

m

]
dσ11

dε12 = dεe
12 + dεp

12 =
[

(1+µ)
Em0(1−d) +

3β(γβ+3 sin2 θ)
2(β2+3 tan2 θ)Ep

m

]
dσ12

(29)

Rearrange Equation (29), we get the expression of Et
m and Gepd

m :
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Et
m =

dσ11
dε11

=
[

1
Em(1−D)

+
β(γβ+3 sin2 θ)
γ(β2+3 tan2 θ)Ep

m

]−1

Gepd
m =

dσ12
dγ12

=
dσ12
2dε12

=
[

2(1+µ)
Em(1−D)

+
3β(γβ+3 sin2 θ)
(β2+3 tan2 θ)Ep

m

]−1 (30)
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