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Abstract: The loss of urban vitality is an important problem in the development of urban central
areas. Analyzing the correlation between urban built environment and urban vitality supports
urban planning and design. However, current research excludes the study of how consistent built
environment factors affect urban vitality of cities with different development situations. Therefore,
using social media check-in data, this paper measures neighborhood vibrancy in urban central areas
in Beijing and Chengdu, China. Four levels of spatial information were used to measure the built
environment: regulatory planning management unit (RPMU), land use, road network, and building.
Regression model is used to quantify the correlation between urban vitality and the built environment
of these two cities. The study found a strong correlation between built environment factors and
urban vitality. Among the built environment factors, points of interest (POI) diversity and public
transport accessibility indicators were strongly positively correlated with neighborhood vibrancy.
However, the density indicators had totally different effects on urban vitality of cities with different
development situations, which is excluded in existing studies. This research strengthens the practical
understanding of the compact city concept, and can support the design and planning of urban
built environment.

Keywords: social media check-in data; built environment; urban vitality; heterogeneous patterns;
regression analyses

1. Introduction

Creating continuous urban vitality is critically important for developing urban central areas [1],
which could contribute to high concentrations of people, information, and capital flow to urban central
areas. When the use of high-quality urban infrastructure and resources is not maximized, the urban
space can become monotonous and undifferentiated, leading to a ghost city phenomenon [2]. Urban
central areas have experienced the significant problem of having a lack of vitality, which can increase
the risk of night crimes [3]. Therefore, it is important to understand the current dynamic of urban
vitality and to explore the creation and internal mechanisms of urban vitality. This understanding can
help improve the quality of urban space during the practice of urban planning and construction. This
paper analyzes the relationship between built environment and the neighborhood vibrancy of cities.
The goal is to evaluate the impact of built environment factors on neighborhood vibrancy, to enhance
urban vitality.
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Since the 1950s, Western scholars have consistently applied modernist urban theory in the
practice of urban planning and design, and the study of urban space has become more thorough [4,5].
People-oriented, diverse, and vibrant urban space has received increased attention; examples include
Jane Jacobs’s theory of diversity [4], Norberg-Schulz’s space and place theory [6], and Jan Gael’s
theory of public communication [5]. These have established a rich theoretical foundation for studying
contemporary urban vitality. Bentley et al. proposed that survivability, safety, and adaptability
are necessary conditions for cities to survive and develop [7]. They emphasized the importance of
functional diversity in urban life. Both Jan Gehl and Jane Jacobs noted that people and space for their
activities make a city vibrant [4,5].

However, it was not until the early 2000′s that Jane Jacobs’s concept of urban vitality and diversity
for urban planning and design received much attention in China [4]. Urban forms characterized by
high-density and compact intensity have been more respected, as they are considered effective in
curbing urban sprawl, and have multiple advantages such as saving natural resources and improving
the efficiency and quality of space utilization [8]. Jacobs noted that urban vitality needs to be explored
at the urban streets and neighborhood level [4]. The spatial characteristics and social attributes of the
inner blocks of Chinese cities differ significantly from those of western countries. China’s urbanization
is currently characterized by rapid and low-quality urban expansion, while the concept of small block
and dense road network was highly recommended in many western countries [2]. The comprehensive
and refined measurement of spatial patterns of Chinese cities has attracted significant attention [9,10].

Studies have highlighted that built environment indicators, including land use, accessibility,
and building density have profoundly affected the creation of urban vitality [11,12]. However, some
scholars have begun to question the effects of construction density and accessibility on the creation of
neighborhood vibrancy [13,14]. The reason for the inconsistency in different conclusions may be the
imperfection of built environment measurement system, or the indeterminacy of development stage
and construction situation of different cities. How the consistent built environment factors affect urban
vitality of cities with different development situations is excluded in current researches. Therefore, it is
important to conduct comparative analysis of built environment measurements for different cities with
different development stages to evaluate urban vitality. This comparative approach could be used to
guide the construction of emerging cities.

Traditional research has mainly used surveys or questionnaires. In this traditional data
environment, built environment measurements and vibrancy evaluation lack the support of data
and quantitative methods. Today’s information and communication technology (ICT) and Internet
technologies have initiated tremendous changes in people’s lifestyles and methods for organizing cities.
First, the availability of big data makes it possible to collect highly precise long-term sequences of
human mobility data, including social network data, global positioning system (GPS) data, bus credit
card data, and mobile phone data [15–17]. Big data can describe the distribution of human activities
during normal and big events. Second, many map platforms provide free urban spatial information
data, including points of interest (POIs), road networks, and building vectors. These provide the data
foundations to quantitatively measure built environment.

This study applied residential activity information and urban spatial basic information provided
by different open data platforms to quantitatively explore the impact of urban built environment on
urban vitality. This study makes two primary contributions. First, using open data platforms, the
study quantitatively measured urban vitality and the built environment of two cities with different
development situations. Second, the study included a quantitative and comparative analysis of the
correlations between built environment and neighborhood vibrancy of these two cities. Last and
most important, the study found that the same built environment factors could contribute to contrary
effects on urban vitality of cities with different development situations, which is excluded in existing
studies. Through comparative analysis, the study’s conclusions may provide better guidance for urban
planning practice and improving urban vitality for large amounts of emerging cities in China, such as
avoiding disorderly city expansion and over-exploitation simultaneously.
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The rest of this paper is structured as follows. Section 2 provides a literature review about urban
vitality and built environment. Section 3 introduces the research area and data used for this study.
Sections 4 and 5 introduce the measurement system and methodology. Section 6 focuses on the results
of the spatial regression analysis. Section 7 makes a discussion about this research, and Section 8
summarizes and concludes the research.

2. Related Work

2.1. Urban Vitality

Creating urban vitality has long been a focus for urban planners. Jan Gehl and Jane Jacobs
both proposed that urban vitality stems from the people and their activities in a space [4,5]. Urban
vitality affects resident health [18], urban public safety [18,19], socioeconomic development and spatial
linkages [20], and urban space quality [21]. Kevin Lynch proposed measuring urban spatial form and
value by using five indicators: vitality, feeling, suitability, accessibility, and management. The definition
of vitality is the level of support for life and requirements for ecology and human beings [21]. Gehl [5]
and Attoe & Logan [22] argued that behaviors associated with daily life in cities are the foundation
and starting point of urban vitality. These important theories have laid a rich theoretical foundation to
study urban vitality.

Evaluating urban vitality in the traditional data environment is mostly based on qualitative
perspectives, or through field observations and questionnaires. For example, March et al. [23] pointed
out that measuring vitality should consider the different experiences required for a healthy life,
including privacy, rest, and contemplation. Sung & Lee [24] conducted a telephone survey to study the
daily walking activities of Seoul residents, further revealing the connection between the residential
environments and walking activity. However, acquiring these data is time-consuming and laborious,
and the limited representativeness of data limits the depth and breadth of urban vitality research.

Urban vitality can also be characterized from the perspectives of employment data, economic
development level, and cultural exchange [25–27]. From a residential movement perspective, urban
space vitality reflects the diversity of urban life produced by human convergence and activities [28].
Fortunately, the rapid development of information & communication technology (ICT) has enabled
the acquisition of daily activity data for a large number of residents. Many scholars currently mainly
obtain information about the spatial distribution of residents through mobile phone signaling data,
Location-based service (LBS) data, and GPS tracking data. They then extract the population distribution
to study the temporal and spatial characteristics of urban vitality [15,16,29]. Yue et al. [15] noted that
neighborhood vibrancy can be assessed by the number of active people in the neighborhood, extracted
from mobile phone location data.

In addition, urban dynamics differ in different time periods. In the nineteenth century,
human society facilitated the use of light at night to maximize working hours and intensity [30].
Spatial-temporal big data can be effectively used to study human mobility patterns under different time
units. Ratti [31] used mobile phone signaling data to study the temporal rhythm of urban activities
in Milan, Italy. This was done by comparing the spatial distribution of mobile phone users and
the intensity of their activities in different time periods. Lee et al. [32] used mobile phone location
data to analyze hourly resident activity patterns and urban spatio-temporal expansion characteristics.
They extracted temporal and spatial variation of activity centers and hotspot regions. In addition,
Wu et al. [16] also noted inconsistencies in the spatial diversity characteristics of urban vitality between
Shenzhen’s working days and weekends. However, the study of urban vitality has not been addressed
in the current research and should be explored.

In summary, the urban dynamics and vitality in different periods display different characteristics,
and quantitatively evaluating urban vitality is not an easy task. From the perspective of the real-time
activities of residents, the existing research has not addressed the current situation of urban vitality
as a result of big events, and has not explored the creation factors and internal mechanisms of urban
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vitality. This article applies a new data source to study the urban vitality of all the neighborhoods in
the central urban areas of Beijing and Chengdu, China.

2.2. Built Environment and Urban Vitality

Urban form profoundly affects the health of a city, the level of economic development, and city
sustainability [33]. Studies about urban forms have been mainly done by scholars in urban geography,
urban planning, architecture, and landscape design. An early definition of urban form was provided by
Schlüter [34], who defined the term as a trace of human behavior left on the earth’s surface, consisting
of elements such as land, settlements, traffic lines, and surface buildings. Conzen further developed
the concept of urban morphological genes [35]. Bourne [36] defined urban form as space, topography,
and internal form (including density, heterogeneity, organizational principles, and social behavior).
New Urbanism advocates the reintegration of spatial form and constructed environments to form a
perfect city and neighborhood unit [37]. The compact city concept advocates the need to save and
intensively use land resources in urban planning, centralize urban functional elements, and strengthen
urban space growth management [8].

Based on these concepts and theories, quantitatively measuring the spatial patterns of urban
forms is important for studying the associations between urban forms and other urban problems.
Song et al. [11] proposed 27 sets of urban form measurements from three perspectives: permeability
measures, vitality and accessibility measures, and variety measures. Ye & Van [38] used geographical
information system (GIS) to integrate different frameworks and indicators of urban form and to
measure urban spatial quality. Yang et al. [39] explored human mobility hotspots and patterns in
different land use properties. Yang [40] found that socio-economic data and land use affect the travel
patterns of older people in Hong Kong. These studies lead to the conclusion that urban vitality can
be created using design methods. Exploring the relationship between built environment and urban
vitality helps create better urban space.

Katz [41] noted that the degree of compactness, walking scale, functional mixing, and appropriate
building density are important factors influencing urban vitality. Jacobs [4] posited that functional
mixing, pedestrian blocks, mixing of old and new buildings, and dense population distribution are
necessary to maintain urban vitality. Montgomery [1] proposed that vibrant urban space should have a
detailed texture, humanity scale, mixed function, and street accessibility. Attoe & Logan [22] proposed
urban catalyst theory, noting that buildings, places, and areas can become popular and drive elements
of neighboring cities. Adedeji [42] listed factors that characterize the quality of public landscapes,
including visual accessibility and satisfaction, aesthetics, cleanliness and visual quality, and open space
for easy access.

Studies generally divide urban space accessibility into visual accessibility, physical accessibility,
and symbolic accessibility [43–45]. Gehl [5] pointed out that richness of street interfaces, the diversity
of urban public facilities, and the diversity of activity space are important conditions for urban public
life. Ewing et al. [46] listed nine qualities that influence urban walking behavior: imagery, fitness,
scale of humanity, transparency, richness, ease of identification, consistency, continuity, and cleanliness.
Clark et al. [47] used urban shape, road density, population density, and population concentration
as the main indicators of built environment to study the relationship between air quality and built
environment in the United States. Yue et al. [15] explored the relationship between neighborhood
vibrancy and the mix and diversity of POIs using linear regression models; however, the study did not
extend to analyzing the interaction mechanism between different built environment factors.

A summary of the theoretical results on the connotation and creation principles of urban vitality
indicates there is no consensus on the impacts of built environment. Further, the selected indicators
differ. Based on research by different scholars, the built environment that affect space vitality can be
classified into six perspectives: the space function and use, accessibility, intensity and density, shape
and scale of space, the landscape, and the location in the spatial and social environment [1,4,5,41,48].
There is a lack of urban spatial information data. Most studies have qualitatively explained the
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correlation between urban vitality and built environment factors. In contrast, their quantitative
correlation needs further discussion. Quantitative measures and analytical methods, such as multiple
regression analysis, are trends that reveal the associations [29,49]. In addition, researchers have not yet
assessed the correlation between urban vitality and built environment of cities with different scales
and development situations.

Therefore, this study used urban spatial information data obtained from different platforms to
measure the built environment of neighborhoods in the central areas of Beijing and Chengdu, China.
The goal was to explore the quantitative relationship between the consistent built environment and
urban vitality of cities with different scales and development situations, to answer how the consistent
built environment factors affect urban vitality of different cities.

3. Study Area and Data Sources

3.1. Study Area

The cities studied in this study included Beijing and Chengdu, China. This study first describes
the research areas of these two cities.

Beijing is the capital city of China. Its national central city index ranks first in China. In 2017,
the resident population of Beijing was 21.7 million, and the gross domestic product (GDP) exceeded
2.8 trillion yuan, ranking second in China’s urban GDP. The central area of Beijing includes six districts:
Dongcheng District, Xicheng District, Chaoyang District, Fengtai District, Shijingshan District, and
Haidian District. These districts account for 8 percent of the total area of Beijing (about 1312.8 square
kilometers). The spatial analysis units for this paper included 113 regulatory planning management
unit (RPMU) in these six districts.

Chengdu is the capital city of Sichuan Province, and has more than 16 million total residents.
In 2017, its GDP exceeded 1.3 trillion yuan, ranking eighth in China’s urban GDP. Chengdu is an
important central city in western China, with an urbanization rate of 70.6%. The central urban area of
Chengdu includes Chenghua District, Wuhou District, Jinniu District, Jinjiang District, and Qingyang
District. These five districts are the most prosperous and oldest districts in Chengdu. The five districts
cover an area of approximately 420 square kilometers. The study evaluated 76 regulatory planning
management unit (RPMU) in the five major districts.

Beijing is one of the four biggest cities in China (other three biggest cities are Shanghai, Guangzhou,
and Shenzhen), and has become an international metropolis and well-urbanized. The characteristics of
urban built environment in the central urban area of Beijing will not change much. However, Chengdu
is a typical representative of the emerging cities in China, and facing tremendous constructions and
changes. Chengdu is expected to become another international metropolis. The development and
construction situations of these two cities are totally different. How the same built environment factors
affect urban vitality of cities with different development situations needs deeply studied. Thus, the
comparative analysis of these two cities is helpful to better guide the construction and planning of
these emerging cities in China to avoid disorderly city expansion and over-exploitation. The basic
spatial analysis unit in this study is the urban RPMU in the central areas of Beijing and Chengdu.
Figure 1 shows the spatial locations.
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3.2. Data Sources

The data used for this study included social-media check-in data as resident activity data,
socio-economic data, and urban spatial information data. The urban spatial data included information
on the city’s regulatory planning management units (RPMUs), POIs for land use function, road network
(including public transportation sites), and building information vector data.

3.2.1. Social-Media Check-in Data

Sina micro-blog check-in data were used to represent neighborhood vibrancy. The Sina micro-blog is
similar to Twitter and Facebook, and is one of the largest social media platforms in China. The platform
has 165 million daily active users, and the check-in location is accurate to the meter level. Data
collection was facilitated by the Sina micro-blog application program interfaces (APIs). Through the
“place/users/checkins” API (https://open.weibo.com/wiki/2/place/users/checkins), we retrieved the list
of places where users have checked in. The check-in data obtained for this study covers the period
from September 1 to 7, 2016. A total of 124,658 locations were recorded in the 113 RMPU in the central

https://open.weibo.com/wiki/2/place/users/checkins
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areas of Beijing, and a total of 50,719 locations were recorded in the 76 RMPU in the central urban area
of Chengdu.

3.2.2. Socio-Economic Data

The socio-economic data used for this study mainly included resident population data and house
price data. The resident population refers to the number of people who actually live in the city for
more than half a year. This indicator is different from the Hukou population, who may not live in that
city. The resident population better reflects the actual population distribution of the city.

Resident population data were obtained by reviewing the yearbooks in each city (http://www.
cdstats.chengdu.gov.cn/ and http://www.bjstats.gov.cn/index.html). Housing price data were obtained
from Lianjia, one of China’s largest rental and sales platforms (https://www.lianjia.com). Previous
studies have shown that the spatial convergence of people is closely related to housing prices [50].

3.2.3. Point of Interest (POI)

The POI data used in this study were collected from the Amap, one of China’s largest map
search engines and suppliers. Amap is affiliated to AutoNavi company, which is located in Beijing.
Amap provides free application interfaces to enable data collection from different layers and features.
The labels for the POI data addressed all types of facilities. A total of 223,595 POIs were obtained in
the central areas of Chengdu, and 414,425 POIs were obtained in central area of Beijing. These POIs
belong to 14 categories: textile & food, restaurants, transportation, companies & enterprises, retail
& wholesale, research & education, government & organization, residential, financial & insurance,
sports, medical & health care, public facilities, hotel & recreation, and scenic sites. Figure 2 shows the
distribution of POIs for each category in Beijing and Chengdu.
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There were significantly more POIs at each category in Beijing than in Chengdu, especially in
the textile & food and restaurants categories. There were fewer retail & wholesale POIs in the central
urban area of Beijing than in Chengdu. This may be because there are government departments, a
large number of courtyard houses and old buildings with a long history in the central urban area of
Beijing. Retail & wholesale locations are much more strictly regulated.

3.2.4. Building Vector Data and Road Network Data

This study used building vector data (including building height) to calculate the construction
intensity and building density in each neighborhood. Road network data were downloaded from
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Openstreetmap (https://www.openstreetmap.org/), which provides detailed road vector information
for global users.

4. Definitions of Variables

This study applied social-media check-in data to measure neighborhood vibrancy, introduced
socio-economic indicators, and measured the built environment from five major systems: spatial
accessibility, spatial intensity and density, spatial mixing function, spatial shape compactness, and
landscape [1,4,5,41,48].

4.1. Neighborhood Vibrancy Measurement (Dependent Variables)

Yue et al. used the total accumulated population to quantify the neighborhood vibrancy
in Shenzhen, thus, this study used the accumulated number of people who checked-in at each
neighborhood to measure vibrancy vi [15]. Compared to traditional questionnaire data, social media
check-in data provides a higher sampling rate and can be used to characterize urban vitality [16].
The higher the number of check-in records in the RMPU, the more people are likely to be active in the
RMPU, that is, the higher the vibrancy of RMPU.

4.2. Social-Economic Indicators

Jacobs [4] noted that good urban vitality requires a dense population. The population indicators
in this study mainly included the resident population in each RMPU. The study used the average
housing price in each RMPU as the economic indicator.

4.3. Accessibility Indicators

Public transport accessibility mainly refers to the distribution of bus and metro stations within
the RMPU. This paper uses the density of bus stations (BSI) in the RMPU to measure the degree of
bus accessibility.

The road density index (RDI) measures the degree of road density in a neighborhood. The RDI
further describes the construction strength and accessibility of transportation facilities and services.
For this study, RDI was calculated as:

RDIi = Li/Si (1)

Here, Si is the area of neighborhood i; Li is the total length of the center lines of the roads in
neighborhood i.

4.4. Density and Construction Strength

Many indicators are used to measure a neighborhood’s construction strength and density. However,
construction strength and density are mainly based on the neighborhood’s own characteristics,
construction intensity, and degree of mixed function [14]. Studies have shown that good building
environment requires suitable spatial construction strength and density.

First, this research introduces the floor area ratio (FAR) to measure the level of spatial construction
strength. The FAR is an important economic and technical indicator reflecting the intensity of urban
construction. The larger the FAR is, the greater the construction intensity is, and the higher the degree
of land use is. This study calculated the FAR as:

FARi = Qi/Si (2)

Here, Qi is the total construction area of neighborhood i, including the ground and aerial
construction area.

Second, this research introduces the building density index (BDI) to measure the level of ground
construction strength. In this study, BDI is the ratio of the projected area of buildings to the area of the

https://www.openstreetmap.org/
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neighborhood. This indicates the land occupation rate of that neighborhood, as well as the intensity of
building coverage. BDI was calculated as:

BDIi = Mi/Si (3)

Here, Mi is the total base area of all buildings in neighborhood i.

4.5. Mixed Function

The spatial function focuses on land use type and its degree of mixing, and is a key indicator
when measuring urban spatial diversity. A number of studies have indicated that the diversity of POIs
represents the degree of the mixed function in an urban space [15]. Based on the information entropy
calculation method, the Shannon-Weaver diversity index was used to calculate the POI diversity index
in each neighborhood. The index was calculated as follows:

Entropy = −
n∑

j=1

p jlog2p j (4)

Here, n is the number of POI types, and the ith POI has a relative proportion of pj.

4.6. Shape Indicators

For this study, Area (Si) and the Richardson compactness index (RCI) are used to measure the
shape indicators of each neighborhood. The compactness index uses the circular region as the standard
unit measure of shape compactness with a value of 1. The compactness of other regions is less than 1.
That is, the smaller the compactness index value, the greater the dispersion of the urban form and the
less compact the urban space. The Richardson compactness index (RCI) was calculated as:

RCIi =

√
πSi
Ci

(5)

Here, Ci is the perimeter of neighborhood i.

4.7. Landscape Quality Indicator

In terms of green landscape, this study used the Green Coverage Index (GCI) to measure the
quality of green landscape in each RMPU. GCI is measured by the ratio of large-scale ecological green
land and park area (Gi) in the RMPU.

GCIi =
Gi
Si

(6)

5. Methodology

5.1. Spatial Autocorrelation

In this paper, the Global Moran’s I is used to calculate the potential interdependence of spatial
vitality between different RMPU. The Global Moran’s I is calculated as:

I =
n

n∑
i=1

n∑
j=1

wi, j

·

n∑
i=1

n∑
j=1

wi, jziz j

n∑
i=1

z2
i

(7)
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Here, zi is the deviation between the vibrancy of ith RMPU and the mean value of vibrancy of all
RMPU, wi,j is the spatial weight between ith and jth RMPU, which is measured by the reciprocal
distance between the centers of these two RMPU. The above spatial autocorrelation analysis can be
completed in the spatial statistics toolbox of ArcGIS version 10.2.2. ArcGIS is a software produce of
ESRI company, which is located in California, USA.

5.2. Regression Model

The linear regression model was used to explore the comparative analysis between urban built
environment factors and urban vitality of Beijing and Chengdu [15]. The dependent variable is
neighborhood vibrancy, as measured by check-in data in Section 4.1. Independent variables include
socio-economic factors and built environment indicators. Socio-economic factors (populations and
economic data) are control variables. In linear regression model 1, these socio-economic variables
are introduced to explain any variation in neighborhood vibrancy that is not related to the built
environment [15]. Linear regression model 2 included built environment factors as additional
independent variables to future explore the impacts of built environment on urban vitality.

6. Results and Analysis

6.1. Variable Statistics

Table 1 shows the statistics for the socio-economic indicators and built environment indicators for
the two studied cities.

Table 1. Characteristics of built environment variables in regulatory planning management unit
(RPMU).

Measurement System Indicator
Beijing Chengdu

Units
Mean Std Mean Std

Social-economic data
Population 2.41 2.62 2.26 2.47 10,000 person/km2

House price 4.33 1.18 0.88 0.22 10,000 CNY/m2

Compactness Area 6.69 7.71 5.97 6.96 km2

RCI 0.35 0.07 0.34 0.07
POI mixed use Entropy 0.92 0.09 0.98 0.07
Accessibility BNI 0.25 0.14 0.08 0.04 100 stations/km2

Density FAR 1.06 0.46 1.09 0.66
BDI 0.22 0.08 0.21 0.08
RDI 9.67 4.34 7.47 3.06 km/km2

Landscape GCI 0.03 0.06 0.02 0.03

std stands for standard deviation.

As the capital city of China, Beijing has a larger RMPU area and population density than Chengdu.
The biggest difference across the indicators was housing price and bus station density. Beijing’s housing
prices are approximately five times larger than Chengdu’s. In terms of accessibility indicators, Beijing’s
bus station density indicator is approximately three times larger than that of Chengdu. Differences in
the spatial distribution of the indicators could contribute to the variations in neighborhood vibrancy.

6.2. Spatial Autocorrelation Analysis of Neighborhood Vibrancy

Figure 3 shows the neighborhood vibrancy for Beijing and Chengdu. The vibrancy scale in
these two maps are the same. The figure shows that the neighborhood vibrancy of Beijing’s central
urban district was significantly stronger than Chengdu. The number of people who checked in at
the Beijing neighborhoods reached 10,000; the number of people who checked in at the Chengdu
neighborhoods was less than 2000. This may be because that the total population for the different
cities, the check-in preference of residents, and number of people attracted from other cities could all
impact the quantitative results of the neighborhood vibrancy. In addition, neighborhood vibrancy
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in the central urban areas of the two cities showed clear spatial heterogeneous patterns, indicating
differences in the spatial vibrancy of each RMPU. The common feature of the two cities is that the
vibrancy levels in the most central areas were not the highest of all the studied area neighborhoods.
The eastern and northern parts of Beijing were more vibrant, followed by the south and the west. The
most vibrant area of Chengdu was the ring-shaped area radiating outward from the most central area.
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A spatial autocorrelation analysis was conducted to assess the neighborhood vibrancy of Beijing
and Chengdu. The global spatial autocorrelation coefficient of Chengdu was 0.04; the value for Beijing
was 0.07 (p-value = 0.01). The correlation result was very close to 0, further indicating that neighborhood
vibrancy was neither clustered nor dispersed. The heterogeneous patterns of neighborhood vibrancy
in the study areas were very strong. In summary, the spatial heterogeneous of neighborhood vibrancy
and built environment indicators suggested that different built environment may contribute to different
vibrancy. This provided the application basis for spatial regression analysis.

6.3. Spatial Regression Results and Analysis

To describe the relationship between the built environment indicators of different cities and
neighborhood vibrancy, two sets of linear regression analysis were conducted for the two cities. In the
first set of regression models, only socio-economic indicators were considered to explain the variances
of neighborhood vibrancy. These indicators were directly unrelated to the built environment. Table 2
shows the detailed results of the linear regression between selected indicators and neighborhood
vibrancy. The variance inflation factor was less than 3 for all variables. This indicates that the variables
are not redundant; therefore, multicollinearity should not impact analysis results.

In model 1, both the regression results for the two cities showed that socio-economic indicators
account for approximately 30% of the neighborhood vibrancy. In particular, there was a negative
correlation between population density and neighborhood vibrancy. This result differed from Jacobs’s
suggestion that good neighborhood vitality requires a dense population distribution [4]. This study
result may have occurred because the resident population density in the inner RMPU of the central
areas of Beijing and Chengdu was excessively large, exceeding 20,000 people per square kilometer.
Residents may be more inclined to conduct social media check-in activities in moderately dense or
culturally rich places. In addition, there was a strong positive correlation between housing prices
and neighborhood vibrancy, particularly for Chengdu. Studies have found the spatial convergence of
people is closely related to housing prices [50]. Housing prices can also indirectly reflect local economic
and consumption levels, and are directly related to spatial location. Prices are higher for homes close
to convenient transportation, parks, and large commercial districts. These geographically superior
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locations are also destinations to which residents prefer to travel. Thus, there is a high possibility of
check-in behavior, and the neighborhood is considered more active.

In model 2, the built environment factor is introduced into the regression analysis, significantly
improving model accuracy. This indicates that there is a strong correlation between built environment
indicators and neighborhood vibrancy. For Chengdu, the R2 increased from 0.27 to 0.55; for Beijing, R2

increased from 0.31 to 0.50. In addition, the model intercept dropped from 3.96 to 2.12 and from 4.74 to
3.08 for Beijing and Chengdu, respectively. This indicates a gradual improvement in regression model
performance. The R2 value is only about 0.55 in these models; however, the p-value is significant at
0.05. This indicates that the two linear regression models are statistically significant in illustrating
patterns of neighborhood vibrancy.

Commonly, indicators such as house prices, entropy of function diversity, and transport
accessibility are highly positively correlated with neighborhood vibrancy. Other studies have also
validated the role of function diversity in creating good vibrancy [15]. Jacobs [4] noted that diversity
is the nature of city, meeting the diverse needs of different groups of people. The compact city
also advocates a multi-purpose, mixed-function area to replace the traditional, relatively single-use
functional area. This could stimulate the vitality of urban space.

Table 2. Regression results for the impact of built environment on neighborhood vibrancy.

Indicators
Model 1 Model 2

Chengdu Beijing Chengdu Beijing

Intercept 3.96 *
(0.43)

4.74 *
(0.33)

2.12 *
(1.63)

3.08 *
(0.92)

Population density −0.12 *
(0.04)

−0.18 *
(0.03)

−0.13 *
(0.05)

−0.16 *
(0.03)

House Price 1.84 *
(0.44)

0.47 *
(0.08)

0.77
(0.54)

0.46 *
(0.09)

Area 0.03
(0.02)

0.06 *
(0.01)

RCI −1.33
(2.03)

−2.09
(1.62)

Entropy 1.05 *
(1.65)

1.25 *
(0.99)

BNI 7.53 *
(3.35)

1.63 *
(0.79)

FAR −0.38
(0.32)

0.46 *
(0.25)

BDI 7.33 *
(1.94)

−1.33 *
(1.62)

RDI 0.03
(0.03)

0.03 *
(0.02)

GCI 1.03
(2.02)

0.05
(1.42)

Adjust R2 0.27 0.31 0.55 0.50

Standard errors are shown in parentheses, and values with * are significant at 0.1 level.

The bus stations density indicator in the RMPU plays a significant role in promoting neighborhood
vibrancy, especially for Chengdu. Chengdu has a bus station density that is only one-third of Beijing.
The higher the spatial accessibility, the higher the connectivity of places with other urban places.
Residents can more easily move from the surrounding area for activities and social interactions,
inspiring neighborhood vibrancy.

In addition, the compactness of RMPU shape has a significant impact on a RMPU’s vitality. Table 1
showed that the compactness distribution of RMPU shapes of Beijing and Chengdu were roughly
similar; both were less than 0.5. The RMPU areas in this study were large, with average areas of RMPUs



Int. J. Environ. Res. Public Health 2019, 16, 4592 13 of 16

in Beijing and Chengdu being 6.69 and 5.97 km2 respectively. There was an indirect jaggedness of the
RMPU boundary, impacting the orientation of internal buildings and the constraints of the road inside
the RMPU. This affects check-in behavior.

The FAR and building density indicator are two common indicators for characterizing the strength
of spatial and ground construction. However, they appear to have played different roles in the creation
of neighborhood vibrancy in Beijing and Chengdu. For Beijing, the FAR was positively correlated with
neighborhood vibrancy, whereas building density indicator was negatively correlated. For Chengdu,
FAR was negatively correlated with the neighborhood vibrancy, whereas building density had a strong
positive correlation. Beijing is one of the most developed cities of China, and the city has a large
number of low-floor historical architectures and modern buildings. The average FAR of neighborhoods
in the central areas of Beijing was less than 1, indicating the construction pattern was characterized
by high ground construction intensity, but the building floor was very low. However, Chengdu was
different. The average FAR of the central area was approximately 1.80. The building floor in central area
was higher than Beijing. Thus, it is important to coordinate the relationship between building density
and FAR, that is, to control the ground construction intensity and floor height. Urban development
should avoid disorderly expansion and over exploitation. Finally, the green coverage index also plays
a positive role in creating neighborhood vibrancy.

Therefore, built environment indicators and socio-economic factors can significantly explain
the variation of neighborhood vibrancy. Consistent built environment indicators may have different
influences. Proper building density, high functional diversity, and accessibility have greater impacts
with respect to creating vibrancy.

7. Discussions

The Death and Life of Great American Cities examined the elements of urban architecture, and
how they function in urban life. Decades have passed, but this book still provided a framework
for assessing urban vitality [4]. However, current researches lack the study of how consistent built
environment factors affect urban vitality of cities with different development situations. With the
advance of Information and Communication Technology, this study analyzed the correlation between
urban vitality and built environment of cities with different development and construction situations.
The data we used for evaluating the urban vitality and built environment were provided by different
open data platforms. Thus, this article provides readers with how to use open platform data to evaluate
the quality of urban space.

However, this study gave a more in-depth interpretation about Jacobs’s suggestion that good
neighborhood vitality requires a dense population distribution [4], when compared with other
researches [15,29,38]. They found that population density indicator contributions to the creation of
neighborhood vibrancy [15,29], however, excessively dense population may suppress the creation of
urban vitality in our research. Moreover, high density doesn’t mean over intensive and over-exploitation.
A low FAR and high ground building density combination or high FAR and low ground building
density combination do not effectively create good urban vitality. Therefore, the consistent built
environment factors may contrarily contribute to vitality of cities with different development stages.
It is important to conduct comparative analysis of built environment measurement system for different
cities to evaluate urban vitality.

As with all studies, there were challenges in the approach. First, when applying spatial-temporal
big data into human dynamic research, it is important to consider the representativeness of data [51,52],
such as spatial and temporal sampling characteristics, and age, gender, occupation differences of the
sampling group. In addition, the study did not identify the influence path of neighborhood vibrancy,
meaning that neighborhood vibrancy may also be related to the spatial form indicators of the adjacent
neighborhoods. The research did not address this point. Finally, more open data platforms are needed
to measure built environment, to make the measurement system completer and more accurate.
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8. Conclusions

This study used different open data platforms to quantitatively measure neighborhood vibrancy in
the central urban areas of Beijing and Chengdu in China. This study found that neighborhood
vibrancy in Beijing was significantly higher than Chengdu. Both cities exhibited clear spatial
heterogeneous patterns in neighborhood vibrancy. The results of the linear regression analysis
showed that socio-economic indicators accounted for approximately 30% of the neighborhood vibrancy.
The excessive population density inhibits resident check-in behavior; however, there is a strong positive
correlation between housing prices and neighborhood vibrancy, especially for Chengdu. Houses
have better locations and infrastructure is often associated with higher prices. These places in urban
environments help stimulate urban vitality.

When the built environment indicators are introduced into the regression model, the accuracy of
the linear regression model increased from approximately 0.3 to 0.5. This indicates a strong correlation
between built environment and neighborhood vibrancy. The entropy of function diversity and transport
accessibility indicators are highly positively correlated with neighborhood vibrancy. Compact cities
also advocate diverse urban land use and mix of functions to inspire the vitality of urban space. China
is in a rapid urbanization stage; the difficulties associated with the mixed land use emerging from rapid
urbanization still need systematic research and exploration. In addition, the density of bus stations in
the central urban area of Beijing is approximately three times higher than in Chengdu. Optimizing
the Chengdu transportation system from the perspective of public transport accessibility could help
promote the urban vitality.

Conclusions about creating urban vitality mainly relate to the appropriate construction intensity,
sufficient functional mix, and high accessibility. Moreover, this study focused on analyzing the
impacts of building density and floor area ratio (FAR) on neighborhood vibrancy. The study found
that the floor area ratio and building density play different roles, strengthening an understanding of
compact city concept. In our research, we found that two different construction intensity indicators,
building density indicator and floor area ratio (FAR), had different effects on the vitality of cities
with different development stages. The study highlights that urban planners and managers should
control the relationship between building density and FAR. This avoids disorderly city expansion
and over-exploitation.
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